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Prefa
eOrdinary Di�erential Equations (ODEs) play a 
entral role in the mathe-mati
al modelling of real world phenomena. The solution of su
h equationsallows to �nd answers to su
h questions as how a physi
al system evolves orwhat are the possible e�e
ts of 
hanges in the system. In general, it is ex-tremely diÆ
ult, if not impossible, to obtain an analyti
 solution of an ODEs.It is for this reason that the resear
h 
on
erning numeri
al methods for theapproximate solution of su
h equations be
ame so important. In parti
ular,the solution of Initial Value Problems (IVPs) for ODEs has been, and 
ontin-ues to be, one of the most a
tive �eld of investigation in Numeri
al Analysis.This is shown by the very ri
h amount of signi�
ant 
ontributions during thelast �fty years. In addition, many of the obtained results have been 
olle
tedin several books, among whi
h we quote [5, 20, 25, 35, 47, 58, 59, 76, 94℄.A
ross the years, the required properties for a numeri
al method havehad an interesting evolution. Indeed, until the �fties, a

ura
y require-ments were 
onsidered as the most important for the methods. After that,stability requirements be
ame fo
al, in parti
ular in 
onne
tion with the nu-meri
al solution of sti� problems. More re
ently, attention has been devotedto methods well suited for parti
ular di�erential problems (like, for exam-ple, Delay Di�erential Equations [8℄, Hamiltonian problems [61, 93℄, andSto
hasti
 Di�erential Equations [26℄), and to methods well suited for aneÆ
ient implementation on modern 
omputers, in
luding parallel 
omput-ers. In the latter 
ontext, properties of the methods su
h as the de�nition ofeÆ
ient splittings, degree of parallelism, et
. have be
ome fo
al, espe
iallyin 
onne
tion with the solution of large-size problems, and the present dis-sertation deal with this topi
. The thesis, in fa
t, is devoted to the so-
alledBlended Impli
it Methods. In addition to 
lassi
al requirements, su
h ashigh order of a

ura
y and \good" stability properties, the latter are meth-ods de�ned in order to favourably meet implementation requirements. Thegenerated dis
rete problem, in fa
t, may be eÆ
iently solved by means ofan iterative pro
edure based on a 
orresponding nonlinear splitting whi
h is\naturally" de�ned. The main result of the developed resear
h 
onsists inthe new 
ode BiM for the numeri
al solution of sti� problems.v



vi PREFACEThe thesis is organized as follows. Chapter 1 is devoted to a brief intro-du
tion on the referen
e 
ontinuous problem and on numeri
al methods forits approximate solution. Some of the most important results 
on
erningthe theory of numeri
al methods for ODEs are also reported, in parti
ularin 
onne
tion with the solution of sti� problems.Chapter 2 is devoted to dis
uss the most eÆ
ient te
hniques 
urrentlyused for the implementation of Blo
k Impli
it Methods. In more details,the issue of the solution of the dis
rete problem generated, at ea
h step ofintegration, by a method in that 
lass is addressed.Blended Impli
it Methods are then presented in Chapter 3 together withthe linear analysis of 
onvergen
e of the asso
iated iteration, whi
h theynaturally de�ne, for the solution of the dis
rete problem.The implementation strategies, used in the development of the variable-stepsize, variable-order 
ode BiM, are, then, dis
ussed in full details in Chap-ter 4. It will be shown that almost all of su
h strategies are supported andjusti�ed by the results obtained through the previously mentioned linearanalysis of 
onvergen
e.The numeri
al results obtained by using the new 
ode are reportedand analyzed in Chapter 5. In parti
ular, su
h results are 
ompared withthose provided by some of the best 
odes for sti� ODEs 
urrently available.Finally, some dire
tions for future resear
hes 
on
erning Blended Impli
itMethods are brie
y sket
hed.A
knowledgementsI would like to take this opportunity to thank my supervisor Prof. LuigiBrugnano for his support and valuable advi
e. He invested a lot of time inme during this period of resear
h and he helped me an in
redible amountto shape my ideas on how resear
h should be approa
hed. I would also liketo thank him for having believed in me.



Chapter 1Introdu
tionThis 
hapter is intended to present the basi
 notions 
on
erning numeri
almethods for the approximate solution of ODEs. In parti
ular, some of themost important results 
on
erning the theory of Linear Multistep Formulaeand Runge-Kutta methods are re
alled. Sti� problems and their numeri
alsolution are then, brie
y, dis
ussed in the last se
tion.1.1 The referen
e problemThe referen
e problem of the thesis is the �rst-order ODEy0(t) = f(t; y(t)); t 2 [t0; T ℄: (1.1)In the previous equation one 
an distinguish the independent variable twhi
h, often, in the des
ribed physi
al system, represents the time and thedependent variable y(t) whi
h 
onstitute the solution of the problem. Fre-quently, y(t) is a ve
tor valued fun
tion, i.e.,y(t) : IR! IRm; f(t; y(t)) : IR� IRm ! IRm;where m is the dimension of the system.In general, the solution of (1.1), in the 
ase it exists, is not unique. Anadditional requirement on the solution is ne
essary to obtain its uniqueness.One of the most widely used is, 
ertainly, to pres
ribe the value the solutionmust assume at the initial time t0. The 
orresponding problem(y0(t) = f(t; y(t)); t 2 [t0; T ℄;y(t0) = y0 2 IRm; (1.2)where y0 is the pres
ribed initial value, is known as an Initial Value Problem(IVP) for the ODE (1.1). This kind of problems o

ur very frequently inthe appli
ations sin
e, in many 
ases, the state of the system is known at a1



2 CHAPTER 1. INTRODUCTION
ertain time and one is interested to know the state at a 
ertain time in thefuture.The existen
e and uniqueness of the solution of the IVP (1.2) are (lo
ally)guaranteed by the following well-known theorem.Theorem 1.1 Suppose that in the region D � IRm+1, de�ned byD = f(t; y) : jt� t0j < a; jjy � y0jj < bg;the fun
tion f(t; y) is 
ontinuous and satis�es the Lips
hitz 
onditionjjf(t; y)� f(t; z)jj � Ljjy � zjj:Then, there exists a unique solution of problem (1.2). Moreover, ifM � sup(t;z)2D (jjf(t; z)jj) ;the solution is de�ned in the interval jt� t0j � min(a; b=M):In the following, the hypotheses of the previous theorem will be alwaysassumed to be satis�ed.1.2 Numeri
al Methods for ODEsThe numeri
al solution of the IVP (1.2) is usually 
arried out by formallyexe
uting the following three steps:1. the de�nition of a suitable dis
rete set (or mesh) ftngn=Nn=0 in the in-terval [t0; T ℄;2. the repla
ement of the 
ontinuous problem by a dis
rete one, de�nedon su
h a dis
rete set;3. the solution of the dis
rete problem.Con
erning the �rst step, the mesh may be predetermined or, as it hap-pens more frequently, generated dynami
ally during the integration pro
ess.A
tually, the problem of appropriately sele
t the mesh points ftngn=Nn=0 playsa 
entral role on the possibility of obtaining, in an eÆ
ient way, a numeri
alapproximation to the solution of the di�erential equation. This argumentwill be addressed in details in Chapter 4. Until then, for the sake of simpli
-ity, the simplest mesh, given by the following set of uniformly distributedgrid-points in [t0; T ℄,tn = t0 + nh; n = 0; 1; : : : ; N; h = T � t0N ; (1.3)



