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Introduction

Steiner bundles on a complex projective space PY~! = P(V) were defined by Dol-
gachev and Kapranov in [DK93] as the bundles F' that admit a linear resolution of
the form

021Q0(-1)-W®O0—-F —0, (0.0.1)

where I and W are vector spaces. Steiner bundles form the simplest and more natural
family of vector bundles on projective spaces. As it is well known, they have rank
t—s > N —1, where t = dimW and s = dimI. When the equality holds true,
it can be proved that Steiner bundles are stable (see [AO94] or [BS92]) and hence,
in particular, simple. The first example of a Steiner bundle with rank N — 1 is the
tangent bundle on PV, which is actually stable. More precisely, if we consider s = 1
and t = N in (0.0.1), then we get F' = Tpn -1 @ O(—1). In this thesis we are interested
in Steiner bundles with higher rank. Our main purpose is to characterize simplicity
and stability of the generic Steiner bundle on PN ~! for N > 3.

As a first remark, we observe that F' is the cokernel of a sheaf morphism
m:IQO0(-1) > W®O.

When a basis is fixed in each of the vector spaces V,I and W, the morphism m is
represented by a (s X t)-matrix, whose entries are linear forms in N variables, or,
equivalently, by a three-dimensional matrix M of complex numbers of size (s xt x N),
ie.

MeHom(I®O(-1),We0)=2I"eWeV =: H.

We say that F' is a generic bundle if the corresponding matrix M is generic in the
space H.
Our first result characterizes the simplicity of generic Steiner bundles. More pre-

cisely (see Theorem 3.2.1), we have the following



Theorem A. Let F be a generic Steiner bundle on P(V), where dimV = N > 3.
Then
F is simple & x(End F) < 1.

We point out that the genericity assumption cannot be dropped, because when
rk F > N—1 it is always possible to construct Steiner bundles which are decomposable,
hence in particular non-simple. Moreover, it is easy to check that if F is simple then
x(End E) < 1, and this implication is true for every bundle on P2, even non-Steiner.
On the other hand, the converse is not true in general: for example the generic bundle

G on P? with resolution
0-0(-2)80(-1)—-0"%-5aG—-0

satisfies x(End G) = —3, and it can be shown that h®(End G) = 5, therefore G is not
simple.

When F is a Steiner bundle with resolution (0.0.1), we obtain x(End F) = s% +
t? — Nst. Since x(End F) is an integer, the condition x(End F') < 1 splits in two cases:

either
(i) x(EndF) =2 +12 - Nst=1, or
(ii) x(EndF) <0, i.e. t < NHVV2=t,

In the first case we have a hyperbola in the (s,t) plane, and we prove (see Lemma,
3.1.4) that all the integer points on the hyperbola are of the form (s,t) = (ax_1,ax),

where

NevET=E\F  (N—yET=E\F
(=) - (=)

W= N?_4

We observe that when N = 3, the sequence {ay} is exactly the odd part of the
Fibonacci sequence. For any N > 3, we call the numbers {ay} generalized Fibonacci
numbers and we verify that they satisfy a recurrence relation. We denote by Ej the

bundles on PV~ with resolution
0— O(-1)*150% — E — 0,

and we prove that they are exceptional bundles.
Exceptional bundles were introduced by Drézet and Le Potier in [DLP85] as a class

of bundles on P? without deformations. Exceptional bundles appeared as some sort



of exceptional points in the study of the problem of stability of bundles on P2. Drézet
and Le Potier showed that these vector bundles are uniquely determined by their
slopes, and they described the set of possible slopes. Later, the school of Rudakov
(see for example [Rud90]) generalized the definition of exceptional bundles on P™ and
on other varieties. They developed a general axiomatic presentation of exceptional
objects: the theory of helices.

Following the definition of Gorodentsev and Rudakov ([GR87]), we say that a
bundle E on P" is exzceptional if h°(End E) = 1 and h'(End E) = 0, for all i > 0.
We remark that the condition h!'(End E) = 0 implies that F has no infinitesimal

deformations.

(8,21)

t=s+4+2

Figure 1: Region of simple and stable Steiner bundles on P2,

In the case x(End F') < 0, we can prove the simplicity of generic Steiner bundles



by using the natural action of the group GL(I) x GL(W) on the vector space H =
IY®@W ® V. With this perspective the problem is reduced to prove that the stabilizer
of the generic matrix in H has dimension 1. Hence, we solve it by studying in detail the
action. We underline that the proof of Theorem A is self-contained and independent
from [DLP85].

In Figure 1 we represent the situation in the case N = 3: simple non-exceptional
bundles live in the shaded region and the three points represent the first three excep-
tional bundles that live on the hyperbola s? + t2 — 3st = 1.

A second result concerns the case of the Steiner bundles that are not simple. A
non-simple bundle is, in general, not decomposable, but in this case we find that
any Steiner non-simple bundle is decomposable. Furthermore, it is always a sum of
exceptional Steiner bundles.

More precisely, (see Theorem 3.3.5), we state the following
Theorem B. Ift > NEvN"—4 ”2NL43, then a generic Steiner bundle with resolution
0— O(-1)°*—0" — F =0,

is isomorphic to a bundle E} @ E" |, where Ey, Ex1 are the exceptional Steiner

bundles previously defined and n,m are suitable natural numbers.

Also the proof of Theorem B is independent from [DLP85]. It is interesting to
reformulate this result in the setting of matrices. We say that a matrix M in the
space H = C° @ C' ® CN is a canonical form of type (n,m, k), if

M € ((C*-1 @ C%)" @ (C* @ C*+1)™) @ CN C H,

for a suitable triple of natural numbers (n,m, k). We remark that acting with GL(s) x
GL(t) on H is equivalent to performing the Gaussian elimination. Then, Theorem B

can be reformulated in the following way:

Corollary C. If t > NtvN°—4 ”QNLALS, then the generic (s x t X N)-matrix M € H is
equivalent, by the GL(s) x GL(t)-action, to a matriz of the canonical form.

We emphasize that the sizes of the blocks in a canonical matrix are always multiple
of the generalized Fibonacci numbers considered above. This result is quite surprising.

An example of the block shape of the canonical form is shown in Figure 2.
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t

Figure 2: Canonical matrix of type (1,1, k)

We easily obtain a generalization of Theorem A and Theorem B to the case of

bundles F on PV~ with resolution
0— O(-k)* XL 0t — F 0,

for all 1 < k < n. It is easy to check that such bundles F' are exceptional when
k < n: this motivates the above inequality. In this case the entries of the matrix M
are homogeneous forms in N variables.

There exist several results of Drézet and Le Potier about stability of bundles on
P2, In particular, in [DLP85], they found a criterion to check the stability of a generic
bundle, given its rank and Chern classes. This criterion is very complicated to apply.
Moreover, from another result of Drézet ([Dré99]), we deduce that on P? the stability is
equivalent to the generic simplicity. Therefore, our Theorem 3.2.1 provides a criterion
for the stability of generic Steiner bundles on P? which is very straightforward to

apply. More explicitly, we get the following

Corollary D. Let E be a generic Steiner bundle on P?. Then, E is stable if and only
if x(End E) < 1.

As we already pointed out, it is easy to prove that the stability implies x(End E) <
1. On the other hand, we are not able to deduce directly from [DLP85] the other
implication. We do not know yet if Corollary D is true on PVN~! for N > 4.

The first interesting generalization of the Steiner bundles is the family of bundles

with resolution

0 0(-2)®0(-1)°*=0! - F = 0. (0.0.2)



We undertook the study of bundles of this form only on P2, by using strongly the
Drézet-Le Potier criterion.

The first difference with respect to the Steiner case is that simple and non-simple
bundles are not separated by a line, even if we exclude the case of exceptional bundles.
Nevertheless, we can give a numerical characterization of generic simplicity i.e. of
stability. To prove it we use both approaches: on one hand we apply the results of
Drézet, simplifying them in this particular case, and on the other hand we complete
the description by proving directly the simplicity.

The result we obtain is summarized in Theorem 5.2.3. Explicitly we have

Theorem E. Let F be a generic bundle on P? with resolution (0.0.2). Then F is
simple (and stable) if and only if the pair (s,t) lies either on a particular polygonal p
(defined in the statement of Theorem 5.1.1), or between the polygonal p and the line
t = s+ 3. Vice versa, F is not simple (and not stable) if and only if (s,t) is above
the polygonal p.

We represent graphically the situation in Figure 3, where the beginning part of
the polygonal p is shown.
Furthermore, we obtain a nice characterization of the exceptional bundles of the

form (0.0.2). More precisely, we have (see Corollary 4.2.8):

Theorem F. Let E be a bundle on P? with resolution (0.0.2). Then the following are

equivalent:
(1) E is exceptional,
(2) x(End E) =1,
(8) (s,t) = (3rgag_o,3rgag_1), where 1y = ax — ag_1.

Notice that, in Figure 3, the exceptional bundle corresponds to the first vertex
(15,45). In fact, all exceptional bundles are vertices of the polygonal p.

The general case
0— 0(-2)1®0(-1)*=0" - F =0,

for any g € N, seems very hard to approach. First of all, for some fixed ¢, e.g. for ¢ = 2,
there exist no exceptional bundles. Moreover if ¢ > 1, the condition x(End F') = 1

10



Figure 3: Region of simple and stable bundles on P? in the case ¢ = 1.

does not imply that F' is exceptional. For example the generic bundle G with the

following resolution
0— O(=3P2 3 0(-2)*-0(-1)* -G - 0

has x(End G) = 1, but G is not exceptional. This suggests that the two cases studied
in detail in this thesis, i.e. ¢ = 0 (Steiner bundles) and ¢ = 1, are very particular.
This fact can be understood by looking at the inductive construction of exceptional
bundles on P? (for more details see Remark 4.3.6).

It is remarkable to note that all the exceptional bundles on P? can be constructed
by the theory of helices; in particular there exists a correspondence between the ex-
ceptional bundles on the projective plane and the solutions of the Markov equation
7?2 + % + 2% = 3zyz (see [Rudss)).

The thesis is structured as follows: in Chapter 1, we give some preliminary defini-

tions and notations about multidimensional matrices and group actions. In Chapter 2,

11



we introduce the fundamental notion of exceptional vector bundle and we describe the
basic results and tools of this theory. As main references see [DLP85] and [Rud90].
In Chapter 3, we study the case of Steiner bundles on P". In particular we prove
Theorem A and Theorem B and we give the reformulation of these results in terms of
matrices. The first part of this chapter is contained in the preprint [Bra03]. In Chap-
ter 4, we analyze and classify all the possible resolutions of the exceptional bundles
on P2, In particular we study the case of the resolution (0.0.2) and we prove Theorem
F. In Chapter 5, we provide the criterion (Theorem E) for the generic simplicity and
stability of bundles with resolution (0.0.2). As a basic reference for bundles on P",
see [0SS80].

I wish to express my deep gratitude to my advisor Giorgio Ottaviani for suggesting
me the problem and for his precious advice. His constant support and encouragement
have been very important for me. I would also like to thank Enrique Arrondo and
Jean Vallés for many helpful discussions.

T am indebted with all my colleagues and friends of the Department of Mathematics
“Ulisse Dini” for the nice atmosphere in which I had the opportunity to work during

my Ph.D. years.
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Chapter 1

Matrices and group actions

1.1 Multidimensional matrices

A general theory of multidimensional matrices is explained by Gelfand, Kapranov and
Zelevinsky in the book [GKZ94]. In this section, we recall only the particular case we

are interested in.
Definition 1.1.1. A three-dimensional matriz is an array
A = (@iy inis)
of complex numbers, where any index i;, for j =1,2,3, ranges over some finite set.

The set of three-dimensional matrices is isomorphic to
VieV,®Vs,

where V; is a complex vector space of dimension [;, for j = 1,2, 3, and [; is the cardi-
nality of the corresponding set of indices. We denote by ng ), eee ,:vl(]] )
in Vj, for j = 1,2,3.

Then, the matrix A has the following different descriptions:

the coordinates

(i) a multilinear form
E : iy yigsizTiy & Tiy & Tig}

(il 12 7i3)

(ii) an ordinary matrix M = (my, 4,) of size [; x Iy, whose entries are linear forms

ls
Miy iy = E :ail,iz,iswis;

i3=1

13



(iii) a sheaf morphism ¢4 on the projective space X = Pls~1 :
o(-1i 24 ok,

IP)N—I

In this thesis, after introducing the concept of Steiner bundle on , we will use

these alternative descriptions. In particular we will focus on the second point of view.

1.2 Group actions

It is interesting to consider the natural action of the group GL(n1) x GL(n2) on the
space C" @ C" @ C"s.

The classical case is when ng = 1, i.e. when we act on the space of ordinary
(n1 X ng)-matrices. In this case the number of the orbits of GL(n1) x GL(n2) is
s+ 1 = min(ny,n2) + 1. In fact, the only invariant with respect to the action is the
rank of the matrices in C™ ® C". Hence, the s + 1 orbits are {0 = Op, 04, ...,Os},
where O; is the set of matrices of rank j. The orbit O is the open orbit of matrices
with maximal rank.

When ng > 2, we act on the space of three-dimensional matrices, i.e. on matrices
of linear forms in ng variables. In this case it is not true that there exists always an

open orbit. Indeed, a necessary condition to have an open orbit is that
dim(GL(n1) x GL(ng)) > dim(C" @ C*? @ C™).

We will see that this condition is sufficient too, and, when it holds, we can find a

canonical form for matrices which are in the open orbit (see Section 3.4).

Remark 1.2.1. In [Par01], Parfenov studied the action of GL(n;) x ... x GL(n,) on
the space C" ® ... C" . He found that the orbits are infinitely many, except for the

following two cases:
e p=3and (ni,n2,n3) = (2,2,n), with n > 3,
e p=3and (ni,n2,n3) = (2,3,n), with n > 3.
Let us observe that
GL(n1) x GL(n2) 2 GL(n1) x GL(n2) x Id C GL(n1) x GL(n2) x GL(n3).

Obviously, when the GL(n1) x GL(n2) x GL(ng)-orbits are infinitely many, also the
orbits with respect to the subgroup GL(n1) x GL(ng) are infinitely many.

14



1.3 Steiner bundles

Definition 1.3.1. According to [DK93], a Steiner bundle on P(V) = PN~ is the

cokernel of a linear map of the form
0 — O(-1))—0" — E — 0, (1.3.1)
where 0 < s <t— N + 1.

Obviously, from the definition it follows that rk(E) = t—s > N —1. This inequality
is necessary in order to have a vector bundle E. Indeed, if tk(F) =t —s < N — 1,
then we would have ¢;—s41(F(1)) = 0. But this is impossible, since from (1.3.1) we

can easily compute that

s (B() = e (0(1)) = ( - ) #0

In [AO01], Ancona and Ottaviani studied the action of SL(Vp) x SL(V7) x SL(V2) on
a particular class of multidimensional matrices. As a consequence they obtained some
results on Steiner bundles with rank N — 1, i.e. with minimum rank. In this thesis we
use in a similar way the correspondence between Steiner bundles and multidimensional
matrices.

Now, we explain this correspondence more precisely. Let F be a Steiner bundle
defined by the sequence

0 —IR0(-1) BWR0 —E—0,

where V', I and W are complex vector spaces of dimension N > 2. s and t respectively.
If we fix a basis in each of the vector spaces V,I and W, the morphism m can be
represented by a ¢ x s matrix M whose entries are linear forms, or equivalently by a
three-dimensional matrix of size ¢ X s x N. The natural action of GL(I) x GL(W) on

the space
H:=Hom(I® O(-1),WR0)=2VeI'eW,

is the following
GL(I) x GL(W)x H - H

(A,B,M) +— A""MB.

15



The action is represented in the following commutative diagram, where we denote
M' = A"'MB:

0—=I00(-1) Y -We0O—=E—>0

b

0—=I®0(-1) X oWg® —F —0
Remark 1.3.2. Let us observe that considering the action of GL(V') on H is equivalent
to make a change of coordinates in the space V. Hence it is natural to consider the

action of PGL(V), the group of automorphisms of P(V'). This approach is used by
Karnik to study bundles on P? (see [Kar02]).