1.2. NUMERICAL METHODS FOR ODES 3will be always 
onsidered. The parameter h in (1.3) is often 
alled the step-size or the steplength.The third point, in the previous s
heme, may either be a trivial or adiÆ
ult task a

ording to the dis
rete problem de�ned in the se
ond step.A
tually, the main subje
t of the present dissertation will be the de�nitionof eÆ
ient te
hniques for its solution.Finally, the dis
rete problem, repla
ing the 
ontinuous one on the dis-
rete set, stri
tly depends on the parti
ular numeri
al method. As a matterof fa
t, the latter de�nes the \rules" used in performing su
h a repla
ement.From an histori
al point of view, the �rst method for ODEs is known as theexpli
it Euler method due to Euler in the early days of 
al
ulus (1768). Thedis
rete problem generated by su
h method is the following one,yn+1 = yn + h fn; fn � f(tn; yn); n = 0; : : : ; N � 1; (1.4)where yn represents, for ea
h n, the numeri
al approximation of the solutionat tn, i.e., yn � y(tn):Thus, at ea
h step, su
h method assumes the knowledge of the in
omingdata yn and the new approximation is obtained by assuming the slope ofthe y fun
tion 
onstant throughout the interval [tn; tn+1℄. Equivalently, thenumeri
al integration pro
eeds by 
onsidering, after ea
h step n, a new(lo
al) IVP to be approximated, with initial value given by y(tn) = yn.This initiates the idea of lo
al error where after ea
h step the in
omingdata is assumed to be exa
t. The a

ura
y of the numeri
al solution isthen measured by 
omparing the approximation, after one single step ofintegration, with the Taylor series expansion of the lo
al exa
t solution,given by y(tn+1) = y(tn) + h y0(tn) + h22! y00(tn) + � � � :In parti
ular, the Euler method is a �rst order one sin
e it agrees with su
han expansion up to the �rst power of h. A

ording to the approa
h adoptedfor in
reasing the a

ura
y of the approximate solution, nowadays numeri
almethods for ODEs may be subdivided into two main 
lasses of methods:� Multistep methods;� One-step (Multistage) methods.Multistep methods obtain higher a

ura
y by allowing the approximate solu-tion at a point to depend on the values of the solution and of the derivativesbefore the immediately previous point. One-step (multistage) methods, in-stead, build up yn+1 from values of the solution, and the 
orrespondingderivatives, at several internal points (or stages) between tn and tn+1.



4 CHAPTER 1. INTRODUCTION1.3 Linear Multistep FormulaeThe most popular multistep methods are, 
ertainly, Linear Multistep For-mulae (LMF), also 
alled Linear Multistep Methods (LMMs). They generatedis
rete problems with the following general form:kXj=0 �j yn+j = h kXj=0 �j fn+j; n = 0; : : : ; N � k; (1.5)where fn � f(tn; yn), and k is 
alled the stepnumber of the method. Thus,a k-step LMF transforms the di�erential equation (1.2) in a linear, withrespe
t to yn and fn, di�eren
e equation of order k. Usually an IVP for the
ontinuous equation is solved by means of an IVP for the dis
rete one, thatis, a set of k initial values, y0; y1; : : : yk�1; (1.6)is always asso
iated to (1.5). Sin
e only y0 is provided by the 
ontinu-ous problem, a starting pro
edure is required to obtain the remaining ones.Then, a re
ursive pro
edure may be applied to 
ompute the overall numeri-
al solution. In parti
ular, expli
itmethods are, by de�nition, those methodshaving �k = 0. In this 
ase, the algorithm for the solution of the dis
reteproblem turns out to be a trivial and 
heap one. On the other hand, when�k 6= 0 (i.e. the method is an impli
it one) the solution of an algebrai
equation in IRm is required, at ea
h step, to get the new approximation.A general theory 
on
erning multistep methods was started by the workof Dahlquist [44, 45℄ and be
ame famous through the 
lassi
al book ofHenri
i [63℄. In parti
ular, in the 1956 paper [44℄, Dahlquist introdu
edthe fundamental 
on
epts of 
onsisten
y, 0-stability and 
onvergen
e. Thelatter property des
ribes the asymptoti
al behaviour of the numeri
al so-lution, with respe
t to the 
ontinuous one, when an in
reasing number ofmesh-points in [t0; T ℄ is used. More pre
isely, a LMF is said to be 
onvergentin [t0; T ℄ if, starting from \suÆ
iently" a

urate values and assuming thatthe dis
rete problem is solved exa
tly, it provides approximations su
h that,limN!1 maxn=k;:::;N jj y(tn)� yn jj = 0; h = T � t0N :When looking for the properties that a 
onvergent LMF has to satisfy, itwas found fundamental the 
onvergen
e of the numeri
al method in 
orre-sponden
e of the following three problems:� y0(t) = 0; y(0) = 0;� y0(t) = 0; y(0) = 1;



1.3. LINEAR MULTISTEP FORMULAE 5� y0(t) = 1; y(0) = 0.In parti
ular, by introdu
ing the polynomials,�(z) � kXj=0 �jzj ; �(z) � kXj=0 �jzj; (1.7)it was found that 
onvergen
e of a LMF for the �rst problem ne
essarilyrequires �(z) to be a Von Neumann polynomial (i.e. all zeros of �(z) lie inthe unit dis
 and all zeros on the boundary are simple). LMF with su
hproperty are 
alled stable or 0-stable. Con
erning the se
ond problem inthe previous list, it 
an be proved that the numeri
al solution may 
onvergeuniformly to the 
ontinuous one, only in the 
ase where�(1) = 0: (1.8)The previous 
ondition is, sometimes, referen
ed as the \pre-
onsisten
y
ondition". Finally, a 0-stable and pre-
onsistent LMF is able to 
omputethe exa
t solution of the third problem, in the limit, only in the 
ase where�0(1) = �(1): (1.9)A LMF is said to be 
onsistent when it satis�es the 
onsisten
y 
onditions(1.8)-(1.9). Therefore, 
onvergen
e for a LMF requires both 
onsisten
y and0-stability. In [44℄ Dahlquist proved that the last two properties are, indeed,suÆ
ient for 
onvergen
e, thus leading to the well-known result:
onvergen
e , 
onsisten
y + 0-stability.For a general IVP, the residual obtained when the sequen
e fy(tn)g,
onsisting of the values that the exa
t solution assumes at the mesh-points,is inserted into the dis
rete problem,�n � kXj=0 �j y(tn+j)� h kXj=0 �j f(tn+j; y(tn+j)); (1.10)is 
alled the trun
ation error of the method. By 
onsidering the Taylorseries expansion of the 
ontinuous solution at tn, it 
an be seen that, for a
onsistent method, the trun
ation error depends, at least, quadrati
ally onh. The order of a

ura
y for a LMF is, then, de�ned as the largest p su
hthat �n = O(hp+1):The same Taylor expansion allows to prove that p is given by the largestinteger su
h that the following order 
onditions hold true:



6 CHAPTER 1. INTRODUCTIONkXj=0 �js�j � sjs�1�j� = 0; s = 0; 1; : : : ; p: (1.11)In this 
ase, the trun
ation error 
an be expressed as�n = vp+1hp+1y(p+1)(tn) +O(hp+2);where vp+1 � 1(p+ 1)! kXj=0 �jp+1�j � (p+ 1)jp�j� (1.12)is 
alled the prin
ipal error 
oeÆ
ient of the method (obviously, the 
ontin-uous problem is assumed to be suÆ
iently smooth).The following is a well-known result 
on
erning the a

ura
y of the nu-meri
al solution provided by a method of order p (see, for example, [20, 63℄).Theorem 1.2 If the 
ontinuous problem is suÆ
iently smooth and the ini-tial 
onditions (1.6) are, at least, O(hp) a

urate, then the numeri
al so-lution provided by a 0-stable LMF of order p � 1 is su
h that, for ea
hn, ky(tn)� ynk � Chp;where the parameter C is independent of h.Thought it is possible to �nd LMF of order p = 2k, in [44℄ Dahlquistproved the following restri
tion on the maximum attainable order of a 0-stable (and, therefore, 
onvergent) LMF. This result is known as the �rstDahlquist barrier.Theorem 1.3 A 0-stable k-step LMF has order not larger than k + 1, if kis odd, and not larger than k + 2, if k is even.Let us now, brie
y, dis
uss some of the most famous families of LMF.The �rst one was derived in the 1883 paper by Bashforth and Adams, [2℄:su
h methods are now known as the Adams-Bashforth methods. The basi
idea, used in deriving su
h methods, has been that of using the fundamentaltheorem of 
al
ulus for a s
alar equation,y(tn) = y(tn�1) + Z tntn�1 y0(s) ds;and then to approximate the integrand with the interpolating polynomialthrough (tn�k; fn�k); : : : ; (tn�1; fn�1): The obtained methods were, there-fore, expli
it. An impli
it version of the Adams methods was also introdu
ed



1.3. LINEAR MULTISTEP FORMULAE 7in the 
ited paper by Bashforth and Adams. However, su
h impli
it methodswere studied, in their own-right, in 1926 by Moulton in [82℄, and, nowadays,they are known as the Adams-Moulton methods. For ea
h value of k, boththe expli
it and the impli
it Adams methods are 
onvergent methods of or-ders, respe
tively, p = k and p = k + 1, [76℄.In 1952, Curtiss and Hirshfelder introdu
ed another important family ofLMF known as the Ba
kward Di�erentiation Formulae (BDF), [43℄. LikeAdams methods are based on numeri
al integration, BDF are based on nu-meri
al di�erentiation. In fa
t, the dis
rete problem generated by su
h meth-ods has the following form: fn+k = 1h kXj=0 �jyj:It is well-known that the BDF are 
onvergent methods of order p = k pro-vided that k � 6 (see, for example, [76℄).In order to de�ne a \good" method, 
onvergen
e is, obviously, a ne
es-sary requirement. However, there exist important di�erential problems forwhi
h su
h property is 
ertainly not enough. Convergen
e, in fa
t, does nottake into a

ount the e�e
ts that perturbations, like, for example, the onesdue to round-o� errors, produ
e on the numeri
al solution. Moreover, byde�nition, 
onvergen
e is a limit property for values of h approa
hing 0 and,on the 
ontrary, in the pra
ti
e, the used stepsize is a �xed nonzero value.The midpoint method, yn+2 = yn + 2h fn+1; (1.13)is a 
lassi
al example that is frequently used to show how, even for arbitrar-ily small stepsizes, 
onvergen
e may not provide useful indi
ations on thea

ura
y of the numeri
al solution. Su
h method, in fa
t, is 
onvergent oforder p = 2. In spite of this, when it is used to approximate the solution ofthe IVP,y0(t) = 2 � 104 �e�t � y(t)�� e�t; t 2 [0; 1℄; y(0) = 1; (1.14)\large errors" are obtained in the numeri
al solution 
omputed in standarddouble pre
ision, regardless the (nonzero) value of the stepsize (see, for ex-ample, [20℄).A theory for error propagation for a �xed value of the stepsize h, is,therefore, needed. The development of su
h a theory requires, in general,the analysis of the stability properties of solutions of nonlinear di�eren
eequations and, unfortunately, the available mathemati
al tools do not pro-vide suitably simple instruments for this task. However, when the solution



8 CHAPTER 1. INTRODUCTIONbelongs to a suitable neighbourhood of a uniformly asymptoti
ally stableequilibrium point, the �rst approximation stability theorem may be appliedthus allowing to 
on�ne the previous analysis to linear problems, [20℄. Inaddition to this, a 
onsideration on the interval of existen
e of the solu-tions is required. It is, in fa
t, obvious that the 
ase where h is �nite andn ! 1, requires the existen
e of the 
ontinuous solution for all t � t0 andthe existen
e of the numeri
al solution for all tn = t0 + nh. The previousrequirements are ful�lled when both the exa
t and the numeri
al solutionsbelong to a neighbourhood of a uniformly asymptoti
ally stable 
onstantsolution. All su
h arguments justify the study of the methods on the well-known Dahlquist test equation� y0(t) = �y(t); t � t0; Re(�) < 0;y(t0) = y0; (1.15)whose solution is given by y(t) = y0e�(t�t0). Therefore, the 
ontinuous prob-lem, admits y(t) � 0 as asymptoti
ally stable equilibrium point. Moreover,from (1.5), one 
an verify that the dis
rete problem for (1.15) admits the
onstant solution yn � 0 as equilibrium point and that the 
orrespondingstability properties are determined by the roots of the stability polynomialasso
iated to the method (see (1.5) and (1.7)),�(z; q) � �(z) � q�(z); q � h�: (1.16)In parti
ular, the zero sequen
e is an asymptoti
ally stable equilibriumpoint, for the dis
rete problem, provided all the roots of �(z; q) lie insidethe unit disk (i.e. �(z; q) is a S
hur polynomial). This lead to the de�nitionof the region D of Absolute stability for a LMF as the region of the 
omplexq-plane for whi
h �(z; q) is a S
hur polynomial.A LMF is able to provide qualitatively 
orre
t results for (1.15) only inthe 
ase where q 2 D. In this 
ontext, the midpoint method (1.13) 
er-tainly represents a limit 
ase, sin
e its region of Absolute stability is empty.In other 
ases, like, for example, for the Adams methods (with the onlyex
eption of the Trapezoidal rule), the interse
tion of D with the left-half
omplex plane is a bounded region and, if the method is 0-stable, the originbelongs to the boundary of D. When this happen, the stability propertiesof the numeri
al method determines an upper bound for the allowed stepsize.In 1963, Dahlquist understood the great advantage gained, in solving
ertain 
lasses of problems, by the use A-stable methods, namely methodswith a stability region whi
h in
ludes all the left-half 
omplex plane. As itwill be dis
ussed in Se
tion 1.5, sti� problems represent an important 
lassof di�erential problems, sin
e frequent in the appli
ations, whose numeri
alintegration e�e
tively requires the use of an A-stable method. However in



1.3. LINEAR MULTISTEP FORMULAE 9[46℄, the same author proved the well-known se
ond Dahlquist barrier whi
hstates a severe restri
tion on the possibility of obtaining high order A-stableLMF. More pre
isely, the following results were proved in that paper.Theorem 1.4 There are no expli
it LMF whi
h are A-stable. The maxi-mum order of an A-stable impli
it LMF is two.In looking for \nearly" A-stable methods, the property of A(�)-stability,with � � �=2, turns out to be one of the most desirable. By de�nition,in fa
t, the previous property holds when the region of Absolute stability
ontains the se
tor C� � fq 2 C : j� � arg(q)j � �g: (1.17)In su
h a 
ase, the method is able to provide qualitatively 
orre
t resultsfor all values of � in (1.15) su
h that j� � �j � �, without requiring anyrestri
tion on the stepsize. The already mentioned BDF are, for example,A(�)-stable method for ea
h k � 6, [76℄. As a 
onsequen
e, many numeri
al
odes, designed for the solution of sti� di�erential problems, are based onsu
h formulae or subsequent modi�
ations of them [11, 12, 40, 65℄.In attempting to 
ir
umvent the Dahlquist's barriers, many approa
heshave been adopted. Among them we quote the approa
h based on the useof higher derivatives of the solution, as in the 
ase of the Se
ond DerivativeMultistep Methods of Enright [51℄; the approa
h based on suitable 
ombi-nations of two or more methods, as for the Blended Multistep Methods ofSkeel and Kong [100℄, and the approa
h based on the use of further stages,additional nodes or o�-step points, as in the 
ase of the Modi�ed ExtendedBDF of Cash [38℄.Another important and re
ent 
ontribution to the analysis of multistepmethods is, 
ertainly, due to Brugnano and Trigiante. In the 1998 book [20℄,the authors introdu
ed Boundary Value Methods (BVMs). The basi
 idea,on whi
h su
h methods rely, is to adopt alternative 
hoi
es for the additional
onditions required by the dis
rete problem (1.5). In more detail, this is doneby approximating the 
ontinuous IVP (1.2) by means of a dis
rete BoundaryValue Problem (BVP). In the prefa
e of that book, in fa
t, the authors write:\Even if initial value problems are easier in the realm of in�nite pre
i-sion arithmeti
 (i.e. real or 
omplex numbers), boundary value problems aresafer in the realm of �nite pre
ision".By means of an appropriate 
hoi
e for the boundary 
onditions, meth-ods with very good stability properties were then obtained. Among them,we mention the Generalized Adams Methods (GAMs) and the GeneralizedBa
kward Di�erentiation Formulae (GBDF).



10 CHAPTER 1. INTRODUCTION1.4 Runge-Kutta MethodsRunge-Kutta (RK) methods are generally 
onsidered as the most popularone-step (multistage) methods. The �rst method adopting the \multistagephilosophy" to obtain higher a

ura
y, is generally attribute to Runge in1895, [91℄. Further early 
ontributions, to what are now known as Runge-Kutta methods, are those due to Heun, Kutta and Nystr�om, [64, 75, 85℄.In parti
ular, the famous fourth-order method in Kutta's paper is often re-ferred to as the Runge-Kutta method.At ea
h step of integration, an r-stage Runge-Kutta method advan
esthe numeri
al solution as follows:yn+1 = yn + h rXi=1 bif(tn + 
ih; yin); (1.18)where yin = yn + h rXj=1 aij f(tn + 
jh; yjn); i = 1; : : : ; r: (1.19)Here, the quantities yin, 
alled the internal stages, represent approximationsto the solution at the points tn + 
ih, generally internal to the interval[tn; tn+1℄. The 
oeÆ
ients of a RK method are, usually, 
olle
ted into thefollowing But
her array, 
 AbTwhere,
 � 0B� 
1...
r 1CA ; b � 0B� b1...br 1CA ; A � 0B� a11 � � � a1r... . . . ...ar1 � � � arr 1CA :The previous notation allows to rewrite the dis
rete problem (1.18)-(1.19)in the more 
ompa
t form,yn = 1
 yn + h(A 
 Im)fn; (1.20)yn+1 = yn + h(bT 
 Im)fn; (1.21)where Im is the identity matrix of order m, 1 � (1; : : : ; 1)T 2 IRr, andyn � 0B� y1n...yrn 1CA ; fn � 0B� f1n...frn 1CA ; fin � f(tn + 
ih; yin):



1.4. RUNGE-KUTTA METHODS 11A RK method is 
alled expli
it when the matrix A is stri
tly lower trian-gular, impli
it otherwise. As for LMF, the pro
edure for the solution of thedis
rete problem greatly simpli�es in the 
ase of expli
it methods. This ismu
h more true for RK methods sin
e, at ea
h step, the new approximationdepends on r new unknowns in IRm.The order of a

ura
y, for a RK method, is de�ned on the base of theasymptoti
al behaviour, as h approa
hes 0, of the lo
al error. The latter isgiven by the di�eren
e between the exa
t and the numeri
al solution afterone step of integration, under the assumption of an exa
t starting value.In parti
ular, a RK method has order p provided that, for a suÆ
ientlysmooth fun
tion f de�ning the 
ontinuous problem, there exist a 
onstantC, independent of h, su
h thatky(t0 + h)� y1k � C hp+1:The analysis of the order 
onditions for the 
oeÆ
ients of a RK method isde�nitely mu
h more 
ompli
ated, with respe
t to the same for LMF. Themain reason is the fa
t that, in general, the numeri
al solution, at ea
h step,is built up from the derivatives evaluated at stage values having a lowera

ura
y. The basi
 idea, used for su
h analysis, is to 
ompare, term byterm, the series expansions, in powers of h, for the exa
t and the numeri
alsolutions at the end of a single step of integration. However, the terms in-volved in su
h expansions be
ome greatly 
ompli
ated quite soon and thishas been one of the main diÆ
ulties en
ountered in the early time of theresear
h on su
h methods. The major 
ontribution 
on
erning the analysisof the order 
onditions for RK methods is due to But
her. In his 1963 paper[27℄, based on the earlier work by Gill [55℄ and Merson [80℄, he related thevarious terms involved in the Taylor series expansions, of both the exa
tand the approximated solution 
omputed by a Runge-Kutta method, to thegraphs of the so-
alled rooted trees. Making use of the resulting theory, in[30, 34℄, But
her proved quite 
ompli
ated relationships between the mini-mum number of stages r to obtain expli
it methods of order p > 4.In the 1964 paper [28℄, on impli
it RK methods, But
her introdu
ed theso-
alled simplifying assumptions 
onsisting in a set of 
onditions whi
h,when satis�ed, redu
e, signi�
antly, the number of 
onditions needed to ob-tain a method with a pres
ribed order. This, in turn, made it possible toderive methods of higher order. In [28℄, in fa
t, But
her introdu
ed impli
itRK methods based on the Gaussian quadrature formulae of order p = 2r,while in [29℄ the same author introdu
ed the Radau I and Radau II methods,of orders p = 2r � 1, and the Lobatto III methods of orders p = 2r � 2.When a RK method is applied to the test equation (1.15), the obtained



12 CHAPTER 1. INTRODUCTIONnumeri
al solution satis�es yn+1 = g(q) yn; (1.22)where it 
an be proved, (see [59℄), that g(q), 
alled the stability fun
tion ofthe method, is given byg(q) = det �Ir � qA+ q1bT �det (Ir � qA) ; (1.23)being Ir the identity matrix of order r. The region of absolute stability Dfor a RK method is, therefore, de�ned asD � fq 2 C : jg(q)j < 1g:Consequently, expli
it RK methods always have a bounded stability domainsin
e, for su
h methods, g(q) is a polynomial (see (1.23)). Impli
it methods,instead, have a rational stability fun
tion and methods of arbitrarily highorder 
an be A-stable. In parti
ular, in 1969, Ehle proved the impli
it GaussRK methods to be A-stable while the Radau I, Radau II and Lobatto IIImethods to be not, [49℄. Moreover, Ehle took up the ideas of But
her and
onstru
ted the well-known A-stable Radau IA, Radau IIA, Lobatto IIIA,and Lobatto IIIB methods. In the same year, the Radau IIA methods werefound, independently, by Axelsson together with an elegant proof of theirA-stability, [6℄. The general de�nition of the Lobatto IIIC methods is dueto Chipman [42℄; see also the paper by Axelsson [7℄.The linear stability theory, based on the analysis of the methods on thetest equation (1.15), seems to suggest that methods with a stability domainwhi
h exa
tly 
oin
ides with the left-half 
omplex plane (i.e. perfe
tly A-stable methods) have to be 
onsidered as \optimal" methods. The previousproperty, however, turns out to be not as desirable as it may appear. It 
anbe proved, in fa
t, that the stability fun
tion of perfe
tly A-stable methodsis su
h that limq!1 jg(q)j = 1:This means that, when q is 
lose to the real axis and has a very large negativereal part, the 
ontinuous solution of (1.15) fast de
ays to zero while themodulus of the numeri
al solution is very slowly damped. Therefore, inorder to re
e
t the behaviour of the 
ontinuous solution, one should havejg(q)j � 1 as q ! �1. This leads Ehle to introdu
e the following propertyfor a method [49℄:De�nition 1.1 A method is 
alled L-stable if it is A-stable and if, in ad-dition, limq!1 g(q) = 0:



1.5. STIFF DIFFERENTIAL EQUATIONS 131.5 Sti� Di�erential EquationsSti� di�erential equations arise in a 
ountless amount of appli
ations andtheir numeri
al solution has 
hallenged Numeri
al Analysts as well as Ap-plied Mathemati
ians during the last �fty years.The �rst appearan
e of the term \sti�", in 
onne
tion with the numeri
alsolution of ODEs, is in the paper by Curtiss and Hirs
hfelder [43℄ publishedin 1952. In that work, the authors showed that 
ertain types of problems,arising from 
hemi
al kineti
s, are best solved by means of appropriatelysele
ted numeri
al methods. The analysis 
arried out in that paper was the�rst example of the \tailoring" of the method to the properties of the 
ontin-uous problem to be solved, whi
h has be
ome 
ommon pra
ti
e nowadays.Sin
e then, the phenomenon of sti�ness for ODEs has been one of the moststudied subje
t in Numeri
al Analysis. Nevertheless, a pre
ise mathemati
al
hara
terization of sti�ness, able to 
over the most important fa
ets of thephenomenon, has not yet been given. As a matter of fa
t, in the Lambertbook [76℄, �ve di�erent de�nitions of sti�ness 
an be found.From the early time of the resear
h on sti� problems, there has been alarge agreement on the fa
t that sti�ness o

urs when very di�erent times
ales are present in a problem. The term itself, in fa
t, seems to derivefrom su
h pe
uliarity sin
e it seems to des
end from me
hani
al models ofsystems of weights 
onne
ted with springs having very di�erent rigidity 
on-stants (sti� 
onstants). The solutions of the 
orresponding equations are,therefore, 
hara
terized by fast modes, 
orresponding to the e�e
ts of thestronger springs, and slow modes, 
orresponding to the e�e
t of the soft ones.The 
lassi
al example, whi
h is always used to dis
uss the phenomenonof sti�ness, is the linear autonomous equation,y0(t) = Ay(t); t 2 [t0; T ℄; (1.24)where the 
oeÆ
ient matrix A has distin
t, real and negative eigenvalues,�max � �1 < �2 < : : : < �m � �min < 0:The general solution of su
h equation takes the formy(t) = mXi=1 
ie�i (t�t0)vi;where, for ea
h i, vi 2 Cm is an eigenve
tor 
orresponding to �i and the
oeÆ
ient 
i 2 C depends on the initial value y(t0). In parti
ular, when theextreme eigenvalues of A are su
h thatj�maxj � j�minj;



14 CHAPTER 1. INTRODUCTIONthe general solution of (1.24) is made up by \fast" modes, 
orresponding tothe eigenvalues of largest modulus, and \slows", modes 
orresponding to thesmallest modulus ones. In su
h a 
ase, to get a 
omplete information on thesystem, it is ne
essary to keep integrating until the slowest modes be
amenegligible. This requires to take, at least, T � t0 � j�minj�1. On the otherhand, the fast modes signi�
antly 
ontribute to the solution only during avery short initial period, say [t0; t0+ j�maxj�1℄. Therefore, the di�erent times
ales for (1.24), giving rise to the phenomenon of sti�ness, are given by themodulus of the extreme eigenvalues and the sti�ness ratio,j�maxjj�minj ;is traditionally used as a measure of the sti�ness of the problem. More gen-erally, when the spe
trum of the 
oeÆ
ient matrix in (1.24) is 
ontained inC�, the problem is sti� when the eigenvalues of A have very di�erent realparts.Looking at the solution 
urves of a sti� s
alar equation, one often re
og-nize a smooth \slowly varying" solution (the steady-state solution) whi
h isapproa
hed by the other ones after a rapid transient phase. A well-knownexample, showing su
h behaviour, is provided by the following equation,[89℄: y0(t) = �(y(t)� �(t)) + �0(t); y(t0) = y0; (1.25)where �� 0 and �(t) is a slowly varying smooth fun
tion. It is not diÆ
ultto verify that the 
orresponding solution 
urves are given byy(t) = (y0 � �(t0))e�(t�t0) + �(t);(see the plots in Figure 1.1 for the 
ase � = �50 and �(t) = 
os(t)). Thedi�erent time s
ales, giving rise to the phenomenon of sti�ness, are re
og-nized to be j�j, whi
h measure the rapidity at whi
h �(t) is approa
hed bythe other solutions, and a \measure" of the rate at whi
h the solution �(t)varies. The latter, in turn, often determines the required length of the inte-gration interval for obtaining a 
omplete information about the behaviourof the solution.Probably, the diÆ
ulties in formulating a unifying de�nition of \sti�problems" are mainly due to the fa
t that it is better understood whatgoes wrong when numeri
al methods, not designed for su
h problems, areused to try to solve them. In the �rst line of the �rst se
tion of the Hairerand Wanner's book [59℄, one of the most 
omprehensive on the subje
t, theauthors write:\Sti� equations are problems for whi
h expli
it methods don't work".
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Figure 1.1: Solution 
urves for (1.25) with � = �50 and �(t) = 
os(t).Obviously, this is only an empiri
al de�nition and, 
onsequently, not math-emati
ally a

eptable. Nevertheless, the authors refer to expli
it methodssin
e they always have a bounded stability domain. Moreover, an immediate
onsequen
e of the di�erent time s
ales present in a sti� ODE is that su
hequation are best solved, both in terms of eÆ
ien
y and of error a

umula-tion, when an appropriate strategy for the de�nition of the dis
rete partitionis adopted. On the base of the required a

ura
y for the numeri
al solution,the above strategy has to be able to sele
t the most suitable value for thestepsize h. In parti
ular, this implies the need for a �ne mesh during thetransient phase and the possibility of using a mu
h more 
oarser mesh in thestationary one. The previous arguments, however, are based only on 
on-siderations 
on
erning the required a

ura
y for the numeri
al solution. Onthe other hand, when a method with a bounded stability domain is used, the
onstraints on the stepsize, arising from the la
k of stability properties, haveto be respe
ted by the stepsize variation strategy. In parti
ular, when su
htypes of methods are used to integrate sti� ODEs, the stability properties ofthe method often for
e the use of stepsizes whi
h, in the stationary phase,are \unrealisti
ally" small with respe
t to the smoothness of the 
ontinuoussolution. For this reason, the numeri
al approximation of sti� equationsrequires the use of A-stable, and therefore impli
it, methods.