Definition 1.3.3. We say that a Steiner bundle E on PN~! with the following reso-
lution
0— 0O(-1) 5 0t —E —0,

is generic if m is generic in the space Hom(O(—1)*,0") = C* @ C' @ CV.

16



Chapter 2

Exceptional bundles

2.1 Logarithmic invariants

Let X be a projective smooth variety of dimension n and F' be a vector bundle on X
of rank r > 0. The logarithmic invariants were introduced by Drézet and Le Potier
in [DLP85] and then formally defined in [Dré95] by the following formula:

log(ch(F)) = log(r Z 1) FIA(F

where ch(F) is the Chern character of F and A;(F) € A(F) ® Q.
The next properties easily follow from the definition. Let F, F' be vector bundles on
P, then

(i) Aj(F) =0 for all ¢ > rk E, in particular if rk F = 1, we have A;(E) = 0 for all
1> 1;
(ii) A(EQ®F) = Ai(E) + Ay(F) for 1 <i < n, and consequently
A;(E®L)=Ai(E),
for any line bundle L and 7 > 2;
(iii) A;(E*) = (=1)*A;(E), for any 1 < i < n.

When we work on P?, we are interested in the first two invariants, respectively called

slope of F’




and discriminant of F

In the following propositions, we give some properties of the logarithmic invariants.

Proposition 2.1.1. If
0A—+B—-C—=0

is an exact sequence of bundles (or torsion free sheaves), then
u(A) < u(B) (respectively = or >)

if and only if
u(B) < u(C) (respectively = or >).

Proof. Let us show that if u(A) < p(B) then u(B) < p(C). In fact the first Chern
class ¢; and the rank are additive with respect to the exact sequence, i.e. ¢;(C) =
c1(B) — c1(A) and rk(C) = rk(B) — rk(A4). Then by hypotesis

ie. c1(A)rk(B) — c1(B)rk(A) < 0, from which we have ¢;(B)rk(B) — ¢1(A) rk(B) >
c1(B)rk(B) — ¢1(B) rk(A), i.e.
Cl(C) Cl(B) — Cl(A) Cl(B)

k(C) _ 1k(B) —1k(4) ~ k(B)’

The other inequalities are obtained with the same computations. U

Proposition 2.1.2. If
0+A—->B—=C—=0

is an ezact sequence of bundles (or torsion free sheaves) and p(A) = pu(B) = u(C)
then
A(A) < A(B) (respectively = or >)

if and only if
A(B) < A(C) (respectively = or >).

18



Proof. Let us prove that A(A) < A(B) implies A(B) < A(C). We know that ¢;(C) =
c1(B) —c1(A) and ¢2(C) = co(B) — c2(A) — ¢1(A)c1(C). Then by definition of A, we

can compute

A(C) = m (c2(B) — ex(A) ~ c1(A)er (B) +ex (A)+

r(B)—r(A) -1
(B~ Ay @B Fald) - 21 (A)er (B))).

Now, from the hypotesis u(A) = u(B), we know that

_ a(B)r(4)
=)
and, from A(A) < A(B), we get
r(A) r(B) —1 (A) -1

) (A) <

’r‘(B) (CQ(B) — WOI(B)Q) + E‘TCI(A)

Then, by substituting ¢1(A) and c2(A) in the expression of A(C) and by simplifying
the computations, we get:

AC) > c:(B) —01(3)2(%) — A(B).

The other inequalities are obtained in the same way. O

2.2 Moduli spaces of semistable sheaves

In this section, we recall some basic definitions about bundles.

Definition 2.2.1 (Mumford-Takemoto). A bundle (or a torsion free coherent
sheaf) E over P" is semistable if, for any coherent subsheaf F of E (with 0 # F), we

have
u(F) < p(E).

Moreover, if for any coherent subsheaves F of E with 0 < rkF < rk E, we have

p(F) < p(E),

then we say that E is stable.

19



Definition 2.2.2. A bundle E is simple if and only if h°(End E) = 1, i.e. the endo-

morphisms of E are the homotheties.

It is a well known fact that stable bundles are always simple (see for example
[OSS80]). Moreover, in the case of rank 2 bundles on P", simplicity implies stability,
but in general this implication is false.

We will denote by M(r,c1,c2) the moduli space (of Maruyama) of semistable

sheaves on P? of rank 7 and Chern classes ci, cs.

2.3 Riemann-Roch formula

Following [DLP85], we denote by P the polynomial

2
¢ +3x+2 T+ 2
P(w):f:( 5 )

Given a bundle (or a coherent algebraic sheaf) F', with rank r, slope 4 and discriminant

A, we can write the well-known Riemann-Roch formula as follows:

X(F) =Y (-1) dimH'(F) = r(P(u) - A).

%
If we define
X(F1, Fy) = (~1)" dim Ext!(Fy, Fy),

we get
X(F1, Fo) = rirg(P(p(Fe) — p(F1)) — A(F1) — A(F2)).

In particular we have

x(End F) = x(F,F) = r*(1 — 2A).

2.4 Exceptional bundles on P2

Exceptional bundles on P? were introduced in [DLP85] as follows:

Definition 2.4.1. A vector bundle E on P? is called exceptional if it is stable and
A(B) < L.

It is easily seen that if F is stable, then the following conditions are equivalent

20



(1) E is exceptional,

(2) x(End(F)) =1,

(3) E is rigid, i.e. Ext!(End(F)) = 0.
Definition 2.4.2. A vector bundle E on P? is called semi-exceptional if it is semi-
stable and A(F) < §.
Proposition 2.4.3 ([DLP85]). Any semi-exceptional vector bundle with slope p is

a direct sum of exceptional bundles with slope p.

The first examples of exceptional bundles on P? are the linear bundles O(k) and
the tangent bundle Tp». Notice that if F is exceptional, then E(k) = E ® O(k) is
exceptional for any k € Z, and the dual bundle E* is exceptional. All the possible
slopes of an exceptional bundle have been characterized very precisely by Drézet and
Le Potier. In order to give their result, we define a map ¢ from the set of binary

rational numbers D to Q which satisfies the following two properties:
(i) e(n) =n, for alln € Z,
(ii) if e(a/2%) = k1/r1 and e((a + 1)/2°) = ko/ro, then

. (2a+1> 1 (@Jr @) N 1/(2r}) —1/(2r3)

20+1 ) 2\ oy 3+ki/r1 —kaofro

Theorem 2.4.4 ([DLP85]). If E is an exceptional bundle on P2, then u(E) € (D).

Furthermore for each pu € (D), there ezists a unique exceptional bundle E such that
u(E) = p.

As a consequence of this theorem, the exceptional bundles are uniquely determined

by their slopes. Moreover, Tyurin conjectured that any exceptional bundle with 0 <
u< % is uniquely determined by its rank. In [Rud88], Rudakov proves that Tyurin’s
conjecture is equivalent to an important conjecture of Number Theory: the so called
conjecture of “uniqueness of the Markov numbers”.
The Markov equation is
o + y2 +22= 3zyz.

It is known that all the integral solutions of the Markov equation can be obtained
from the solution (1,1,1) by two standard transformations, which allows us to place
the solutions at the vertices of a tree. The conjecture of “uniqueness of the Markov
numbers” says that any solution of the Markov equation is determined, up to order,

by its maximal number.
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2.5 Helices of exceptional bundles on P

In [Rud90] Rudakov gives an axiomatic presentation of the theory of helices of excep-
tional objects; this subject was introduced and investigated by the Russian school.
Here, we give some definitions and results that we will recall later. The following con-
cepts are defined for objects of any category, but we consider only the case of vector
bundles on P”, studied in particular in [GR87].

Definition 2.5.1 ([GR87]). A vector bundle E on P™ is called exceptional if
Hom(E,E)=C  and  Ext'(E,E)=0  fori>1.
Remark 2.5.2. Obviously if F is exceptional
X(EndE) = > (-1)"h*(End E) = 1.
i
An ordered collection of bundles (E1, ..., Ey) is called ezceptional if all its bundles

are exceptional and, whenever 1 <[ < m < k, the following conditions hold
Ext'(E}, Ep) = 0 for all i > 1

and
Ext!(Ey,, E;) = 0 for all 4 > 0.

It is trivial to see that if ¢ = (Ey,...,Ey) is an exceptional collection, then the
collections €* = (Ef,...,Ef) and (i) = (E1(%), ..., E(i)) are the same.

Now, we define the fundamental concept of mutation. Let e = (A4, B) be an ordered
pair of bundles. Assume that there exist bundles A’ and B’ such that we have the

following exact sequences

can

0 — B'— A®@Hom(A,B) — B — 0,

can

0 — A% Hom(A4,B)Y ® B— A" — 0,

where the morphism can is the canonical map. In the above situation we call B’ a
left shift of B and we denote it by L4B. Analogously we call A’ a right shift of A in
¢ and we denote it by RgA. We say that (B, A) is a left mutation of ¢ and (B, A")
is a right mutation, and we denote them respectively Le and Re. It is easy to prove
that if € = (A, B) is an ordered pair of bundles, then (Le)* = Re* and (Re)* = Le*.

A pair of vector bundles (A, B) is left admissible if the left mutation L 4 B is defined
and is right admissible if the right mutation Rg A is defined.
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Definition 2.5.3. A collection {A;,i € Z} of exceptional vector bundles on P" is
called heliz of period (n + 1) if

Ajrnt1 = Ai(n + 1), foralli € Z,

the pairs (As_1, Ay), (As_1, LV A, ..., (Ag_p, LV A,) are all left admissible pairs
of exceptional bundles, and LA, = A,_,,.

A mutation of a collection (..., A, B,...) is the collection obtained by substituting

the pair A, B by its right or left mutation.
Proposition 2.5.4 ([GR87]). The collection {O(i)}, for i € Z is a heliz.

In [Rud88], Rudakov showed that all the exceptional bundles on P2 can be obtained
by starting from the helix {(O(%)};cz and by applying several times right and left
mutations. In particular, if we start from the collection (O(—1), O, O(1)), this method
gives triples of exceptional bundles, called adjacent bundles, which are associated to
the solutions of the Markov equation. Moreover, we can place these triples at the

vertices of the Markov tree. From the general theory we get the following remark:

Remark 2.5.5. If (A, B, C) is a triple of adjacent exceptional bundles on P2, then

1(A) < u(B) < u(C).

2.6 Drézet-Le Potier criterion

Let E be an exceptional vector bundle on P? with rank g, slope ur and discriminant

Apg. Clearly, since E is exceptional, Ag = %(7"2731). Denote z, and z_ the roots of

the equation

22 —3rpr+1=0

oz 37’E—,/9r%—4

ITp — — —
rE 2rg

and define

Denote by Ig the interval (ugp — zg, ug + zg) N Q. Recall that we denote P(z) =
2243242
Lt

Theorem 2.6.1 ([Dré87]). The family {Ig : E exceptional} is a partition of Q.
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Definition 2.6.2. Let § be a map Q — Q defined as follows: for any u € Ig,

6(p) = P(=|p — pel) — Ag.
Definition 2.6.3. If F' is a bundle with rank r and Chern classes c1 and co, we call
height of F' the value

h(r,c1,c2) = A(r,c1,¢2) — 5(%)-

Now, we introduce some properties of the function ¢:

Proposition 2.6.4. The function §(u) : Q — Q defined in 2.6.2 has the following

properties:

(i) §(n+n)=06(u), for alln € Z and p € Q

(i) §(p) <1 for all p € Q and = holds if and only if p € Z
(iii) 6(u) > 3, for all p € Q.

Proof. Claim (i) is easily seen. Now, suppose that y € Iy, where E is an exceptional

bundle with slope g and rank rg. We know that
Ip = (pg — g, pe +28) NQ

JorZ_
where zp = 3 — 5~ Since E is exceptional, we have A(E) = (1 — ). We

2rg %
denote 0 < z = |u — pg| < g, and we compute
1 1 r2(z? =3z + 1) +1
8(u) = P(—z)— (1 - =) =-E& ;
(1) = P(=2) = 501~ ) -
Now, we prove claim (7). By solving the following inequality
2(z2-3z+1)+1
() = ot AL
2rg
we have
2 2
5 /1312 —4 5 (/1312 —4
B <-4+ -— 2.6.1
2 orm S FS3 T o, (2:6.1)

By hypotesis, we have 0 < z < zp, then the inequality (2.6.1) holds, since 3 —

2
1372 —
% < 0and zg < % + 7”3;2_4. Moreover, if 6(u) = 1 it follows rg = 1 and
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z =0, hence y = ug € Z.
Now, we prove claim (7). By solving the inequality
2 (.2
_ ry(z —3w+1)+1>1
N 27‘% 2’
/or2 _ /9r2 _
we get © < 3 — 97E4orac>%+ Tt

T T This is obviously true, since z < zg =

3 \/97‘%—4. 0

)

2 2rg

Remark 2.6.5. It is easily seen that if y ¢ Ig, for an exceptional bundle E, then

1
P(=lp—prl) = Ap < 5

Recall that we denote by M (r,c1,cz) the variety of moduli of semistable algebraic
coherent sheaves on P?, with rank r and Chern classes ¢; and c3. Now, we give the

following fundamental Drézet-Le Potier criterion:

Theorem 2.6.6 ([DLP85],[Dré87]). Given r,ci,co € Z and r > 0, the variety of
moduli M (r,c1,c2) has strictly positive dimension if and only if

5(7) < A(T, 01,02) = ;(CZ - o

i.e. if and only if h(r,c1,c2) > 0.

This implies that if A(r,c1,c2) > 0, then there exists a semistable bundle with
rank r and Chern classes ¢; and ¢o. Furthermore Drézet and Le Potier prove that
there exists a stable bundle in M(r, ¢y, c2).

From another result of Drézet (Theorem 3.1, [Dré99]) we know that when a generic
bundle on P? is not stable, then it is not simple. Then we state the following important

proposition.

Proposition 2.6.7 ([Dré99]). A generic bundle F on P? is stable if and only if it

s simple.
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Chapter 3

Steiner bundles on P"

In this chapter we study the main properties of Steiner bundles on P". We prove that
exceptional Steiner bundles are characterized by the property x(End F) = 1, and we
describe their resolutions. Then we study conditions for simplicity of Steiner bundles
and finally we give a complete description of the case of non-simple Steiner bundles.

By Definition 1.3.1, a Steiner bundle on P(V) = PV~! is the cokernel of a linear

map of the form

0— O(-1)°*=0" - E =0, (3.0.1)

where 0 <s<t— N +1.

Remark 3.0.8. From the sequence (3.0.1), it follows that x(F) = ¢ and x(E(1)) =
(Nt — s). Dualizing (3.0.1) and tensoring by E, we get

0 = EndE — E'-E(1)* =0,
therefore
x(End E) = tx(E) — sx(E(1)) = t* — s(Nt — s) = t* — Nst + s°.

Now, we introduce the sequence {aj} which is of fundamental importance for the
characterization of Steiner bundles on PV~!. For any fixed N > 3 and k > 0, let

(o)~ (o=

a _=
k NZ_4
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Notice that the sequence {ar} can be also defined recursively by

G,():O,
(1,1:1,

ag+1 = Nag — ag—1.

In the case N = 3, this sequence is exactly the odd part of the well known Fibonacci

sequence, i.e. the sequence {fi} defined recursively as

fO = Oa
fl = ]-a
Jkv1 = fe+ fr1-

For this reason, for any fixed N > 3, we call generalized Fibonacci numbers the

elements of the sequence {aj}.

3.1 Exceptional Steiner bundles

In Section 2.5 we introduced the general theory of helices of exceptional bundles. The
following result is a particular case of this theory. We give the proof in order to show
that the result is elementary, in fact we only need standard cohomology sequences. The
proof is partially inspired by that given by Rudakov in [Rud88] regarding exceptional
bundles on P2. Let us recall that a bundle E on P is exceptional if h®(End E) = 1
and h*(End E) = 0 for all i > 0.

Theorem 3.1.1. If E}, is a generic Steiner bundle on PN~1, with N > 3, defined by
the exact sequence
0— O(-1)*150% — Ep — 0,

where

(o) (=)

ap = ’

N2 —4
then E}, is exceptional.
On P(V) = PNV~! we define a sequence of vector bundles as follows:
Fo=0(1), Fi=0, Fy1=ZKer(F,®Hom(F,,F1) B F_y),  (3.1.1)

where 1, is the canonical map.
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Lemma 3.1.2. Let F,, and v, be as in (3.1.1). Then, the canonical map ¥, is an
epimorphism, for any n > 1. Moreover the following properties (A,), (Bn) and (Cy)

are satisfied for any n > 1:

(An) Hom(F,,F,) = C, Ext!(F,,F,) =0, forany i>1,
(Bn) Hom(F,_1,F,) =0, Ext'(F,_1,F,)=0, forany i>1,
(Cy) Hom(Fy,, F_1) 2V, Ext'(F,,F,_1) =0, forany i>1.

Note that (A,) means that every F, is an exceptional bundle.

Proof. We prove the lemma by induction on n. If n = 1, F; = O is exceptional

because it is a line bundle, therefore (A1) holds. Moreover, since Fy = O(1), we have
(B1) Hom(O(1),0) =H*(O(~1)) =0, Ext'(O(1),0) = H(O(-1)) =0,
(C1) Hom(0,0(1)) =H(O(1)) 2V, Ext'(0,0(1)) = H(O(1)) =0,

for any i > 1. Finally, we know that O @ H’(O(1)) “ O(1) is surjective, since it is
contained in the well known Euler exact sequence.
Now, we suppose that 1 is an epimorphism for all k¥ < n. Then, we can consider

for all k£ < n the following exact sequence of bundles
0 = Fyi1 — F, ® Hom(F, F,_1) = Fp_1 — 0,
in particular if K = n we get
0— Fh+1 — F,® Hom(F,,,F,_1) = F,_1 — 0. (3.1.2)

We also suppose that (Ag), (Bg) and (Ck) are true for all £ < n. We want to
prove (Ap+1), (Bpy1) and (Cr41). By applying the functor Hom(—, F,) to the exact
sequence (3.1.2), we get

0 — Hom(F,,_1, F,) = Hom(F,, F,,) ® Hom(F,, F,,_1) = Hom(F), 11, F,) —
— Bxt!(F,_1, F,) — Ext}(F,, F,,) ® Hom(F,,, F,_1) = Ext}(F,11, F,) —
— Bxt?(F,_1, Fp) — Ext*(F,, F,) ® Hom(F,,, F,,_1) — Ext®(F,11, Fp) — ...

and it is easy to check that (Cy41) holds, because (A,,) and (B,,) are true. Now, by
applying Hom(F,,, —) to the sequence (3.1.2) we get
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0 — Hom(F,, 1) — Hom(F,, F,) ® Hom(Fy, F,—1) - Hom(F,, F,,—1) —
— BExt'(F,, Foi1) — Ext'(F,, F,,) ® Hom(Fy,, Fy_1) = Ext}(F,, F_1) —
— Ext?(F,, Foy1) — Ext?(F,, F,) ® Hom(F,, F,,_,) = Ext*(F,, Fo_1) — ...

Since « is the natural map and Hom(F),, F},) = C, it follows that « is an isomorphism,
hence Hom(F,,, F, ;1) = 0 and Ext!(F},, F,, ;1) = 0. Moreover Ext*(F,, F,11) = 0 for
all 4 > 2 because (4,) and (Cp) hold. Therefore (Bpy1) is true. Now we have to
prove (Ap+1). First we apply Hom(F),_1,—) to (3.1.2), and we have

0— HOIH(Fn_l, Fn—|—1) — Hom(Fn_l, Fn) ® Hom(Fn, Fn_l)—) Hom(Fn_l, Fn—l) —
— Bxt'(F,_1, Fny1) = Ext!(F, 1, F,) ® Hom(F,, F,, 1) — Ext'(F, 1, F, 1) =
— Bxt?(F, 1, Fny1) = Ext*(F, 1, F,) @ Hom(Fy,, F, 1) — Ext®(F, 1, F, 1) — ...

then (B,) and (A,_;) imply that Ext*(F,_1, F,,;1) = C and Ext'(F,_1, Fpy1) = 0
for all ¢ > 2. Now by applying Hom(—, Fj,;1) to (3.1.2), we get

0— Hom(Fn_l, Fn+1) — HOIII(F”, Fn+1) &® Hom(Fn, Fn—l) — HOIII(F”+1, Fn+1) —
— Ext' (Fy—1, Frt1) = Ext'(Fy, Fry1) ® Hom(F,, F,—1) — Ext'(F,11, Fri1) =
— Bxt?(Fp_1, Fny1) = Ext?(Fy, Fy1) @ Hom(Fy, Fp_1) — Ext?(Fpy1, Fug1) — ...

and, using (B,11), we obtain that Hom(F, 1, F,11) = Ext!(F, 1, Fny1) = C and,

for all i > 1, Ext®(Fy11, Fpy1) = Ext™™ (F,_1, Fny1) = 0, then (A,11) holds.
Finally, we prove that ,41 is an epimorphism. From the proof of the prop-

erty (Cp+1) we have an isomorphism ¢, : Hom(F, 1, F;,) & Hom(F,, F,,—1) for any

n < 1. Therefore we obtain the following commutative diagram (in which we denote
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Hom(Fy 11, Fn) by Vit1):

0 0 0
Yn+1
0 Fn—|—2 Fn+1 ® Vn—|—1 Fn 0
1Q®¢n
0 Fog1 ® Va1 —2> Fo @ Vo ® Vi "2 Fy 1 @ Vi 0
wn®¢n—1
.® n— n—
0 Fn i 1F’n—l(X’Vn—l Yoot Fn—24>0
0 0 0
From this diagram it easily follows that 1,1 is an epimorphism. O

Remark 3.1.3. Following the notations introduced in Section 2.5, the previous lemma
means that (F,, Fj,_1) is a left admissible pair and (F, 41, Fy,) is the left mutation of
(Fyn, F,—1), and that the sequence (F),) forms an exceptional collection generated by
the helix (O(i)) by left mutations.

Proof of Theorem 3.1.1. Lemma 3.1.2 states that, for all n > 0, the bundles Fj,,
defined as in (3.1.1), are exceptional. Obviously their dual bundles, F}f, are exceptional
too. Now we will prove that, for every n > 1, the bundle F;; admits the following
resolution

0— O(-1)%1=0% - F -0, (3.1.3)

where {a,} is the sequence defined in the statement. This implies that a generic
bundle with this resolution is exceptional. Recalling that the sequence {a,} is also
defined recursively by

ag = 0,

a1 =1,

ant1 = Nag — ap1,
we can prove (3.1.3) by induction on n. In fact if n = 1 the sequence (3.1.3) is
0 — O(-1)%0—=0% — Ff — 0, i.e. 0-O—F; — 0, and the claim is true because
F; =2 0. Now, we suppose that every F} admits a resolution of the form (3.1.3) for

all K < n and we prove the same assertion for F,,. By dualizing the sequence

0= Fop1—F,@® Hom(Fn,Fn_l) —F,_1 =0,
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and by induction hypothesis, we have:

0 0
0 Fy_y Frov: Fiyi—=0
Oan—1 Om QV*

O(=1)m-2  O(-1)a1 @ V*

We define the map a : 0%~ — F*®V™* as the composition of the known maps. Since
Ext!(0%-1,0(—1)%-1 @ V*) = Hl((’)(—l))a%—1 ® V* =0, the map « induces a map
a: Q%1 — 0% ® V* such that the following diagram commutes:

0 0
0 Fr_q ! FreVv* Frii—0
/
Oan—l ___§_>Oan ®V*

We observe that & is injective if and only if H®(&) is injective and, since H (@) = HO(f),
they are injective. Obviously, the cokernel of & is ON% ~0n-1 = Q9n+1 Let E be the

restriction of & to O(—1)%~2. Then, we can check that ﬁ is injective, its cokernel is
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O(—1)Nan-1=an-2 = O(—1)% and the following diagram commutes:

0 0 0
0 oy FeVv: o 0
/
0 Oan_1 - — § > Oan ® V* Oan+1 0
0—= O(=1)m—2 - L O(=1)n-1 @ V* —~ O(=1)0n — =0

It follows that F); ; has the resolution 0 — O(—1)*—0%+ — F¥ , — 0 and this

completes the proof of our theorem. O

Now, we prove that the bundles with resolutions (3.1.3) are the only exceptional
Steiner bundles. If F' is an exceptional Steiner bundle, we have obviously x(End F) =
s? — Nst +t> = 1. Thus we have only to prove that s> — Nst + ¢t> = 1 implies
(t,s) = (ak+1,ax), where ay, has been defined above. This will follow from the following

lemma.

Lemma 3.1.4. All integer solutions of s> — Nst +t*> = 1, when t > s, are ezactly
(Nﬂ/m)’L(Nﬂ/m)’“
2 2

VN2—4

s = ag,t = ax4+1, where ap =
Proof. We already know that the sequence {ay} is defined recursively by

CL():O,
a1:1,

agt1 = Nag — ag_1.
So we prove by induction on k that (s = ag,t = ag41) is a solution of
s2 — Nst+1*=1. (3.1.4)

If K = 0, obviously s = 0,¢ = 1 is a solution. If the pair (ax_1,ay) satisfies (3.1.4),

then, using the recursive definition, we check that (ax, ag11) is a solution too. Hence,
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we have to prove that there are no other solutions. By the change of coordinates

{r =2t — Ns,s = s}, our equation becomes the following Pell-Fermat equation
r? — (N? —4)s* = 4. (3.1.5)

(see for example [Sam67], page 77, or [Len02]). Notice that all integer solutions of
(3.1.4) are integer solutions of (3.1.5). By some Number Theory results, we know that
all the solutions (7, s) of (3.1.5) are given by the sequence (7, si) defined by

1
re+ sV N2 —4 = F(N+ VN2 — 4)k,

This sequence is also defined by

To = 2,

3020,

N2 _4)s,+Nry,
Tk+1 = ( )2 )

_ Nsp+r
Sk41 = —H k.

By a change of coordinates, we define ¢}, = w and we check that the sequence

(sk,tr) is exactly (ak,ag+1)- 2In fact (s, o) = (0,1) = (ap, a1) and moreover t; = sk11
N8k+12+7‘k+1 _ W _2)§k+N7'k _ _2)3k+év(2tk_N5k) — Nty —tp_1. n

and tk+1 ==

Remark 3.1.5. From the previous lemma, it follows that in the case of a Steiner bundle
F on P", we have x(End F') = 1 if and only if F is exceptional. Notice that this is
false in general. Indeed we can find bundles G' on P? which satisfy x(EndG)) = 1,
but which are not exceptional. For example, consider a bundle G with the following
resolution

0— O(=3)%® 0(-2)*-0(-1)* - G — 0.
Then, it is easy to compute that y(EndG) = 1. On the other hand, G is not ex-

ceptional, since its rank is 53, which is not admissible for an exceptional bundle on
P2.

3.2 Simple Steiner bundles

We investigate now simplicity of Steiner bundles. It is well known that Steiner bundles
with rank N — 1 are simple because they are stable (see [AO94] or [BS92]). We are
interested in bundles with higher rank. We state now the following main theorem, the

remaining part of the section being devoted to its proof.
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Theorem 3.2.1. Let E be a Steiner bundle on PN~1 with N > 3, defined by the
ezact sequence

0-0(-1)° B0 E -0,

where m is a generic morphism in Hom(O(—1)%, O!). Then, the following statements

are equivalent:
(i) E is simple, i.e. hl°(End E) = 1,
(i) s> — Nst+1t? <1 i.e. x(EndE) <1,

(iii) either E is exceptional or s> — Nst + 12 < 0 d.e. t < (NEVN"—4 "2N2_4)s.

(8,21)

t=s+2

(3,8)

(1,3)

Figure 3.1: Case N = 3, the shaded region represents simple bundles.
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Remark 3.2.2. In Figure 3.1 we represent the situation in the case N = 3: simple
non-exceptional bundles live in the shaded region and the three points represent the
first three exceptional bundles, that live on the hyperbola of equation s% 42 —3st = 1.

In order to prove Theorem 3.2.1, we recall the notation introduced in Chapter 1.

Let E be given by the exact sequence on PVN~! = P(V)
0 —I®0(-1)5WR0 — E—0, (3.2.1)

where V', I and W are complex vector spaces of dimension N > 3, s and t respectively
and m is a generic morphism. If we fix a basis in each of the vector spaces V,I and
W, the morphism m is represented by a ¢ X s matrix M whose entries are linear forms.
Let us consider the natural action of GL(I) x GL(W) on the space

H=Hom(I® O(-1),WR0)=2VI oW,

i.e. the action
GL(I) x GL(W)x H - H

(A,B,M) — A"'MB.

When the pair (A, B) belongs to the stabilizer of M, it induces a morphism ¢ : £ — E,

such that the following diagram commutes:

0—I00(-1) XsWe0—E—0 (3.2.2)

PR A

0—=IR0(-) X sWeoO0—=E——>0

Now we prove the first part of the theorem. Let us recall that from (3.2.1) we get the

following sequence
0— EndE — WY®E—I'®FE(l) — 0. (3.2.3)

Lemma 3.2.3. If E is a simple Steiner bundle, then x(End E) < 1.

Proof. From sequences (3.2.1) and (3.2.3) it is easy to check that H'(End E) = 0,
for all 4 > 2. Moreover, h®(End E) = 1 because of the simplicity, and consequentely
x(EndE) =1—-h'(End E) < 1. O
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Remark 3.2.4. Notice that the previous lemma is true for every simple bundle on P2.
Nevertheless, it is not true in general. As a counterexample consider the instanton
bundles on P°, which are simple and satisfy the property x(End E) > 1 (see [0T94]).

We also give another proof of the same implication consisting in the following two

lemmas. In the following, Id denotes the identity matrix.

Lemma 3.2.5. If H(E*) = 0 and there exist two matrices (A, B) in the stabilizer of
M such that (A, B) # (A\1d, A1d), then the pair (A, B) induces ¢ # A1d.

Proof. Using the cohomology sequence associated to (3.2.1), it is easy to check that
HY(E) = W, HY(E) = 0 and H*(E(—1)) = 0. Dualizing (3.2.1), we get

0—>E*—>WV®(’)E>IV®(’)(1)—>O.

and, tensoring by O(—1), we obtain H'(E*(—1)) = IV and H?(E*(—1)) = 0. Tensor-
ing (3.2.1) by E*, we get

0 —I®E(-1)—WQ®E*" — EndE — 0,

and the associated cohomology sequence, together with the previous results, gives the

following commutative diagram

0 —= HY(End E) *— End I

where ry(A) = AM and Iy (B) = MB. Let us suppose that AM = MB and
A # AId. Then rp(A) = AM = MB = lj(B). This implies that 7(ra(A4)) = 0,
thus there exists ¢ = i~'(A) € H°(End E) such that ¢ # \1d, since 4(AId) = A\Id and
i is injective. Now if A = AId, then \M = MB, i.e. M(B — \I) = 0. This implies
that B = \1d, because H°(E*) = 0. O
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Lemma 3.2.6. If E is simple then s> — Nst + 1% < 1.

Proof. We suppose by contradiction that s> — Nst +¢> > 1. It is obvious that
(AId,AId) € Stab(M), so we consider the action of the group G = w
on the space H =V Q@ IV W. As

GL(I) x GL(W)

(C*

the action of G on H cannot be free, i.e. it exist (4,B) # (AId,AId) such that
AM = MB. Since H(E) = W and E is simple by assumption, we get H’(E*) = 0,
and by Lemma 3.2.5 we conclude that E is not simple. O

=524+t —1> Nst = dim H,

dim

Now, we prove that statement (%) is equivalent to (iii). By Remark 3.1.5, we know
that s> — Nst + t2 = 1 if and only if the bundle is exceptional. On the other hand,
s2 — Nst + 12 < 0 is equivalent to (N’f\/m)s <t< (@)s. Since ¢ > s and
N > 2, this inequality is equivalent to ¢ < (N"'f‘/m)s.