16 CHAPTER 1. INTRODUCTION



Chapter 2The implementation issue ofBlo
k Impli
it MethodsIn the re
ent years the implementation issue has be
ome fo
al for numeri
almethods for ODEs. Indeed, sin
e a number of stable, high order methodsare 
urrently available, one of the main reasons to use a method in pla
e ofanother is given by its 
omputational 
ost. In parti
ular, for blo
k impli
itmethods the main problem to be addressed for an eÆ
ient implementation
onsists in the de�nition of \suitable" strategies for the solution of the dis-
rete problem generated at ea
h step of integration. The present 
hapteris devoted to dis
uss the most eÆ
ient te
hniques 
urrently used for su
hpurpose.2.1 Introdu
tionWhen applied to the IVP(y0(t) = f(t; y(t)); t 2 [t0; T ℄;y(t0) = y0 2 IRm; (2.1)an r-Blo
k Impli
it Method generates, at ea
h step of integration n, a dis-
rete problem in the form:F (yn) � A
 Imyn � hB 
 Imfn � �n = 0; (2.2)where the matri
es A;B 2 IRr�r de�ne the method, Im is the identitymatrix of order m, h is the stepsize and the ve
tor �n only depends on17



18 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.already known quantities. The blo
k ve
torsyn = 0B� y1n...yrn 1CA ; fn = 0B� f1n...frn 1CA ; fin = f(tin; yin);
ontain r values of the dis
rete solution or the internal stage values of thestep.Instan
es of methods falling in this 
lass are RK methods, a number ofGeneral Linear methods [35, 58, 59℄ and, more re
ently, blo
k BVMs [20℄.In the following, we shall always assume the two matri
es A and B tobe nonsingular so that the underlying method is an impli
it one. Morepre
isely, in the 
ase of RK methods with expli
it stages, like the Lobattos
hemes, r equals the number of impli
it stages and the matrix B is obtainedby 
onsidering only the 
orresponding 
oeÆ
ients, [68℄.First of all, it must be observed that in (2.2) a multipli
ation from theleft by �A�1 
 Im� of both sides of the equation allows to normalize the�rst 
oeÆ
ient matrix to the identity. Nevertheless, sometimes it 
ould bepreferable to keep the more general formulation (2.2), as in the 
ase, for ex-ample, of blo
k BVMs [20℄. Moreover, as dis
ussed in full details in the next
hapter, the more general formulation in (2.2) presents some advantages indis
ussing the implementation issues of the method.For a nonlinear di�erential equation, the implementation of blo
k im-pli
it methods requires, therefore, the solution of an algebrai
 equation ofsize rm at ea
h step of integration. This is the reason for whi
h, for manyyears, it was generally believed that, in spite of their better stability prop-erties, blo
k impli
it methods would never be 
ompetitive with respe
t, forexample, to A(�)-stable LMF with � � �2 .As a 
onsequen
e, the problem of devising eÆ
ient algorithms for thesolution of (2.2) has been extensively studied for various 
lasses of methods(see, e.g.,[4, 14, 33, 68, 69℄), also with referen
e to the implementation ondi�erent 
omputer platform [25, 52, 53℄, and this is still an a
tive �eld ofresear
h in the area. In the sequel, for sake of simpli
ity, the step index nwill be always omitted sin
e the reported analysis equally applies to ea
hstep of integration. Therefore, without loss of generality, we 
an analyze the�rst step of integration.During the early time of sti� 
omputation people were usually think-ing of a simple �xed-point iteration to solve (2.2). Nevertheless a similar
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h essentially transforms the method into an expli
it one, thus de-stroying the good stability properties of the underlying impli
it one.Then, the use of pro
edures based on Newton's type methods, in par-ti
ular those based on the simpli�ed Newton method, and pro
edures basedon suitable nonlinear splittings for the nonlinear equation (2.2) has be
omea 
ommon pra
ti
e. The following se
tions are devoted to a review of su
himplementation te
hniques.2.2 The simpli�ed Newton methodThe simpli�ed Newton method is 
hara
terized by the following approxima-tion of the Ja
obian matrix of the fun
tion F in (2.2)JF � (A
 Im � hB 
 J0);where J0 � �f�y (t0; y0)denotes the Ja
obian matrix of f at the initial point of the step. The dis
reteproblem (2.2) is, therefore, solved by means of the following iteration:((A
 Im � hB 
 J0)�y(i) = �F (y(i));y(i+1) = y(i) +�y(i); i = 0; 1; : : : : (2.3)Obviously, the 
onstant 
oeÆ
ient matrix in (2.3),M � (A
 Im � hB 
 J0); (2.4)has to be evaluated only on
e and, in addition, this requires only one eval-uation of the Ja
obian matrix of f . In spite of this, the use of dire
t solversfor solving the linear systems in (2.3) turns out to be extremely 
ostly sin
ethe fa
torization of the rm�rm matrixM is required. If we do not 
onsider(for sake of simpli
ity) the terms due to fun
tion and Ja
obian evaluationsthen, at least for large-size problems, the leading term in the arithmeti

omplexity of the iteration (2.3) is given by 23(r �m)3 
ops, where we 
ountas one 
op one of the four basi
 
oating point binary operations with realquantities. This 
ost is 
onsiderably higher if 
ompared, for example, withthe 
omplexity of the pro
edure for the solution of the dis
rete problem gen-erated by a LMF.The �rst attempts to redu
e the 
ost for the solution of the Newton sys-tems (2.3) were based on the idea of using methods with simple stru
tured



20 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.matri
es A and B. In parti
ular, sin
e for RK methods A = Ir, see (1.19),the resear
h was fo
used on methods with a lower triangular 
oeÆ
ient ma-trix B, [3, 83℄. The obtained methods have been variously named a
rossthe years. Today, it is usual to 
all them diagonally impli
it Runge-Kuttamethods (DIRK) or, in the 
ase of equal diagonal entries, singly diagonallyimpli
it Runge-Kutta methods (SDIRK). The above methods have the obvi-ous advantage of allowing to solve the linear systems in (2.3) in r su

essivestages with only m-dimensional systems to be solved at ea
h stage. How-ever, they also have disadvantages. One of the most important is givenby their low stage order whi
h, in view of the order redu
tion phenomenon(see [89℄), make them not really appropriate for the solution of sti� problems.A

ording to the general ways of solving linear systems, that is by usingdire
t or iterative pro
edures, it is possible to 
lassify the 
urrently usedalgorithms into the following main 
ategories:� diagonalization (or blo
k diagonalization) of the matri
es A and B;� de�nition of suitable linear splittings for the systems in (2.3);The following se
tions are devoted to dis
uss the two possibilities.2.2.1 DiagonalizationThe algorithm des
ribed in the present se
tion has been proposed by But
herin his 1976 paper [33℄ on the implementation of impli
it RK methods. Asalready observed, ea
h Newton iteration in (2.3) requires the solution of thelinear system (the index i has been omitted for simpli
ity),M�y = �F (y); (2.5)where, for RK methods (see (2.4)), the matrix M be
omesM = Ir 
 Im � hB 
 J0:The main idea of the algorithm proposed in [33℄ has been that of usingthe Jordan form of the matrix B to de�ne two nonsingular r� r matri
es Pand Q su
h thatPQ = 0BBB� 1"2 1. . . . . ."r 1 1CCCA ; PBQ = 0BBB� �1 �2 . . . �r 1CCCA :Here "i = 0; 1 while �(B) = f�1; : : : ; �rg represents the spe
trum of B. Thesystem (2.5) was then transformed into the following equivalent one,