Now, we prove the last implication, i.e. (iii) implies (7). In the case (¢,s) =
(ak+1,ar), the generic F is an exceptional bundle by Theorem 3.1.1, therefore, in
particular, E is simple. Suppose s2 — Nst + 2 < 0. Recall that H denotes Hom(I ®

O(-1),We0)2VI'e®W.Let S be the set
{A,B,M : A='MB = M} C GL(I) x GL(W) x H

and m; and w2 the projections on GL(I) x GL(W) and on H respectively. Notice
that, for all M € H, 7 (m, ' (M)) is the stabilizer of M with respect to the action of
GL(I) x GL(W). Obviously, since (AId, AId) € Stab(M), it follows that

dim Stab(M) > 1.
Lemma 3.2.7. If E is defined by the sequence
0 —>T1R0(-1) L W0 —E—0 (3.2.4)
and dim Stab(M) = 1, then E is simple.

Proof. If, by contradiction, F is not simple, then there exists ¢ : E — FE non-trivial.
Applying the functor Hom(—, E) to the sequence (3.2.4), we get that ¢ induces é
non-trivial in Hom(W ® O, E). Now, applying the functor Hom(W ® O, —) again
to the same sequence, we get Hom(W @ O, W ® O) =2 Hom(W ® O, E), because
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Hom(W @ O, I® O(—1)) 2 W @I H(O(—1)) =0 and Ext'(W @ 0,1 ® O(—1)) =
W @I ®H(O(=1)) = 0. It follows that there exists ¢ non-trivial in End(W ® O),
i.e. a matrix B # Id in GL(W). Restricting ¢ to I® O(-1) and calling A the
corresponding matrix in GL(I), we get the commutative diagram (3.2.2). Therefore
(A, B) # (A1d, A\1d) belongs to Stab(M) and consequently dim Stab(M) > 1. O

Finally it suffices to prove that for all generic M € H, the dimension of the
stabilizer is exactly 1. In other words, we have to prove the following proposition.

Proposition 3.2.8. Let H =V @ IV ® W as above and suppose s> — Nst + > < 0.
Then the generic orbit in H, with respect to the natural action of GL(I) x GL(W),

has dimension ezactly equal to (s> +t? — 1).

We recall that we have defined the following diagram

S={A,B,M:A'MB =M}

N

GL(I) x GL(W) H

Let A, B be two fixed Jordan canonical forms in GL(I) x GL(W). We define G 4p C
GL(I) x GL(W) as the set of pairs of matrices respectively similar to A and B. Note
that mn ' (Gap) = {C*MD : A-'MB = M,C € GL(I),D € GL(W)}. Moreover
Grawa = {(A\1d,A1d), A € C} and mon; }(Grq1q) = H-

Lemma 3.2.9. If s> — Nst +t2 <0 and (A, B) are Jordan canonical forms different
from (A1d,AId) for any A, then Wgwfl(GAB) is contained in a Zariski closed subset

strictly contained in H.

Proof. Suppose that the assertion is false. Then there exist two Jordan canonical
forms A and B, different from (A1d, A1d), such that mn}(Gap) is not contained
in any closed subset. This implies that we can take a general M € H such that
AM = M B and, in particular, we can suppose the rank of M maximum.

Now, we prove that A and B have the same minimal polynomial. First, when ppg
is the minimal polynomial of B, we get pg(B) = 0, then it follows that pg(A)M =
Mpp(B) = 0. Since M is injective, we get pp(A) = 0, hence the minimal polynomial
of B divides that of A. Now, if we denote by \; (for 1 < i < q) the eigenvalues of
A and by p; (for 1 < j < ¢') those of B, we obtain that y; € {A1,...,\;} for all
1 < j <. Let us define A’ = (A — z1d;) and B’ = (B — z1d;): obviously we
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obtain A’M = MB'. We denote by B’ the matrix of cofactors of B, and we know
that B'B' = det(B')Id; = Pg(x)Id;, where Pg is the characteristic polynomial of B.
Therefore

A'MB' = Pg(z)M

and, developing this expression, we see that ¢’ = ¢. In fact, if there exists a \; # p;
for all j = 1,...,q', then there is a row of zeroes in M and consequently M is not
generic. Then, the matrices A and B have the same eigenvalues \; (1 < i < ¢) with
multiplicity respectively a; > 1 and b; > 1. The assumption (4,B) # (AId, AId)
means that either A and B have more than one eigenvalue, or at least one of them is
not diagonal.

Now, consider the first case, i.e. ¢ > 2. Since dim I = s and dim W = ¢, obviously
7 a;i=sand Y.L b =t Now we denote M = (M;;), where M;; has dimension
a; X bj. Since AM = MB, every block M;; is zero for all 7 # j, i.e. it is possible to

write M in the form
0

*

oS O O

0

S O O ¥

*

In particular, we can define ny = a1,ng = > +_5a;,m1 = by,mg = Y ¢_, b; and thus

the matrix M becomes

M = ( (*)n1><m1 (O)n1><m2 ) (3.2.5)

0 na2 Xmi * na2 Xms

where n1 + ny = s and m; + mo =t and n;, m; > 1 for 4 = 1,2. Thus, it suffices to

show that a matrix in the orbit
Oy ={C'MD:C € GL(s), D € GL(t), M with the form (3.2.5)}

is not generic in H if s> — Nst 4+t < 0. This fact contradicts our assumption and
completes the proof.

Now, in order to show this, we introduce the following diagrams

{¢’I1’Wl : ¢(Il ® VV) Q Wl}

H=Hom(I®VV,W) G =gG(CM,C*) x G(C™,C"))
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where G(C*,C") denotes the Grassmannian of C* ¢ C* and

{6, 10, W3 : (I @ VV) C Wy}
/ x
H =Hom(I @ VY, W) Ga = G(C™,C*) x G(C™, "))

It is easy to check that the matrices of the set Ops live in the subvariety

H = a1 (B71(G1)) Nea(B5(G2)) C H.

Thus, in order to prove that these matrices are not generic, it suffices to show that
dim H < dim H. Since dim(G;) = (ning + mims) for i = 1,2, we obtain

dim(a1(B;1(G1))) < dim(B71(G1)) = ning + mymg + N(ny(my + ma) + ngme)
and
dim(as (85 '(G2))) < dim(B85 ' (G2)) = ning + mima + N(nimy + na(my + ms)).

Therefore, since dim H = Nst = N(ny + ne)(mi + mz) we only need to show that
either (n1ng +mime — Nnamq) < 0, or (n1ng+mima — Nnims) < 0. In other words,

we have to prove that the system

{ ning +mimo — Nnimg > 0

ning +mimo — Nnomyi > 0

has no solutions in our hypotesis s> — Nst + t? < 0, i.e. if

N —+N2 -4 N++/N2 -4
—t<s < ——mM+.
2 2
This is equivalent to prove that the system

nine + mimo — Nnimeo >0

ning + mimo — Nnomq >0

m1 + mo)
mi + ma)
has no solutions. To see this, consider 77 and m; as parameters and write the previous

system as a system of linear inequalities in the two unknowns no and my:
ning Z (Nn1 — ml)mg
(n1 — Nm1)ng > —mimy
ng > a-me + (a_my —ny)

ny < asme + (aymy —ny)
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where we denote o = N=vN"—4 V2N2_4 and o = NEVNV"—A4 V2N2_4. Notice that (a— + ay) = N

and o« = 1, because they are the solutions of the equation s2 — Nst+t%> = 0. Now

we consider three cases:

e if 0 < n; — a;my the system
no Z (Nn;:ml)mZ
ng < ayme + (agmy — nq)

(Nni—m1)

has no solutions, because (aymi; —n1) < 0 and a; < o

, since (N —
e — e 1 .
ap)ny —my =a_ny —mi = (ay) " (ng —aymy) > 0;

o ifn; —aym; <0 < n; —a_m; the system is

{ ng > 7(Nn17m1)m2

- ni

mi1
2 S (Nmi—n1) me

because Nmi—ni > aymi—ng > 0 and there is no solution, because 0 my

Nmi—n1)
W, since N(Nnimi —m? —n?) > 0;
e if ny — a_my < 0 then the system
mi

ng < (Nm17n1)m2

ng > a_mo + (a_mi — nq)
has no solutions, because (a—m; —n1) > 0 and a_ > m, ie. ay <
Nmi— .
%, since (N — ay)my —n1 = a_mq —ny > 0.

This completes the proof in the case g > 2.

In the second case we consider ¢ = 1 and the two matrices are

Al
J1
A1
A= , where J;=
J)
" A
and ¢; denotes the order of J;, and
Al
Ly
A1
B = , where IL;=
L
g A
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and d; is the order of L;. We suppose that ¢; > 2 ord; > 2i.e. h < s or k < t. Then,
a matrix M such that AM = M B has the form M = (M;;) and M;; is a ¢; X d; matrix

such that
Tc if C; = dj =C

M;; =< (01T) if c=¢ <d;

(L) if ¢>dj=d
and 7T, is a ¢ X ¢ upper-triangular Toeplitz matrix. It is easy to see that M has at
least k columns in which there are at least (c; — 1)+ (co—1)+...+(cp —1) = (s—h)
zeroes in such a way that we can order the basis so as to write M in the following

( (kR )
(O)s—n)xk () (s—h)x (t—k)

Analogously M has at least h rows with at least (¢ — k) zeroes, such that it is possible

form

to write the matrix in the form

(*)hxk (O nx(t—k)
($)(s—hyxk (%) (s—h)x (t—k)
Hence, there exist non-trivial subspaces I, Iy, Wi, Wo such that M(I; ® VV) C W,
fort=1,2, and dim I} = s — h, dimW; = k, dim I» = h, dim Wy =t — k. Therefore,

exactly the same argument used in the first case gives that M is not generic and

completes the proof. U

The previous lemma proves Proposition 3.2.8 and the main Theorem 3.2.1 follows.

Remark 3.2.10. By Proposition 2.6.7, we know that bundles on P? are generically
simple if and only if they are stable. Then, Theorem 3.2.1 gives us not only a criterion
for the simplicity of the generic Steiner bundle, but also a criterion for the stability
on P2. Obviously this criterion agrees with the Drézet-Le Potier criterion for the
stability, when it is applied to the case of Steiner bundles, but it is much easier to

handle (and to prove).

3.3 Non-simple Steiner bundles

We study now the case of non-simple Steiner bundles. As in the previous sections, Ej,

denotes the exceptional Steiner bundle with resolution

0— O(-1)*1-50% — Ei, — 0,
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where the sequence {ay} is defined recursively by

a0:0,
a1:1,

ant1 = Nap — an—1.
Observe that (ag,ax_1) = 1.
Remark 3.3.1. For all £ > 1, we have a% — ag+10k—1 = 1. It is easy to prove this

equality by induction.

Theorem 3.3.2. If N >3 and L > (M= N"=4 VN?—4 , then there exist k,n,m € N (where
s 2

n and m are not both 0) such that the bundle E} @ Ey,, on PN=1 has resolution

0 - O(-1)*-0" - E} ® E}",1 — 0, (3.3.1)
where Ey and Ey1 are exceptional Steiner bundles on PN~1.

Proof. Let Ej, be the exceptional Steiner bundle defined as above. It is easy to check
that the sequence {afl—;:l} is decreasing to Y+vN"=1 ”2N2_4. It follows that there exists k > 1
such that either

ag _t
ak,l_g’
or
i1 b Gk
ag S  ap_1

In the first case, since (ag,ar 1) = 1, there exists n > 1 such that ¢ = nay, s = nay_1,
i.e. the bundle E}} admits resolution (3.3.1), with m = 0. In the second case, we solve
the following system
t = nag + magy1,
{ S = nag_1 + mag.

This system has discriminant A = a% — agy1ax—1 = 1, by the previous remark, then
it admits integer solutions (n,m). In particular, n > 0 because % > a’jl—;rl, and m >0
because £ < a’k‘—fl It follows that E} © Ej" | has resolution (3.3.1). O
Lemma 3.3.3. Let Ey, Ey11 be exceptional Steiner bundles on PN~1 as above. Then,
for all n,m >0,

x(End(E} @ E}".)) = h’(End(E} @ E},,)) = n* + m® + Nam.
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Proof. By Lemma (3.1.2) and by the proof of Theorem (3.1.1), using the same nota-
tions, we know that

Hom(E}, E},) = Hom(F}, F}') = Hom(F}, Fy) = C,
Hom(Ey, E_1) = Hom(F}, F}_,) = Hom(Fy_1, F},) = 0,
Hom(Ejy_1, E) = Hom(F}_,, F}) = Hom(F}, Fj_1) =V,
and, analogously,
Ext‘(E}, E;,) = 0, Ext'(Ey, Ey_1) =0, Ext'(Ey_1, E;) =0,

for all 4 > 0. Then,

2

HO(End(E} & Ef",)) = Hom(Ey, Ep)" & Hom (Ejy1, Bpp1)™ @

@ Hom(E}, 1, E)"™ ® Hom(Ey, By 1)"™ = n? + m? + Nnm

and, for all 4 > 0,

2

H'(End(E} @ EfY,)) = Ext'(Ey, Ep)" & Ext!(Eg11, Eg)™ @
® Ext'(Ey11, Ey)"™ @ Ext!(Ey, Exe1)™ = 0.
Therefore,
x(End(E} @ E}".|)) = h°(End(E} @ EJ.,)) = n® + m® + Nnm,
as claimed. O

Consider the space H = Hom(O(—1)%, O!) that parameterizes the bundles on

PN-1 with resolution

0= 0O(-1)°=0" - F —0.
Consider the following action of GL(s) x GL(¢) on H:
GL(s) x GL(t) x H - H

(A,B,M)+— A"'MB.

For M € H, we denote by (GL(s) x GL(t))M the orbit of M and by Stab(M) the
stabilizer of M, with respect to the action of GL(s) x GL(t).
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Lemma 3.3.4. If F' has resolution

0-I00(-1) LWe0o - F—0 (3.3.2)
and H*(F*) = 0, then dim Stab(M) = dim End(F).
Proof. Dualizing (3.3.2), we get

0 F W0 =I"®0(1) =0 (3.3.3)
and tensoring it by I ® O(—1), we obtain

EndI = H*(End 1) = HY(I® IY) = H'(I ® F*(-1)).
Tensoring (3.3.3) by W and using the hypothesis H'(F*) = 0, we get
0= EndW - H(WRI'eO(1) - WeH (F*) — 0.
Tensoring (3.3.2) by F*, we get
0 —>IQF(-1)—WQ®F* — EndF — 0,

and the associated cohomology sequence, together with the previous results, gives the

following commutative diagram

0
End W
Y
WeI'eH (O1) = H
v .
0— HYEnd F) *—~ End I W @ H'(F*)
0

where [ (A) = M A and rj(B) = BM. Notice that the tangent space to the stabilizer
of M is
T(Stab(M)) = {(A4,B) € EndI x EndW |l (A) = rym(B)}.
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We have to prove that dim Stab(M) = dim T(Stab(M)) = h®(End(F)). Let us sup-
pose that A € End I satisfies [ (A) € Im(rps). Since the map 77 is injective, there ex-
ists a unique B € End W such that (A, B) is in the stabilizer. Moreover m(I3/(A)) = 0,
so, since the diagram is commutative, there exists ¢ = i 1(4) € H(End F) and it
is unique, since i is injective. Vice versa, to every ¢ € H°(End F) we associate a
unique A = i(¢). Since the sequences are exact and the diagram commutes, we
have Ipr(A) € Kerm = Imryy, i.e. there exists B such that the pair (A, B) is in the

stabilizer. Moreover, B is unique, since HO(F*) = 0. O

We denote by Fjs the Steiner bundle associated to the matrix M in
Hom(O(-1)%,0%) = H.

Theorem 3.3.5. If N > 3 and % > (1\14-7 V2N2_4), then the space of matrices M such
that Fpy = By @ BT | is a dense subset in H.

Proof. By Theorem 3.3.2, we can fix N € H such that
0—-0(-1 Lot 5 EP e ER, —0.

Consider the action of GL(s) x GL(t) on H, as above. The space of matrices M such

that Fy = E @ Ej | is the orbit of N, with respect to this action. We denote by

Sy = Stab(NN) the stabilizer of N. Notice that H°(E;" ® E;™) = 0. In fact since the
bundle Ej is simple for all k, then H°(E)) # 0 implies H*(E}) = 0. Therefore, by

Lemma 3.3.4, we obtain
dim Sy = dimHom(E} @ Ef".,, E} ® Ef",,) = h®(End(E} ® EJ,)),
and now, using Lemma 3.3.3, we get
dim(GL(s) x GL(t))N = dim(GL(s) x GL(%)) — dim Sy =

=52 +¢> —h"(End(E} @ E",)) = s> + t> — (n® + m® + Nmn).

Finally, since
x(End(E} @ E}.,)) = s> + > — Nst,

and, by Lemma 3.3.3,
x(End(E} @ EiY ) = n? +m? + Nmn,
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we get
dim(GL(s) x GL(¢))N = s? + t* — (n> + m®> + Nmn) = Nst,

i.e. the space of matrices M such that Fiy = E}! © EJt | has dimension Nst = dim H,
hence it is dense in H. O

3.4 Reformulation in terms of matrices

Using the language of matrices and recalling the notations introduced in Chapter 1,

we can reformulate the results of this chapter in a nice way. Recall that we denote by
H=Hom(I®O(-1),WR0)2ZI"eWeV=2CoC gCV,

the space of (s x t)-matrices whose entries are linear forms in N variables or, alter-
natively, the space of (s X ¢ x N)-matrices of numbers. Then, Theorem 3.2.1 can be

reformulated as follows:

Theorem 3.4.1. Let M € H and N > 3. Let us consider the system
XM = MY, (3.4.1)

where X € GL(s) and Y € GL(t) are the unknowns. Then, if s> + 1> — Nst < 1,
there is a dense subset of the space H, where M lives, such that the only solutions of
(3.4.1) are trivial, i.e. (X,Y) = (AId,A\1d) € GL(s) x GL(¢t) for A € C. Conversely,
if s2 + 12 — Nst > 2, then for all M there are non-trivial solutions.

We say that two matrices M, M' € H are GL(s) x GL(t)-equivalent if there exist
A € GL(s) and B € GL(t) such that M’ = A='MB. In other words, the matrices
M and M’ are in the same orbit with respect to the action of GL(s) x GL(t) on H.
This is equivalent to perform Gaussian elimination on the (s x t)-matrix with linear

entries (see description (ii) in Section 1.1).

Definition 3.4.2. If n,m,k are such that
Cs = ((Cak—l)n 3 ((cak)m

and

C! = (C%)™ @ (Co+1)™
we call “canonical form of type (n,m,k)” a matrix M € H such that

M € ((C%-1 @ C%* )" g (C% @ C™*+1)™) ® CN c H.
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ag

ak

Figure 3.2: Example of canonical matrix of type (1,1, k)

Notice that the matrices in canonical form represent bundles of the form E} &
E" |, which appear in Theorem 3.3.2. Indeed Theorem 3.3.2 means that when ¢ >
(N+7 V2N2_4)s, there exists a unique triple (7,7, k) such that s = a;_,7 + azm and

t = agn+ ag M. Therefore, Theorem 3.3.5 can be reformulated in the following way.

Theorem 3.4.3. If t > N+tvN"—4 V2N2*43, then the GL(s) x GL(t)-orbit of a canonical

matriz of type (M, m,k) is a dense subset of H.

In other words, if ¢ > N+vN=—1 V2]VL43, then the set of matrices in H which are GL(s) x
GL(t)-equivalent to a canonical matrix of type (7,7, k) is a dense subset of H. This

means that the generic matrix can be transformed into the canonical form (7,7, k)
by the action of GL(s) x GL().

3.4.1 The case of (s x ¢t x 2)-matrices

In this chapter we have always supposed N > 3, because the case N = 2, correspond-
ing to bundles on P!, is trivial. In fact, it is easily seen that the exceptional Steiner
bundles on P! are the line bundles: Ej = O(k — 1). Moreover, if N = 2, then the
sequence {ay} is exactly the sequence {k} and the numerical condition ¢ > @s

is reduced to t > s.

In fact, it is interesting to note that also in the case N = 2 the results of Section

3.3 are true. More precisely, given a pair of natural numbers (s,t), there exists a
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unique k such that % < % < % The system

t =nk+m(k+1)
s=n(k—-1)+mk

has the explicit solutions (m = kt — (k + 1)s,/m = ks — (k — 1)t). Therefore, the
canonical form of a matrix of size (s x t x 2), with ¢t > s, is a matrix formed by two
block with sizes respectively (n(k — 1) X nk x 2) and (mk x m(k + 1) x 2) and we get

the following result.

Theorem 3.4.4. Ift > s and N = 2, the generic matriz in H is GL(s) x GL(t)-

equivalent to a matriz of the canonical form.

3.5 Generalization of Steiner bundles

We easily obtain a generalization of the theorems concerning Steiner bundles to the

PN_l

case of bundles on with resolution

0— O(=h)*=0" - F -0,

foralll < h < N —1.
Remark 3.5.1. As in the case of Steiner bundles, we require that t —s > N — 1.

Remark 3.5.2. The condition 1 < h < N — 1 is necessary, because of cohomological
computations. It is easy to check that if A > N, then there exist some ¢ > 0 such that
H!(End F) # 0. More precisely, we can compute e.g. that

h—1
dimHY"2(End F) = 0.
( ) ( LN ) #
Now we give only the results, because the corresponding proves are simply the

natural generalizations of the proves in the case of Steiner bundles. The generalization

of Theorem 3.1.1 is the following.

N+h-1
Theorem 3.5.3. Let N > 3,1 < h < N—1 and L = dimH°(O(h)) = ( +h ) .
Let Hy, be a generic bundle on PN~ defined by the exact sequence
0 — O(=h)%-150% = H, — 0, (3.5.1)
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where

then Hy, is exceptional.
Let us observe that the sequence {by} is defined recursively by

by = 0,
by =1,
bgt1 = Lbg — b1,

i.e. the numbers {b;}, as well as {ay}, are generalized Fibonacci numbers. Indeed if

H is a bundle on PV~ corresponding to a matrix of homogeneous forms of degree

h, then the sequence {b;} is exactly the generalized Fibonacci sequence associated to

N+h-1
L= + .
h
If h =1, then L = N and we find again the case of Steiner bundles.

The generalization of Theorem 3.2.1 is the following.

the integer

Theorem 3.5.4. Let N > 3,1 < h < N —1 and L = dimH°(O(h)). Let F be a

generic bundle on PN~ defined by the ezact sequence
0— O(—h)*=0"' - F = 0.
Then the following statements are equivalent:
(i) F is simple, i.e. h°(End F) =1,
(ii) 82— Lst+t> <1 i.e. x(EndF) < 1,
(iii) either F is exceptional or s> — Lst +12 <0 d.e. t < (Hfm)s.
Finally Theorem 3.3.2 and Theorem 3.3.5 are generalized as follows.

Theorem 3.5.5. Let N >3, 1 <h < N —1 and L = dimH°(O(h)).
Ift > (L"'i v2L2_4)3, then there exist k,n,m € N (where n and m are not both 0) such
that the bundle Hi ® H[" | on PN=1 has resolution

0 — O(—h)*-0" - Hj @ H",; — 0,

where Hy, and Hy1 are exceptional bundles on PN~ with resolution (3.5.1).
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Theorem 3.5.6. Let N >3, 1 <h < N —1 and L = dimH°(O(h)).
Ift > (1:4-7 V2L2*4)s, then the space of matrices M such that the bundle associated to M

is isomorphic to H ® H]" , is a dense subset of the vector space Hom(O(—h)*,O").
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Chapter 4

Resolutions of exceptional
bundles on P?

4.1 Prioritary bundles and resolutions

The prioritary bundles on P? were introduced by Hirschowitz and Laszlo in [HL93]
and Dionisi and Maggesi studied their resolutions in [DMO03].

A vector bundle (or a coherent torsionfree sheaf) is called prioritary when
Ext?(F, F(-1)) = 0.
It is easily seen that any semi-stable vector bundle is prioritary.

Proposition 4.1.1 ([HL93]). If F is a generic prioritary bundle on P2, it has res-

olution either of the form
0= 0Fk-2°00(k—-1° = OKk)* = F -0, (4.1.1)

or
0= 0k-2°"=>0k-1)°"00k)°"—F =0, (4.1.2)

for some k € Z, a,b >0 and ¢ > 0.

Lemma 4.1.2. Given a generic prioritary bundle F with resolution either (4.1.1), or

(4.1.2), the integer k which appears in the resolutions satisfies the following conditions
X(F(-k—1)) <0 and x(F(—k))>0.
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Vice versa, if k satisfies these two conditions, then it appears in resolution (4.1.1) or
(4.1.2) of F. Furthermore, x(F(—k — 1)) = 0 holds if and only if a = 0 in both cases
(4.1.1) and (4.1.2).

Proof. In the case (4.1.1), the Hilbert polynomial of F'

MFuDZ(53213ﬁ2+(ﬁlﬁiﬁ+wc—b—amﬁ+

2 2
c—b—a , 3c—b+a
+(E5R Sk ),

has two roots. The largest root is

—3c+b—a+ Vb —2ab+ a? + 2 + 2bc + l4ac

fo=—k+ 2(c—b—a)

and it is easy to check that
—k—-1<ty< —k.

Moreover, tg = —k — 1 holds true if and only if a = 0. Thus, since y = x(F(t)) is a

convex parabola, then when F' has a resolution of the form (4.1.1) with a # 0, we get

X(F(—k—1)) < 0and x(F(—k)) > 0. On the other hand, if G is a bundle of the form
05 0Fk-1)"> 0k >G—0

then x(G(—k —1)) = 0 and x(G(—k)) > 0.
In the case (4.1.2), the Hilbert polynomial of F' is

MF@D:<£i%:£ﬁ2+(Eigiﬁ%%c+b—aMﬁ+
+(C+g_ak2+3c+2b+ak+c).

The largest root is

—3c—b—a+ Vb + 2ab+ a? + ¢2 — 2bc + l4ac

to=—k
0 + 2(c+b—a)
and we get
—k—-1<t) < —k,
in particular t) = —k — 1 if and only if a = 0. It follows that a bundle with resolution

(4.1.2) and a # 0 has x(F(—k — 1)) < 0 and x(F(—k)) > 0. Moreover, a bundle of
the form
G=0k-1"®0k)°

and ¢ # 0 satisfies x(G(—k — 1)) = 0 and x(G(—k)) > 0. O
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Lemma 4.1.3. Let E be a normalized exceptional bundle different from O and O(—1).

Then E has a resolution of the form either
0— 0(=3)2@0(=2)" - O(-1)° = E =0, (4.1.3)

0— 0(=3) = 0(-2)°®O(-1)° = E = 0. (4.1.4)

Proof. Since F is exceptional, then it is prioritary and rigid and it has a resolution of
the form either (4.1.1), or (4.1.2). We have only to prove that £ = —1 or equivalently,
by Lemma 4.1.2, that x(E) <0 and x(E(1)) > 0.

Now, we show that x(F) < 0. We know that

x(E) = x(0, E) = dimHom(0O, E) — dim Ext' (0, E) + dim Ext?(0, E).

Since E is stable and its slope is negative, then Hom(O, E) = Ext*(0, E) = 0, hence
x(E) <0.
Now, let us compute x(F(1)): by Riemann-Roch formula, we have that

X(EQ) =rE((“+1) +2(u+1)+2 _A(E))_

Since F is exceptional, then A(E) = 1(1 — %2), which implies that

2
x(B() = rp(WFHIAD L Ty

O

Remark 4.1.4. Let E be a bundle with resolution (4.1.3) or (4.1.4). It is easy to
compute that in both cases a = —x(F) > 0 and ¢ = x(E(1)) > 0. We distinguish the
different sequences by means of the value | = 3x(E) — x(F(—1)) as follows: if I > 0
then F has resolution (4.1.3) with b =, if | < 0 then E has resolution (4.1.4) with
b= —l.

Since the dual of an exceptional bundle is exceptional too, there exist two admis-

sible right resolutions for a normalized exceptional bundle, which are
0= F—0°-01)°"a0(2)*—0, (4.1.5)

and
0= F—0°00(1)" = 0(2)"* 0. (4.1.6)
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By gluing a left and a right resolution, we get a long exact sequence, for example from
(4.1.3) and (4.1.6) we obtain

0— O(-3)* ® O(—2)" — O(-1)¢

o
0/ \0

0 0(=3)@0(-2)" % 0(-1)° = 0¢e 0(1) 2 02) -0,

0te0(1)—02) —0

where F' = Coker M = Ker N. We say that F' is the middle syzygy bundle of the long

exact sequence.

Lemma 4.1.5. If E is a normalized exceptional bundle with slope y > —% different
from O, then E has left resolution of the form (4.1.3).

Proof. Denote r = rk(F), then by Riemann-Roch formula we compute

I = 3x(E) ~ x(E(-1)) =

_ 37«(7”2“2”“r2 - A®)) —r((“_ D2 +3(u—1) +2 -~ A®)).

Since A(E) = 1(1 — T%), then

1
D=r(p® +4p+2)+ —,

which implies that

2r?2 —1
[>0 iff u> -2+ r
T
In particular if
1 V2r? —1
p> - > -2
2 T
then [ > 0 and so, by Remark 4.1.4, E has a resolution of the form (4.1.3). O

In general by gluing the admissible resolutions (4.1.3), (4.1.4) and (4.1.5), (4.1.6)
four different cases arise, but as far as exceptional bundles are concerned, we will see
that only two of them are possible. More precisely, in Remark 4.4.3 of Section 4.4, we

will prove that the following proposition holds.
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Proposition 4.1.6. Let E be a normalized exceptional bundle with rk(E) > 1 and
u(E) > —%. Then E has left resolution of the form (4.1.3) and right resolution of the
form (4.1.6), i.e. E is the middle syzygy bundle of the following ezxact sequence

0— O(=3)2@ 0(-2)% - O(-1) - 0@ 0(1)* - 012)7 — 0.

By duality, if p(E) < —3, then E has resolutions (4.1.4) and (4.1.5), i.e. E is the
middle syzygy bundle of the sequence

0— O(=3)* = 0(-2)°® O(-1)¢ - 0¢ - 0(1)* @ O(2)) — 0.

4.2 Exceptional bundles on P? with only one quadratic

form
Here, we study the case of exceptional bundles F on P? with resolution
0 0(-3)®0(-2° X 0(-1)! > F - 0.

This is the first interesting generalization of the case of Steiner bundles, because in
this case the entries of the matrix M are all linear forms except those which lie on
one row and are quadratic homogeneous forms. In this section we will see that, also
in this case, some good properties hold, which are not true in general. In particular,
Corollary 4.2.8 states that the exceptional bundles of this form are characterized by
the property x(End F') = 1 and they are all classified. Furthermore, any exceptional
bundle of this form comes from a left mutation of the exceptional pair (Ey, O), where
Ey is a Steiner exceptional bundle (see Remark 4.3.6).

As in the previous chapter, we denote

(1_|_2_\/5)2k B (1_\/5)219

ar —

T =

i.e. {ar} is the even part of the Fibonacci sequence and {ry} is the odd part. Notice
that

Tk = Q0 — Qk—1,
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and that the sequences {a;} and {ry} are defined recursively as follows:

ag = 0, T = 1,
ap =1, and r9 =2,
ag41 = 3ag — ak_1, Tkl = 3Tk — Tk—1.

Remark 4.2.1. For all k£ > 1 the following equalities hold
ag — 2051 = Qg1 — Ag—2 = k1,

and

a% + a%_l —3ag_1a; = ai — ag4+10—1 = 1,
and the same relations hold for 7. It is easy to prove them by induction.

According to the notations of the previous chapter, we denote by E) the excep-
tional Steiner bundle on P? defined by the exact sequence

0— O(-1)*-150% — E, — 0.