2.2. THE SIMPLIFIED NEWTON METHOD 21~M�~y = � ~F (y); (2.6)where �~y � �Q�1 
 Im��y; ~F (y) � (P 
 Im)F (y); (2.7)~M � (PQ)
 Im � h(PBQ)
 J0: (2.8)The matrix ~M is therefore 
omposed by diagonal blo
ks of the formIm�h�J0 with possibly 
omplex � and subdiagonal blo
ks of either the zeroor the identity matrix. Sin
e ea
h of the transformations in (2.7) requiresO(m) operations, the overall advantage, in terms of arithmeti
 
omplexity,of this pro
edure is determined by the spe
trum of the matrix B. In parti
-ular, the higher the number of real and multiple eigenvalues of the matrix B,the lower the 
omputational 
ost for solving (2.6). In order to take full ad-vantage from the But
her pro
edure, in [22, 84℄ the so-
alled singly impli
itRunge-Kutta methods (SIRKs), namely methods with a real one-point spe
-trum matrix B, were introdu
ed. However, the obtained methods were lessfavourable than Runge-Kutta methods with 
omplex eigenvalues in termsof a

ura
y and stability properties.A slight di�erent pro
edure is the one 
urrently used in the RADAU5and RADAU 
odes both implementing the Radau IIA impli
it Runge-Kuttamethods [59℄. The basi
 idea, used in su
h 
odes, essentially 
onsists inredu
ing B to a blo
k diagonal matrix by means of a real similarity trans-formation. That is T�1BT = � � 0B� �1 . . . �s 1CA ; (2.9)where �i = �i, if �i is a real eigenvalue of B, while�i = � � ��� � � ;if �i = �� i� is a 
omplex 
onjugate pair. In addition, the linear subsystemarising in (2.6), in 
orresponden
e of a 
omplex 
onjugate pair �� i�, givenby, � Im � h� J0 h� J0�h� J0 Im � h� J0 �� u1u2 � = � z1z2 � ;is transformed in the following equivalent m-dimensional 
omplex one:�(Im � h� J0)� ih� J0�(u1 + iu2) = (z1 + i z2):



22 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.It follows that, if the matrix B has k distin
t real eigenvalues and l =(r� k)=2 distin
t 
onjugate pairs, the 
orresponding pro
edure requires thefa
torization of k m�m real matri
es and l 
omplex matri
es of the samedimension. As a 
onsequen
e, sin
e the 
omplexity for the fa
torization of
omplex matri
es is approximately 4 times the 
omplexity for the fa
toriza-tion of real matri
es, the leading term in the arithmeti
 
omplexity of theoverall pro
edure is approximately given by23 (k + 4l)m3 
ops:As an example, the spe
trum of the matrixB 
orresponding to the Radau IIAmethod of order 5 is 
omposed by one real eigenvalue and one 
omplex 
on-jugate pair. In su
h a 
ase, when 
ompared to the 23 (3 � m)3 operationsrequired for the fa
torization of M in (2.4), a fa
tor of about 5 has beengained.The approa
h dis
ussed in the present se
tion is very popular for RKmethods sin
e the matrix A in (2.2) is the identity matrix. The general-ization to blo
k methods with nonsingular matri
es A and B requires su
hmatri
es to be diagonalizable by means of the same similarity transforma-tion.However, a severe drawba
k of the des
ribed approa
h 
onsists in thepossible ill-
onditioning of the matrix T in (2.9). This is espe
ially true formethods with large blo
ksize r (see, for example, [9, 10℄).2.2.2 Linear SplittingsThe main idea of the pro
edure des
ribed in this se
tion 
onsists in usingan iterative solver for the Newton systems in (2.3). More pre
isely, insteadof solving the linear system for �y(i),(A
 Im � hB 
 J0)�y(i) = �F (y(i)); (2.10)required by the outer (or primary) iteration in (2.3), the following inner (orse
ondary) iteration is applied(A� 
 Im � hB� 
 J0)�y(j;i) =�(A� �A)
 Im � h(B� �B)
 J0��y(j�1;i) � F (y(i)); (2.11)j = 1; : : : ; �; where � is a suitable, possibly small, integer while A� and B�



2.2. THE SIMPLIFIED NEWTON METHOD 23are two nonsingular r � r matri
es. The ve
tor �y(�;i) is then adopted asthe solution of (2.10) and the numeri
al solution is updated as (see (2.3)),y(i+1) = y(i) +�y(�;i):Con
erning the 
hoi
e of the splitting matri
es A� and B� in (2.11), the
ompetitiveness of the inner iteration is the 
ommonly used 
riterion fortheir de�nition. As a 
onsequen
e, it must be observed, �rst of all, that asimple stru
ture is a ne
essary requirement for them, sin
e the arithmeti

omplexity for the solution of the linear systems in (2.11) is expe
ted to bemu
h lower than that of the original one.However, this is 
ertainly not enough for 
ompetitiveness. As matter offa
t, the eÆ
ien
y of su
h inner-outer iteration s
heme stri
tly depends onthe 
onvergen
e properties of the inner iteration. Con
erning this point, the
ommon pra
ti
e [68, 69℄ is to 
arry out a linear analysis of 
onvergen
e ofthe iteration, thus studying its behaviour on the linear problemy0(t) = J y(t):For su
h problem, the simpli�ed Newton method globally 
onverges in oneiteration. It follows that one has to 
onsider only the behaviour of the inneriteration. Moreover, sin
e the iteration matrix in (2.11) is a fun
tion ofthe Ja
obian matrix J , 
onvergen
e is determined by the behaviour of theiteration matrix in 
orresponden
e of ea
h eigenvalue � of J . The s
alar testequation y0(t) = �y(t); � 2 C; (2.12)is, therefore, always adopted as the referen
e problem for the linear analysisof 
onvergen
e. In su
h a 
ase, by setting, as usual,q = h�;the iteration (2.11) will 
onverge to the solution of (2.10) provided that thespe
tral radius, say �(q), of the iteration matrix or ampli�
ation matrix,Z(q) � Ir � (A� � qB�)�1(A� qB); (2.13)is smaller than 1. The region of 
onvergen
e of the iteration is thereforede�ned as � = fq 2 C : �(q) < 1g: (2.14)Obviously, it would be desirable the region of 
onvergen
e to be as large aspossible and the ideal 
ase would be that of a globally 
onvergent inner iter-ation. Nevertheless, this 
annot be a

omplished by using 
onstant splitting
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es A� and B� with a suitably \simple" stru
ture. The region � is,therefore, always stri
tly 
ontained in C. A �rst reasonable requirement,that is always demanded, is the 
onvergen
e of the iteration for all values ofq � 0. This is the 
ase, for example, when the spe
tral radius �(q) is su
hthat �(0) = 0; �(q) analyti
al in B(0; "); (2.15)where B(0; ") is a suitable neighbourhood of the origin. Under su
h assump-tions, in fa
t, for ea
h values of �, the pro
edure is e�e
tive provided asuÆ
iently small stepsize h is used. Moreover, the assumptions (2.15) on�(q) do not impose severe restri
tions on the possible 
hoi
es of the split-ting matri
es. For example, they obviously hold true when A� = A. In thesequel, therefore, we shall always assume them to be veri�ed.Evidently, when the 
ontinuous problem is a sti� di�erential equation,additional requirements on the 
onvergen
e of the inner iteration are ne
es-sary. As a matter of fa
t, the use of A-stable methods has been preferredsin
e their stability properties do not impose any restri
tion on the stepsizeh to be used when Re(�) < 0. In order not to introdu
e restri
tions on h atthe implementation level of the method, it is therefore desirable the use ofiterative pro
edures 
onverging for all values of q 2 C�. These argumentslead to the following de�nitions.De�nition 2.1 The iteration (2.11) is said to be A-
onvergent ifC� � �:Similarly, the iteration is said to be A(�)-
onvergent if the se
tor C�, de�nedin (1.17), is 
ontained in �.Clearly, the iteration (2.11) 
annot beA-
onvergent if the pen
ilA��qB�is singular for some values of q 2 C�. Therefore, the following 
ondition onthe spe
trum of the matrix pen
il is a pre-requirement for the A-
onvergen
eof the iteration:�(A�; B�) � fq 2 C : det(A� � qB�) = 0g � C+: (2.16)The splitting matri
es are always 
hosen in order to satisfy this requirement.Moreover, when (2.16) holds true, �(q) is analyti
al in C� so that, by themaximum-modulus prin
iple, A-
onvergen
e is equivalent to require�� � maxarg(q)=�2 �(q) < 1: (2.17)The parameter �� is 
alled themaximum ampli�
ation fa
tor of the iteration.This is a �rst important evaluation parameter measuring the 
onvergen
e