It is easily seen that, for any k > 2, the normalized exceptional Steiner bundle is
By = Ej(—1) and has resolution

0 = O(=2)%150(—1)%* — E; — 0. (4.2.1)

Now, consider the sequence of bundles Dy given by a left mutation of the exceptional

pair (Ek, O) as follows:
Dy = ker(E, ® Hom(Ey, 0) % 0),
where ¢y, is the canonical map, i.e.
0 — Dyp— Hom(ﬁk,o) ® Ek -0 —=0.
From the theory of mutations, we know that the bundles D; are exceptional for all k.
Lemma 4.2.2. The bundles Dy, admit the resolution
0 — O(=3) ® O(—2)%k%-25,0(—~1)*"*%=1 5 Dy — 0,

for all k > 3.
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Proof. In order to simplify the computations, we will prove that the bundles Dg(1)

have resolution
0= O(=2) ® O(—1)>k%—2_,O3k%-1 5 D, (1) = 0,
where Dy (1) is defined by the sequence
0 — Dy(1)— Hom(Ey, 0) ® Ej, — O(1) — 0. (4.2.2)

Notice that dimHom(Ek,O) = hO(E};) = 3rk—_1, hence from (4.2.1) and from (4.2.2)
we can compute

I‘k(Dk(l)) = 3rk_1(ak - ak_l) - 1,
c1(Dg(1)) = 3rg—1ap-1 — 1,
L oo o
c2(Dg(1)) = 5(9%71%71 —3rg_1a-1+2).
We observe that, for all k£ > 3, we get

3rg—1ax—1 —1

w(Dg(1)) = 3ri_1(ax — ag_1)

N —

>
-1

In fact, 2(3rg_1ax_1 — 1) — (3rg_1(ax —ag_1) — 1) > 0, since 3ay_17,_2 —4 > 0 for all

k > 3. Therefore, we have obviously

1

#(Dg) = p(Dg(1)) =1 > .

By Lemma 4.1.5, we know that Dy has a resolution of the form
0— 0O(=3)%a® O(-2)°—0O(-1)° = Dy — 0,
i.e. Dg(1) has a resolution
0— 0O(-2)* @ O(=1)"—0° — Dy(1) — 0, (4.2.3)

for some a,b,c € N. If we compute rank, ¢; and ¢y of Dg(1) using the resolution

(4.2.3), then we get the following system:

c—b—a=3rp 1(ap —ax_1)— 1,
b+ 2a = 3ri_1ap_1 — 1,
(0 +4a® + dab+4a+b) = 3(9r2_ja2_; — 3rp_1a5-1 + 2).
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This system admits the following unique solution:

a=1,
b=3(rg_1ax—1 — 1) = 3rrag_o,
c=3(rg_10x — 1) = 3rgag_1,

and this is exactly our claim. O

Furthermore, the bundles D}, are the only exceptional bundles of the form
0= O(-3)®0(-2)°*=0(-1)! = F =0,

for some s,t € N. In order to prove this fact, we have to use some techniques from
Number Theory.

4.2.1 Preliminary techniques on Number Theory

In this section, we recall some definitions and results of Number Theory; as a reference
see [BS66].

A quadratic field K is an extension of the rational field QQ of degree 2. In a quadratic
field K = Q[v/d], the norm of an element is defined as

N(a + bVd) = a® — db*.

We call unit of K an invertible element of the integers ring of K (i.e. of the ring of
elements of K whose minimum polynomial has integer coefficients). We say that ¢ is
a positive unit, if N(¢) = 1. The set of positive units of a quadratic field Q[v/d], with
d > 0, is a group isomorphic to Z. We say that two elements x,y in K are associate
if there exists a unit ¢ such that z = ey.

For any a, 8 € K, the module {c, 8} is defined as the set of all linear combinations
of « and 8 with coefficients in Z. Two modules M, N are called similar if there exists
0 # v € K such that M = yN (and strictly similar if N(v) > 0).

Lemma 4.2.3 ([BS66]). Two modules {1,a} and {1,8} are similar if and only if

there exist some integers k,l, m,n such that

kB +1
o=
mpB +n
and kn — ml = 1; more precisely we have
1
1 = =—-3HA1 ;
(La}= i {mf 4 n kg 41} = (1,5
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Any element § such that M C M is called coefficient of the module M and it is
known that the set of coefficients D is a ring. We define the norm of a module M as
the determinant of the transition matrix from a basis of the ring D, to a basis of M.
The set of classes of similar modules in a quadratic field, with given coefficient ring,
forms a finite Abelian (multiplicative) group.

The discriminant of a binary quadratic form Az? + Bzy + cy? is the integer B2 —
4AC. Any quadratic form F(z,y) can be represented by a module M = {«a, 8} in the

following way:
N(az + By)

F(zvy) = N(M)

The mapping (z,y) — £ = ax + By establishes a one-to-one correspondence between

the solutions of the equation

F(z,y) =m

and the numbers ¢ € M with norm mN (M). Two solutions are called associate if the

corresponding numbers in M are associate.

Theorem 4.2.4 ([BS66]). Let F(z,y) be a quadratic form represented by a class C

of strictly similar modules with coefficient ring D. Given the equation
F(z,y) =m,

with 0 < m € Z, then the set of classes of associate solutions of this equation is in a
one-to-one correspondence with the set of modules A which are in the class (of strictly

similarity) C~', are contained in D and have norm m.

In order to find the modules A satisfying the conditions of this theorem, we can

apply the following algorithm:
e find the integers s > 0,a > 0, b, ¢ such that
m = a’s, b2 — 4ac = D, (a,b,c) =1, —a<b<a
where D is the discriminant of F';

—b+vD
2a

e sety= and obtain the module A = {as, asvy}.
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4.2.2 Simplifying the equation

Now, we easily compute that
X(End F) = t? + s% — 3st — 6t + 35 + 1.
We know that if F' is exceptional then x(End F') = 1. Hence, if F' has resolution
0= 0O(-3)®0(-2)°=0(-1)t - F =0,
the numbers s, t are integer solutions of the following equation
t? + 52 — 3st — 6t + 35 = 0. (4.2.4)

Remark 4.2.5. For each k > 2, the pair (tx,sx) = (3rgag—1,3rar—_2) is a solution of
equation (4.2.4). Observe that the sequence

(tk, k) = (6,0), (45,15), (312, 117), (2142, 816), . ..

is defined recursively as

to = 6,
=0
2= (4.2.5)
tpr1 = 8t — 35 — 3,
Sk+1 = 3tk — Sk — 3.
Now, by the following change of coordinates
qg=9s+12, . t=1(3q+5p —6),
ie.
p=2t—3s—6, s:%(q—12),
we obtain the following equation
5p° — ¢* = 36. (4.2.6)

This diophantine equation is not equivalent to (4.2.4), because, even if any integral
solution of (4.2.4) is also an integral solution of (4.2.6), the converse is false. So,
in order to solve our problem, we need to list all the solutions of (4.2.6) and then
determine those which come from an integral solution of (4.2.4). Finally, we will
check that the solutions that we find are exactly those already known, defined by
(4.2.5).

62



4.2.3 Finding the solutions of 5p? — ¢? = 36.

Let K be the quadratic field Z[v/5]. Let {e,} be the group of positive units of K: it
is known that ¢, = (%)", for any n > 1. To each solution (@, P) of (4.2.6), we
associate the number ¢ = Q + v/5P in K. For any n, the number ¢e,, corresponds to
another solution of (4.2.6). The smallest integer positive solution of (4.2.6) is (3, 3),
then by multiplying 3 + 3v/5 by e,, we obtain the sequence of solutions (Q,, P,),
defined as follows:

Q1 =3,

P =3,

Qnt1 = 5(3Qn +5P,),
Pot1 = 5(Qn +3P),

l.e.

{(@n, Pn)} = {(3,3),(12,6), (33, 15), (87, 39), (228, 102), (597, 267), . . . }.

4.2.4 TUniqueness of the solutions of 5p? — ¢ = 36.

In order to prove that these are all the solutions of (4.2.6), we apply Theorem 4.2.4
and the corresponding algorithm. Then, we have to consider all modules A with norm
36, contained in the coefficient ring of A and with discriminant 20. In order to ensure

these conditions, we have to find some integers numbers s > 0,a > 0, b, ¢ such that
36 = as?, b% — dac = 20, (a,b,¢) =1, —a<b<a.

By solving computations, we obtain three solutions

which correspond to the modules
Ar = {12,3 + 3v5}, Ay = {12, -3 + 3v/5}, A3 = {6,6V5}.

Now, we have to check the strictly similarity of these modules, with respect to the

module associated to the equation, i.e.
M=M"1={/51}.
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To do this, we use Lemma, 4.2.3 and then we compute that

1+v6, 5 —Vb+5 V5

Ay ={12,3 + 3v/5} = 12{1, 4} —\/5+5{ e =

_p O VB, g 5 V5 _
_12m{1’?}_12—¢5+5 - {v5,1} = (3v/5 + 3){V/5,1},

and analogously

“14v6, o 5 Vh+5 V5

A2:{12,—3+3\/5}=12{1,T}— \/5-;-5{ 5 _}_

5 V5 V5 B
:12m{1,?} 12[ - 5{f 1} = (3v5 - 3){V5,1},

and

5 2v/5+5
A3:{6,6\/5}:6{1,\/5}:62\/5+5{ : VE+1} =

_ V5, _, 5 V5 _
= 62— (L) = 62 VR 1) = (V5 - 12){VE, 1.

The positive integer solutions (g, p) associated to these modules are (3,3) and (12,6).

Notice that they are associate, because

(3+3\/5)3+2\/5 =12+ 6v5

and, thus, we have only one independent solution (3,3) of our equation (4.2.6).

So, we have proved the following lemma.

Lemma 4.2.6. All the integer solutions of 5p°> — q> = 36 are given by the sequence
(Qn, Py), where

Qnt1 = 5(3Qn +5P,),
Pn—|— %(Qn + 3P )

4.2.5 Solutions of t? + s? — 3st — 6t + 3s = 0.

By changing coordinates from ¢, p to t, s we get, for example:
(35 3) - (9/55 _9/5)a (12, 6) - (61 O)a
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(33,15) — (84/5,21/5),  (87,39) — (45,15).

In general, we have

T =9/5,

S1 =-9/5,

Tpn+1 = 3T, — Sy, — 6/5,

Sny1 =T, —9/5.
We observe that the solutions with odd index are not integer, and those with even
index are integers and they are exactly (4.2.5). In fact, denoting Ay = 5T} and
By, = 58Sk, we get

A2k—1 =4 modb and B2k+1 =1 mod 5,
for all £ > 1, and
A, =0 mod 5 and By, =0 mod 5,

for all £ > 1. We prove this claim by induction: first of all, we check that A1 =9 =4
mod 5, By =—9=1 mod 5, Ao =30=0 mod 5 and B, = 0=0 mod 5. Then

Ao = 5T = 5(3Tog—1 — Sop—1 — 6/5) = 3Agx—1 — Bogp—1 —6 =0 mod 5,

and analogously

Bo = 589 = 5(Tog—1 —9/5) = Agg—1—9=0 mod 5.
It follows that T, and S are integer numbers for all £ > 1. Now, notice that

Agpy1 = 5Topy1 = 5(3Tox, — So, — 6/5) = 3Agx — Bop —6 =4 mod 5,

and analogously

Bojgi+1 = 5S9k+1 = 5(Tor —9/5) = Aoy —9=1 mod 5.
Therefore, we deduce that, for all £ > 1,

5Tok+1 =4 mod 5, 5S9k+1 =1 mod 5.

Finally the pairs (T, Sox) are exactly our solutions (4.2.5). In fact (T%,S2) = (6,0)

and, by composing twice the recursive formula, we get

Tn+2 == 8Tn - 3Sn - 3,
Spio = 3Ty — Sy — 3,

and this is exactly the sequence (4.2.5), as claimed.

In conclusion, we have proved the following lemma.
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Lemma 4.2.7. All the integer solutions of the equation
t2 4 5% —3st — 6t +3s =0
are given by the sequence (ty, sy), where

ta =6,
s2 =0,
tgy1 = 8tg — 3sg — 3,
Sk+1 = 3tk — Sk — 3.

Finally from the results of this section, we immediately deduce the following the-

orem:
Theorem 4.2.8. Let F' be a bundle with resolution
0= O(=3)®0(-2)°=0(-1)t - F = 0. (4.2.7)
Then the following are equivalent
(1) F is exceptional,
(2) x(End F) =1,
(8) s = 3rgag—o,t = 3rgag—_1.
Remark 4.2.9. We have proved that the property
F is exceptional & X(End F) =1

holds when F is Steiner and when F has resolution (4.2.7). Recall that in general this
property is false: for a counterexample, see Remark 3.1.5.

4.3 The other exceptional bundles on P?

Now, in order to understand how to characterize the resolutions of all exceptional
bundles on P2, we study the case of bundles G}, coming from two left mutations of

the exceptional pair (Ej, O).
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Lemma 4.3.1. Let G be an exceptional bundle obtained by two left mutations from

a Steiner exceptional bundle Ek Then Gy has resolution
0= O(=3)% @ O(-2)%*—0(-1)* — Gy — 0, (4.3.1)

with

qr = 3Tk—1,
S = IrgTRp_10K_2 — ag_1,
ty = Irgri_1a8 1 — ag,

where {ay} is the even part of sequence of Fibonacci numbers and {ry} is the odd part.

Remark 4.3.2. Notice that in the case of bundles Dy, which come from only one
left mutation, one coefficient in the resolution is fixed. Conversely, in this case all
coefficients are not fixed, then it is impossible to iterate the previous approach in

order to classify all the resolutions with one fixed coefficient.
We recall the following relations
Tk = ak — Gf_1, a1 = 3ag — ag_1, Tkt1 = 3Tk — Tk—1-
Proof of Lemma 4.8.1. Let Dy be the exceptional bundle on P? obtained by a left

mutation of the exceptional pair (Ek, O), where Ek is a Steiner exceptional bundle,
i.e. let Dy be defined by the following exact sequence

0 = O(—3) ® O(—2)3k%-25O(—~1)3Tk%-1 5 D; — 0.

Consider the left mutation of the exceptional pair (Dy, Ek) as follows:
0 — Gy— Hom(Dy, E;,) ® Dy, — Ej, — 0. (4.3.2)
We want to prove that the bundles G, admit the resolution (4.3.1), for all k£ > 3. As

before, in order to simplify the computations, we will consider Gg(1) instead of Gj.
We recall that Ek(l) = FEy. We denote H = Hom(Dk,Ek) and we easily compute
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that dim H = 3rg_1. Then, by the following diagram

0 0
0 — Gi(1) H ® Di(1) By, 0
H® (937"kak—1 0%

HQ (O(—2) @ O(—1)3rkak-2) O(—1)ak-1

0 0

we can compute the invariants rk,c¢; and co of Dg(1). First of all, we observe that

_ Orprg_qag_o +6rp_1 —ap_1 _ 1

Gr(1)) = > -,
H(Gk(1)) 97";%,17% — 7 — 3Tk 1 2

since this inequality is equivalent to 97yrr_1ar_3+15a;x_1 — 16a;_o > 0, which is true.
Therefore, by Lemma 4.1.5, we know that G (1) has a resolution of the form

0= 0(-2)%® 0O(-1)"=0° = G(1) = 0, (4.3.3)

for some a,b,c € N. Therefore, if we suppose that rank, ¢; and ¢y of Gk(1) coincide

with those obtained by the mutation, we obtain the following system:

c—b—a=9rl_, — V)ry— 3r_1,

b+ 2a =9rgrg 105 2+ 611 — ag_1,

%(b2 + 4a?% + 4ab + 4a + b) = %(aifl —ap_1+ 367",%71 + 1271 + 81r,%r,%71ai72+
+9rTrR_1aK—9 + 108rkr,%71ak_2 —12a_17k—1 — 18ak_1TkTk—10—2)-

This system admits the following unique solution:

a = 37‘/671’
b=9ryrr_1a5_2 — a_1,
_ 2 _
c=9rgrp_1ap_2 —ag_1 +9rpTi_; — Tk = ITRTE_108_1 — Gy,

and this is exactly our claim. O
Now, we can generalize the proof of Lemma 4.3.1 in order to obtain the resolution

of all the other exceptional bundles on P2. Following the general theory of helices (see

68



Section 2.5), we will denote by (A, LpC, B) the left mutation of the exceptional triple
(A,B,C) and by (B, RpA, C) the right mutation of (4, B,C).

Lemma 4.3.3. Let (A, F, B) be an exceptional triple such that: r = rk(A), u(4) >
F is defined by the exact sequence

)

N[—

0— 0(-2)%a 0(-1)°—-0f - F >0,

and B by
0— O(-2)® O(-1)"-0" - B — 0.

Then, by a left mutation, we obtain the triple (A, Lp B, F') and the bundle C = LpB
has resolution

0— O(=2)%49 g O(-1)> 0%/~ 5 0 0.
Proof. Consider the left mutation of the exceptional pair (F, B) as follows:
0 - C—Hom(F,B)® F -+ B — 0, (4.3.4)

and denote H = Hom(F,B). From the theory of mutations, we have that rc =

3rarg —rp = dimHrp — rg, thus dimH = 3r4, = 3r. Then, using the following

diagram
0 0
0 C H®F B 0
H®Oof o'

H®(0(-2)Te 0(-1)°) O(-2)9 ® O(-1)h

0 0

we can compute the invariant rk,c; and ¢y of C. By the theory of helices we know

that (A,C,F) is an exceptional triple and in particular, by Remark 2.5.5, we get
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u(A) < p(C) < p(F). Since u(C) > u(A4) > %, by Lemma 4.1.5, we know that C' has
a resolution of the form

0—0(-2)a0(-1)°-0°= C =0, (4.3.5)

for some a,b,c € N. Therefore if we suppose that rank, ¢; and co of C coincide with

those obtained by the mutation, we obtain the following system:

c—b—a=3r(f—e—d)—(i—h—g),

b+ 2a = —2g — h+ 6rd + 3re,

2(V? + 4a% + 4ab + 4a + b) = 1 (4¢® — 49 + h? — h + 36r2d*+

+12rd + 9r?e? + 3re + 36r%ed — 12hrd — 6hre + 4gh — 24grd — 12gre).

This system admits the following unique solution

a=3rd—g,
b=3re—h,
c=3rf —1,
and this is exactly our claim. O

Lemma 4.3.4. Let (A, F, B) be an exceptional triple such that: r = k(B), p(F) > 3,
F is defined by the exact sequence

0—0(-2)%a0(-1)-0f - F =0,

and A by
0— O0(—=2)® O(-1)"=0" - A 0.

Then, by a right mutation we obtain the triple (F, Rp A, B) and the bundle D = Rp A

has resolution
0— O(=2)%4 99 O(-1)* 0%~ 5 D 0.
Proof. Consider the right mutation of the exceptional pair (4, F') as follows:
0 - A—Hom(A,F)V® F — D — 0, (4.3.6)
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and denote H = Hom(A, F). From the theory of mutations, we have that rp =
3rprrp —ra = dim Hrp — 4, therefore dim H = 3rp = 3r, Then, using the diagram

0 0
0 A HYQF D 0
O’ HY @ Of

O(-N)r e 0(-2)9 HY ® (0(=2) @ O(-1)¢)

we can compute the invariant rk, ¢; and ¢ of D. Notice that (F, D, B) is an exceptional
triple, hence, by Remark 2.5.5, u(F) < u(D) < p(B). Since u(D) > u(F) > 1, by

Lemma 4.1.5, we know that D has a resolution of the form
0— 0(-2)%a O(-1)*-0° = D — 0, (4.3.7)

for some a,b,c € N. Therefore if we suppose that rank, ¢; and ¢y of D coincide with

those obtained by the mutation, we obtain the following system:

c—b—a=3r(f-e—-d)—(i—h—yg),

b+ 2a =—2g — h+ 6rd + 3re,

2(b? + 4a® + 4ab + 4a + b) = £ (49% — 49 + h? — h + 36d%r% + 12dr+
+9r2e? + 3re + 36r2ed — 12hdr — 6hre + 4gh — 24gdr — 12gre),

This system admits the following unique solution

a=3rd—g,
b=9re—h,
c=9rf —1,
and this is exactly our claim. O
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We can represent graphically the previous two lemmas as follows

T) B(g,h,1)
\ /
F(d,e, f)

/

LB =C(3rd—g,3re —h,3rf —1)

and
A(g, h,i)
\ /
F(d,e,f)

\

RrpA=D(3rd—g,3re —h,3rf —1)

Let us show some numerical examples:

(0,1,3) (0,3,8)
\\\\\\\x§ z////////
(1,15,45)

/ \
(6,87,262) (15,224, 672)
(0,3,8) (0,8,21)
\\\\\\\\& A////////’
(1,117,312)

k//////// ‘\\\\\\\\&

(15,1747, 4659) (39,4560, 12160)
(0,1,3) (1,15,45)
\\\\\\\\\i z//////////

(6,87,262)
/ \
(35,507, 1526) (522, 7568, 22791)
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(1,15, 45) (0,3,8)

\/

(15,224, 672)

/\

(1305, 19485, 58456) (224, 3345,10035)

(0,3,8) (1,117,312)

\/

(15,1747,4659)

/\

(224, 26088, 69573) (8730,1016751,2711530)

Finally, we summarize the results of this section in the following theorem:

Theorem 4.3.5. Let E be an exceptional bundle on P? with slope € [—%,O].

Let Ek denote the normalized exceptional Steiner bundles with resolution
0 = O(=2)%-1-0(—=1)% — Ej — 0.
Then, E has one of the following descriptions:

o FE comes from a right mutation of the triple (E\k,l,l/i’\k,(’)), for k > 3, and
E = Ek—l—l;

e F comes from a left mutation of the triple (E\k,l, o O), fork >3, and E = Dy,
where
0 — O(=3) ® O(=2)%*%-25,0(-1)>"*%-1 — Dy — 0;

e E comes from a right mutation of the triple (A, F,B) of exceptional bundles
such that r = rk(B),

0— O(=-3)® 0(-2)°—0(-1) - F >0,

0= O(=3)*® 0(-2)’—-0(-1)° - A — 0,

and E admit the following resolution:

0= 0(=3)"4*® 0(-2)">0(-1)>/~¢ - E - 0;
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e E comes from a left mutation of the triple of exceptional bundles (A, F, B), where
r =rk(4),
0— 0(-3)%a® 0(-2)°—-0(-1)f - F >0,

and
0— 0(-3) @ O(-2)"=0(-1)" - B -0,

and E admits the following resolution:

0= 0(=3)" 90 0(-2)" "-0(-1)*1"" 5 E > 0.

Remark 4.3.6. All the exceptional bundles with slope in [—3,0] are described by
Lemmas 4.3.3 and 4.3.4, except the bundles Dy, studied in Lemma 4.2.2. In fact Dy
comes from a left mutation of the triple (Ek_l, B, O) and O is not of the form

0= O(=3)Y® O(-2)"=0(-1)! = B =0,

as requested in Lemma, 4.3.3. This is a reason for which the bundles Dy have a very

particular resolution.

4.4 Dual case

Up to now, we have only considered exceptional bundles with slope in [—%, 0]. Since
w(E(1) = p(E) + i and p(E*) = —u(F), it is obvious that the exceptional bundles
with slope in [—1, —%] are obtained by dualizing and twisting the bundles that we
have already classified. We know that when we dualize, the left and right mutations
interchange (see Section 2.5). We can simply apply the same arguments used in the

case of p € [—%, 0] and the classification follows.

Remark 4.4.1. Tt is easy to check that when we apply a left mutation to the exceptional
triple (O(-1),0,0(1)), we get the triple (O(-1),T,0), where T = Tp2(—2) has
resolution

0= O(=2)=0(=1)> =T — 0.

Then, we can apply another left mutation and obtain the triple (O(—1), Hy,T'), where

Hy has resolution
0— O(=3)=0(-1)% = Hy — 0,
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Thus, by applying recursively right mutations to the triple (O(—1), H2,T'), we obtain
bundles, with slope u € [—%, 0], of the form

0 — O(=3)%-150(=1)"% — H, — 0,

where

(3+2v2)" - 3-2v2)"
42 '

These bundles are exactly a particular case (for h=2 and L=6) of the bundles studied

by =

in Section 3.5, arising as the natural generalization of Steiner bundles. The sequence

{br} is also defined recursively as follows:

by = 0,
b1 =1,
b1 = 6bg — bg1.

Notice that H; = O(—1) and Hy = E5(—1).

Theorem 4.4.2. Let E be an exceptional bundle on P? with slope p € [—1, —%]

Let Hy, denote the exceptional bundles with resolution
0 — O(=3)%-150(-1)% - H, — 0,

for all kK > 1, and let T denote the first non-trivial exceptional Steiner bundle T =
Ey = Tp2(—2). Then E has one of the following description:

e E comes from a right mutation of the triple (Hg_1,Hy,T), for k > 2, and
E = Hk:—|—1;

e E comes from a left mutation of the triple (Hg_1, Hg,T'), for k > 2, and E = Cy,

is defined by the following exact sequence
0 — O(=3)%*=10%-1,0(-2)pO(—1)**-1=3 5 C} — 0,
where sk = by — bgp_1;

e E comes from a right mutation of the triple (A, F,B) of exceptional bundles
such that r = rk(B),

0— O(-3)4=0(-2°0 0(-1)f - F >0,
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0— O(-3)"=0(-2)°® O(-1)° = A — 0,

and E admit the following resolution:

0= O(=3)%r1-250(-2)%* g O(-1)*/=¢ 5 E - 0;

o E comes from a left mutation of the triple of exceptional bundles (A, F, B), where
r =rk(4),
0= O(=3)¢=0(-2)°® O(-1)) - F =0,

and
0— O(=3)9=0(-2)"® O(-1) = B =0,

and E admits the following resolution:
0 — O(=3)*1950(-2)% rpO(-1)*/" 5 E > 0.
Remark 4.4.3. Notice that the resolutions of the exceptional bundles with slope in

—1,—1] are all of the type (4.1.4) of Section 4.1. This allows us to complete the
2
proof of Proposition 4.1.6.
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Chapter 5

Bundles with only one quadratic

form on P?

In this chapter, we will undertake the study of the bundles on P? of the form
0= O(-3)®0(-2)°*-0(-1)! - F - 0. (5.0.1)

As in the case of Steiner bundles, we want to give a criterion for simplicity and stability.
By Proposition 2.6.7, we know that, on P?, proving stability is equivalent to proving
generic simplicity. Then we will use both approaches: on one hand, we will apply the
Drézet-Le Potier criterion to check stability, on the other hand, we will prove generic
simplicity in a direct way.

We can parameterize the bundles with resolution (5.0.1) by means of the pair
of natural numbers (s,?) and we can represent them graphically in a plane with
coordinates (s,t). First of all, let us observe that in this plane there exists no line
separating stable from non-stable bundles, even if we exclude exceptional ones. In

fact, let Fi, F5, F3 be defined by the following sequences:
0 0(=-3)®0(-2)"*-0(-1)2 5 1 >0,
0— O(=3)®0(-2)-0(-1)¥ - B, >0,

0= 0(=3)®0(-2)2=0(-1)% = F; — 0.

It is possible to compute that F; and F3 are simple, stable and not exceptional,

whereas Fy is not simple and not stable. Now let us suppose that there exists a line
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I = {t = ms + ¢}, separating F; from F,. Therefore, we would have

42 < 14m + g,
47 > 16m + q,

and, for ¢ to exist, we need to suppose that m < 2.5. On the other hand, the line !
separates Fy from F3, then
60 < 21m + g,
{ 47 > 16m + gq,

and so we get m > 2.6. These two conditions are clearly in contradiction, hence the
line does not exist.

Furthermore, we immediately observe that if F' has resolution
0= 0O(-3)®0(-2)°=0(-1)! - F =0,

the property x(End F') < 1 does not imply that F' is simple. For example, if F' has
resolution
0= 0O(=3)® 0(-2)*=0(-1)* - F -0,

we get x(End F) = —3, but F is not simple because it can be shown that h’(End F) =
5 (see the appendix for more details). Another example is F», for which x(End F») =
—24, but h’(End F,) = 2. In other words, the hyperbola y(End F) = 1 is not a bound-
ary between simple and non-simple bundles. The condition, that we are searching for,

needs to be more complicated and we will find it in the next section.

5.1 Stability

In this section we want to apply the Drézet-Le Potier criterion in the case of bundles

with resolution of the form (5.0.1), i.e.
0— O(=3)® 0(-2)°-0(-1)! - F = 0.

We will see that in this case the condition for the stability of the normalized bundle
can be expressed by a condition on the variables s,t. Let F be a bundle on P?
with resolution (5.0.1). Recall that F' is exceptional if and only if s = 3rpax_o and
t = 3rgax_1 (see Corollary 4.2.8). In the plane with coordinates (s,t), the points
corresponding to the exceptional bundles Dy are (3ryay_o,3rkax_1), for all & > 3,
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and we denote them again by Dy, by abuse of notation.
Recall that in Chapter 2 we have defined the height of a bundle on P? as

h(?“, C1, 02) = A(T7 C1, 02) - 5(671)
where, for every u € Ig,

6(p) = P(=|p — pEl) — Ap.

and P(z) = % If the pair (s,t) corresponds to a bundle with rank r and Chern
classes c; and cy, we will denote d(s,2) = 6(°*) and h(s,t) = h(r,c1,c2). Let Qx be
the points (rgxi1ax—2,7k+10k—1), for any k& > 2. We will see (in Remark 5.1.5) that
they correspond to bundles with height 0 and slope u(Qx) = M(Ek), where Ej, are the

normalized exceptional Steiner bundles. Let p denote the polygonal

b= {QQaD37Q3aD4a' . '7Qk—11Dk7Qka' . '}7

i.e. the union of the segments (Qx_1, D) and (D, Qk), for any k > 3. We can give

now a characterization of bundles with positive height.

Theorem 5.1.1. Let F be a normalized bundle on P? with resolution (5.0.1) and let
p be the polygonal

p={Q2,D3,Q3, D, ...,Qk-1, D, Q- - .},
where Dy, = (3rgag_o,3rgax—1) and Qx = (Tg+1ak—2,Tk+105-1)- Then
(i) if (s,t) is above the polygonal p, then h(s,t) <0,
(i) if (s,t) lies on the polygonal p, then either h(s,t) =0 or (s,t) = Dy,
(iii) if (s,t) lies between the polygonal p and the line t = 2s + 3, then h(s,t) > 0.

Remark 5.1.2. It is easy to check that F' is normalized if and only if £ > 2s + 3.

By using Drézet-Le Potier criterion, it immediately follows from this theorem the

following interesting corollary.

Corollary 5.1.3. Let F be a normalized bundle on P? with resolution (5.0.1) and let
p be the polygonal defined in the statement of the previous theorem. Then F' is stable
if and only if (s,t) lies on the polygonal p or between the polygonal p and the line
t =2s+ 3; F is not stable if and only if (s,t) is above the polygonal p.
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The first points in the polygonal are
{(0,5), (15,45),(13,39),(117,312),...}.

We can see the situation in Figure 5.1 and in the corresponding enlargement in Figure

h(s,t) <0

D5 = (45, 45)

Figure 5.1: Bundles on P? with resolution (5.0.1).

5.2: the shaded region corresponds to stable normalized bundles.
In order to prove Theorem 5.1.1, we have to compute the height of a bundle F

corresponding to the point (s,t). We have that

st —s+4t —t+2s4+3
A(S,t) = m and M(S,t) = ﬁ

Now, we define a new function, depending only on the normalized exceptional Steiner
bundles Ek, in the following way. First of all, recall that a left mutation of the triple
of exceptional bundles (E\k_l,ﬁk,O) gives the triple (Ek_l,Dk,Ek), for any k > 3
(see Theorem 4.3.5). By Remark 2.5.5, it follows that pu(Eg_1) < u(Dg) < pu(Ey) <
p(Dgy1), for any k > 3. Therefore, if the point (s,t) corresponds to a bundle with
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Figure 5.2: Enlargement of Figure 5.1: the polygonal p is here visible.

slope p1 such that z4(Dy) < g < pu(Dp1), we define 65 (s,t) = P(—|pu—p(Er)|)—A(Ey),
and consequently hg(s,t) = A(s,t) — dg(s,t). Notice that dg(s,t) = d(s,t) if and
only if the slope of the bun/(\ile corresponding to (s,t) lies in an interval I f,» for an
exceptional Steiner bundle Fj.

Now, we prove the following lemma.

Lemma 5.1.4. Ift > 2s + 3, we have that hg(s,t) > 0 if and only if (s,t) is below
the polygonal p. Moreover, hg(s,t) =0 ezactly on the polygonal p.

Proof. Recall that u(Ek) = 2(1’“‘1,%% and A(Ek) = a’“;fz‘l, where 7, = ap — ag_1.
Then

st —s+ 4t ArOk—_1
2(t — s —1)2 2r?

—t+2s+3_2ak_1—ak
t—s—1 Tk

hE(S,t) = _P(_| |)

By solving hg(s,t) > 0, we get

~

t < %3 4+ 3t when > p(Ey)

ak’

81



and

t>g=ts, when p< p(Ey).

We check that these segments meet exactly in the points Dy and Q. In fact

a 3r ag
{t=—" s+ 5y {t = 216} = (3rpagp—_s, 3rpar_1) = Dy
Qg1 ap—1 ap—2
and 3
af—1 Qf41 Tk+1
{t= st {t= s+ “E5) = (rpyiak 2, Tha1ak-1) = Q-
ag_9 ay ag
This means that hg(s,t) < 0 above p, hg(s,t) = 0 exactly on p and hg(s,t) > 0
below p. O

Remark 5.1.5. It is clear from the previous proof that the points () arise from the
intersection of the segments corresponding to the vanishing of the function hg(s,t).
Hence it is easily seen that h(Qx) = 0 and u(Q)) = u(Ey). Furthermore, it is possible

to prove that these are the unique points satisfying these two properties.

In order to prove Theorem 5.1.1 we have to show that if u(F) € Ig and G # Ej,
is an exceptional non-Steiner bundle, then F' is not stable. First of all, we introduce

some preliminary notations and remarks. Given two bundles A, B, we will say that
A<B Mt p(A) < p(B).

Remark 5.1.6. We recall that (A, C, B) is called a triple of adjacent exceptional bun-
dles when it comes from the helix (O(—1),0,O(1)) by left and right mutations (see
Section 2.5). It is obvious that (A, LgB,C) and (C, RcA, B) are triples of adjacent
exceptional bundles too. Therefore, by Remark 2.5.5, we get

A<LcB<(C<B and A<C< RcA<B.
Lemma 5.1.7. If F € Ig, where E is exceptional, then Tk FF < rk F.

Proof. We prove that every fraction p/q in Ig = (uW(E) — zg, u(E) + zg) has de-
nominator ¢ > r = rk E. Observe that in any interval centered in s/r, there are no

fractions with denominator less than r if the radius of the interval is less than ﬁ

1 s 3r—v9r2—4 1
r—1) 1.€. 2r < r(r—1)’

simple computations. O

Then, it suffices to show that zg < r( and this is true by

Lemma 5.1.8. If G is an exceptional bundle such that Ek,l <G< Ek and F € Ig,
then rk(F') > rk(Dy) = 3rgrg—1 — 1.
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Proof. By the previous lemma we know that rk F' > rk G. Now, it is easy to check
that when an exceptional bundle G comes from a mutation of an exceptional pair
(A, B), the rank of G is greater than the rank of A and of B. By Remark 5.1.6,
we know that any exceptional bundle such that E\k,l <G< Ek is given by some
mutations starting from Ek_l and Ek It follows that tkG > rk Dy = 3rgri_1,
therefore rtk F' > rk G > 3rpri_1. O

Remark 5.1.9. If F has resolution (5.0.1), then if u(F) < po, solving the following
inequality

—t+2s4+3 <
s _1 Ko,

we get
2 + po _|_3+H0

s
1+ o 1+ po
(respectively if u(F) > pg, the latter inequality holds with <).

t>

Now we can give the proof of the main theorem.
Proof of Theorem 5.1.1. In Lemma 5.1.4 we describe the behavior of the function
hg(s,t). We know that h(s,t) = hg(s,t) holds if and only if the pair (s,¢) corresponds
to a bundle F such that u(F) € I 5, for an exceptional Steiner bundle B

On the contrary, suppose u(F) € I and G exceptional, non-Steiner. Since {14 :
A exceptifnal} is a partition of Q, we get u(F) ¢ I By for all the exceptional Steiner
bundles Fj. Therefore, by Remark 2.6.5, we know that

5(s,t) > % > 0(s,1),

hence h(s,t) < hg(s,t). Then, by Lemma 5.1.4, it follows that if the point (s,t) is
above the polygonal p, then

h(s,t) < hg(s,t) <0,

as statement (i) of the theorem claims.

Now, in order to prove statements (7i) and (%ii), it suffices to prove that the only
bundles F' which lie either below or on p and such that u(F') € I, with G exceptional
and non-Steiner, are the exceptional bundles Dy.

Suppose u(F) € I and By 1 < G < Ej. Tt follows that E,_; < F < Ej, i.e.

_ 2ap—2 —ag

p = ——————— < p(F) <
Tk—1 Tk

2051 — ag
1 TGk
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By Remark 5.1.9, this gives the following conditions on s, t:

2+m 3+ m 2t+pa  3tp

t < and t> ,
I+p 1+m T+ps  1+p
i.e.
t>ak_1s+ "k and t<a—ks+n€—+1.
Ap—2 Qp—2 Qr—1 Gk—1

Moreover, by Lemma 5.1.8, we know that rk(F) > 3ryrg_1 — 1, i.e.
t—s > 3rg_17k.

Then, any bundle F' such that u(F) € I satisfies the following inequalities

Ag—1 Tk
t> ak—2s Q2"
t < ghos i (5.1.1)

t> s+ 3rg_17g-

Now, the region
C={(s,t) : t> Thtgy T 1< % g4 rkH}ﬁ{(s,t) below or on p}
Qp—2 ag—2 ak—1 ag—1

is a convex figure bounded by the segments Q1 Dy and DiQy. Therefore, by simple
computations, we see that the line ¢ = s + 3r,_17 intersects the figure C exactly
in the point Dy. Hence, it follows that if the point (s,t) satisfies the conditions in
(5.1.1), then either (s,t) = Dy, or (s,t) is above the polygonal p, as claimed. O

5.1.1 Graphic description

Recall that the Drézet-Le Potier criterion characterizes stable bundles on P? by means
of the function h(s,t). Notice that the polygonal p represents the locus {hg(s,t) = 0},
where hg(s,t) is the auxiliary function introduced in the previous section. On the
other hand, the locus {h(s,t) = 0} is much more complicate than the polygonal p.
For example, in Figure 5.3, which is an enlargement and an affine transformation
of Figure 5.2, we can see that below the polygonal p, there is a region R in which
we have h(s,t) < 0. In fact this region is bounded by the polygonal p and by the
segments corresponding to {hp,(s,t) = 0} (where hp, is the height associated to the
exceptional bundle D3). By the previous proof, we know that in this region R there

are no integer points except D3 = (15,45). When we consider the heights associated
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(15, 45)

h(s,t) <0

(13,39) h(s,t) > 0

Figure 5.3: If there were any bundle inside the region R, it would not be stable.

to the other exceptional bundles, we can draw other new regions in which h(s,t) <0,
but, by the same reason, we know that they contain no integer points. Then, we can
say that the behavior of the function h(s,t) is “fractal”’, nevertheless in the case of
bundles with resolution (5.0.1), the characterization of stable bundles can be strongly
simplified by our Theorem 5.1.1.

Unfortunately it seems impossible to extend this method to bundles on P? with

resolution

0= 0(-3)1®0(-2)°—=0(-1)! = F =0 (5.1.2)

for any ¢ > 2. In fact, for any ¢ > 2, we can consider the locus {hg(s,t) = 0}, but
this function is not sufficient to characterize the stable bundles. For example, let F'

be the generic bundle with resolution
0 — O(=3)" 8 0(-2)'250(-1)"" 5 F — 0.
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Figure 5.4: We can see the first steps of the constructions of the graphic h(s,t) =0

Then F' is not stable because its height is negative, whereas the function hg of F is
positive. In other words, if for any g > 1, we consider the zero locus of hg(s,t) we
get a polygonal p’ and the bundle F' in the example is below this polygonal p’, but
is not stable. It follows that Theorem 5.1.1 is not true in general for bundles with
resolution (5.1.2). Notice that some vertices of the polygonal p’ correspond exactly to
the semi-exceptional bundles given by ¢ copies of the exceptional bundles Dy, defined

above.

Remark 5.1.10. It is interesting to notice that the intervals associated to the excep-
tional Steiner bundles cover a “very large” part of Q. This implies that for “almost
all” the bundles the two functions A and hg coincide.

More precisely, we denote



where £ is the set of exceptional bundles on P?. Therefore, by Theorem 2.6.1, we
know that Q C T and, since 7" is a countable union of intervals containing Q, then the
measure of 7N [—1,0] is 1. Denoting by S C £ the set of exceptional Steiner bundles
(we are not assuming them normalized), we define
S=J uni-1,0l.
Aes

We can compute the measure [ of S as follows

o0 [Qr2 _
1(0s) =% 3o VTt

where

Tk =

By using Maple, we can compute this value and it turns out to be [(S) ~ 0.9669138184.
This means that for a normalized bundle the functions hg and h coincide with a
probability of 96.69%.

In particular, since all the normalized exceptional Steiner bundles have slope in
[—%, 0], it is interesting to compute

1
I(S N[, 0]) ~ 0.4991613707.

1

It follows that for a bundle with slope in [—3,0] the functions hr and h coincide with

a probability of 99.83%.

5.2 Simplicity

In the previous section, we were able to give a condition for stability only for normal-
ized bundles. This implies that we can only consider bundles with ¢ > 2s 4+ 3. Now,
we study the remaining cases, i.e. s +3 <t < 2s 4+ 3. The following theorem proves
that all these bundles are generically simple. First, let us observe that if F' is a vector
bundle on PY~! then rkF =t — s —1 > 2. It follows that ¢ > s+ 3 is a necessary
condition.

Now, we give a lemma, which is the generalization of Lemma 3.2.7 to bundles with
resolution

00— 0(-2)9100(-1)° — O — F —0,
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for any ¢,s,t € N, suchthat t —s—g > N — 1.

Lemma 5.2.1. If F is defined by the sequence
0— 0(-21a0(-1) L 0" —F—0 (5.2.1)
and dim Stab(M) = 1, then F is simple.

Proof. If, by contradiction, F' is not simple, then there exists ¢ : F — F non-trivial.

0—— 0(~2)7 ® O(—1)° Ot —= F —>0 (5.2.2)

U

0—=0(-2)20 O(-1)* ot F 0

Applying the functor Hom(—, F) to the sequence (5.2.1), we get that ¢ induces ¢
non-trivial in Hom(O?, F'). Now, applying the functor Hom(O?, —) again to the same
sequence, we get Hom (O, O%) = Hom(O?, F) because Hom (O, O(-2)7@O(—1)%) =0
and Ext'(O!,0(—2)7 @ O(—1)*) = 0. It follows that there exists ¢ non-trivial in
End(O?), i.e. a matrix B # Id in GL (). Restricting ¢ to O(—2)?@®O(—1)* and calling
A the corresponding matrix, we get the commutative diagram (5.2.2). Therefore,
(A, B) # (A1d, A1d) belongs to Stab(M) and hence dim Stab(M) > 1. O

Theorem 5.2.2. Let F be a generic bundle on P? with resolution
0— 0O(=3)®0(-2)°*=0(-1)t - F = 0.
If s+3 <t <2s+3, then F is simple.

Proof. We only need to prove that the condition ¢ < 2s + 3 implies the generic sim-
plicity.

We consider first the case t = 2s + 3. Let M = M (zg,z1,z2) be the following
matrix of size (s +1) x ((s+1) + 1+ (s + 1)) of forms:

g o z5
ryg 1 9

M = o I T2

o | 1 9
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We claim that dim Stab(M) = 1. Indeed it is obvious that (AId, AId) € Stab(M). If
(A, B) is a pair of matrices in Stab(M), it follows that

AilM(.’L‘(),ivl, .’IIQ)B = M(.To,l‘l,:vz),

i.e.

M (zo,x1,72) B = AM (z0, 71, 72)

for all (zg,z1,z2) € P2. In particular we can consider the three points (1,0,0), (0, 1,0)

and (0,0,1) and we get the following matrices

0
M, = M(]_,0,0) = I Os+1 ’
b 0 -
_ 0 -
Ml = M(07 150) = Is+1 Os+1
b O -
_ 0 -
M2 = M(Oa 07 1) = 05_1_1 Is—I—l
0

where I,, denote the identity matrix of size (n x n) and 0, the zero matrix of size

(n x n). By simple computations, we see that from the following three conditions

MyB = AM,
M.B = AM;
MyB = AM,

it follows that A = AId and B = A1d, i.e. Stab(M) has dimension 1. Therefore, by
Lemma 5.2.1, we deduce that the bundle F' = Coker M is simple. Since the simplicity
is an open condition, the statement of the theorem follows.

If t < 2s + 3, we consider the matrix given by the first ¢ columns of M and the
same proof holds. O

By joining Theorem 5.1.1 and Theorem 5.2.2 we get the final result
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Theorem 5.2.3. Let F be a generic bundle on P? with resolution
0— O(=3)® 0(-2)°*=0(-1)! = F = 0.
and let p be the polygonal

p= {QZa D3a Q?n D4, sy Qk*la Dka Qka .- '}a
where Dy = (3rga—2,3rrar—1) and Qg = (Tk110k—2, Tk 105—1)- Then
(i) F is stable if and only if F is simple if and only if either

— (s,t) lies on the polygonal p, or
— (s,t) lies between the polygonal p and the line t = s + 2;

(13) F is not stable if and only if F is not simple if and only if (s,t) is above the
polygonal p.

Furthermore, we can generalize Theorem 5.2.2 as follows

Theorem 5.2.4. Let G be a generic bundle on P? with resolution
0= O(=3)1®0(-2)°-0(-1)! - G — 0.
Ift <2(q+ s) + 1, then G is simple.

Proof. We can repeat the proof of Theorem 5.2.2 with the following (g + s) x t-matrix

5 ot 75
2 2
Ty X9 Ty
M(.’L'(),.’L']_,.’L'Z) = ’
rg X1 i)
zo | T1 Z2

where the first ¢ rows contain quadratic forms and the other s rows contain linear
forms.
O
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Appendix

Macaulay 2 is a software system devoted to supporting research in algebraic geom-
etry and commutative algebra. Now, we present a very simple program written in
Macaulay 2.

If E is a generic bundle with resolution
05 0(-3)e0(-2)* % 0(-1)" 5 E -0,
then the following program computes the dimension of H’(End E).

--ring:
R=ZZ/32003[x_0..x_2]
--generic matrix M:
M=random(R"16,R"{-2,-1,-1,-1,-1})
E=coker (M)

--dual matrix:
N=transpose M;

F = ker N;
--resolution of End E:
S=res (ExxF)
out=S.dd_1;
tout=transpose out;
k=kernel tout;
--compute H"0(End E):
hilbertFunction(0,k)

When we want to consider bundles with other resolutions, it suffices to change
the definition of the matrix M and the program should work. Nevertheless, when the

dimension of the matrix M is very big, it is possible that the program aborts. In this
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case, we can compute H*(End E) in a less direct way, by substituting the last five

lines of the program with the following

P=presentation(Ex*F);
Q=prune transpose P;

betti res coker Q

and by searching the dimension of H® among the Betti numbers obtained.
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