2.2. THE SIMPLIFIED NEWTON METHOD 25properties of the iteration. In fa
t, sin
e it refers to the worst 
ase situ-ation, when Re(�) < 0, it serves as an indi
ator of the robustness of thepro
edure. Nevertheless, when sti� di�erential equations are to be solved,one has to 
onsider that sti� and nonsti� modes are present in the iterationerror 
omponents. Therefore, it is also very important to 
onsider the be-haviour of the iteration for values of q 
lose to 0 and values of q approa
hingin�nity. Then, the following parameters are de�ned to measure additional
onvergen
e properties of the iteration:� the nonsti� ampli�
ation fa
tor,~� � limq!0 �(q)jqj ; (2.18)� the sti� ampli�
ation fa
tor,�(1) � limq!1�(q): (2.19)Con
erning the nonsti� ampli�
ation fa
tor, it must be stressed that, sin
eq � 0 ) �(q) � ~� jqj;a moderate value for ~� would be desirable. Regarding the sti� ampli�
ationfa
tor, instead, in [68, 69℄ the authors underlined the fa
t that a strongdamping of the sti� error 
omponents is 
ru
ial for a fast overall 
onvergen
eof the iteration. The 
ompetitiveness of the algorithm requires, therefore,a small valued or, possibly, a zero valued, parameter �(1): This lead to thefollowing de�nitionDe�nition 2.2 An A-
onvergent iteration su
h that �(1) = 0 is 
alled L-
onvergent.In some 
ases, the previously de�ned ampli�
ation fa
tors may not pro-vide suÆ
ient information. This often happens when the matrix Z(q) in(2.13) is highly nonnormal so that parameters de�ned trough the eigenval-ues of the involved matri
es do not give insight into the behaviour of theiteration during the initial phase of the pro
edure. The so-
alled averagedampli�
ation fa
tors, 
orresponding to � inner iterations, are therefore also
onsidered. In detail, by 
onsidering a suitable matrix norm k � k, and byde�ning, ��(q) � kZ(q)�k 1� ;the averaged ampli�
ation fa
tors are de�ned as,��� � suparg(q)=�2 ��(q); ~�� � limq!0 ��(q)jqj ; �(1)� � limq!1 ��(q): (2.20)



26 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.We 
on
lude the present se
tion with a dis
ussion of some of the re
entlyproposed linear splittings for the solution of the Newton linear systems in(2.3). The main idea used in the derivation of the splitting matri
es hasbeen that of de�ning B� as a lower triangular matrix L obtained from asuitable fa
torization of B. Con
erning the matrix A no splitting has beenyet 
onsidered for it (i.e. A� � A), sin
e it has always a very simple (and
onvenient) stru
ture.Some of su
h s
hemes were proposed by Van der Houwen and De Swartin [68, 69℄. In parti
ular, for the Parallel Triangularly Impli
it Runge-Kutta(PTIRK) method the matrix L was de�ned as the lower triangular fa
tor inthe Crout LU de
omposition of B, i.e.B = LU;whereL = 0BBBB� `1... `2... . . .� � � � � � � `r
1CCCCA ; U = 0BBBB� 1 � � � � � � �1 .... . . ...1

1CCCCA : (2.21)The unit diagonal entries on the main diagonal of U determines theequivalen
e between the A-
onvergen
e and the L-
onvergen
e properties ofthe iteration. This 
an be easily seen by 
onsidering that, when A� = A = Irand sin
e B� = L, the iteration matrix (2.13) redu
es toZ(q) = q(Ir � qL)�1(B � L) = q(Ir � qL)�1L(U � Ir):Consequently, q !1 ) Z(q)! (Ir � U) ; (2.22)and, see (2.19), �(1) � limq!1�(q) = � (Ir � U) = 0: (2.23)Moreover, see (2.20), the sti� 
omponents are removed from the iterationerror within r iterations, i.e. �(1)r = 0. In addition, for RK methods basedon 
ollo
ation with positive and distin
t abs
issae, the authors proved theA-
onvergen
e of the iteration, see also [66℄. The asymptoti
 ampli�
ationfa
tors of the PTIRK method for some RK methods are listed in Table 2.1.



2.2. THE SIMPLIFIED NEWTON METHOD 27Table 2.1: Asymptoti
 ampli�
ation fa
tors for the PTIRK methodMethod Order r �� ~� �(1)Gauss 4 2 0.14 0.08 0Radau IIA 3 2 0.18 0.15 05 3 0.37 0.19 07 4 0.50 0.17 0Lobatto IIIA 4 2 0.14 0.08 06 3 0.30 0.12 0Con
erning the arithmeti
 
omplexity of the iteration, the diagonal entries inL were found to be distin
t. As a 
onsequen
e, see (2.21), the 
orrespondinginner-outer iteration (2.10)-(2.11) requires the fa
torization of the followingm�m matri
es, (Im � h`iJ0); i = 1; : : : ; r:However, in [68℄ the authors do not 
onsider this as a severe limitation forthe algorithm sin
e all the above fa
torizations are ea
h other independentand they were 
on
erned with a parallel implementation on r pro
essors ofthe algorithm.A relevant improvement on the des
ribed pro
edure for an eÆ
ient im-plementation on sequential 
omputers was found by Amodio and Brugnanoin [4℄ for methods having the �rst 
oeÆ
ient matrix A equal to the identity.In fa
t, the authors proved that, whenever det(B) > 0, as it is the 
ase foran A-stable method with A = Ir, a transformation matrix T exists su
hthat B̂ � TBT�1 = LU;where L and U are de�ned a

ording to (2.21), with`1 = `2 = : : : = `r = det(B) 1r :The authors, therefore, proposed to solve the linear systems in the Newtoniteration (2.10) by �rst performing the variable transformationŷ(i) = (T 
 Im)y(i); (2.24)whi
h requires O(m) operations, and then, for the obtained linear system,�Ir 
 Im � hB̂ 
 J0��ŷ(i) = � (T 
 Im)F (y(i));



28 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.by using an inner iteration with splitting matri
es A� = Ir and B� = L.The leading term in the arithmeti
 
omplexity of su
h iteration was, there-fore, redu
ed to 23m3 
ops required for the fa
torization of only one m�mmatrix. The proof of 
ompetitiveness, with respe
t to the PTIRK method,was 
ompleted by means of a 
omparison based on the ampli�
ation fa
-tors of the two iterations whi
h, for many RK methods, shows 
omparable
onvergen
e properties, [4℄.2.3 Nonlinear splittingsThe roles of the primary and se
ondary iteration in (2.10)-(2.11) may beex
hanged. As matter of fa
t, one may think of �rst performing a nonlinearsplitting on (2.2) to obtain a \simple stru
tured" system to be solved byan appropriate method for nonlinear equations. The most famous nonlineariterative pro
esses are of 
ourse the extensions to nonlinear systems of thewell-known iterative methods, namely the Ja
obi, Gauss-Seidel and SORmethods. Convergen
e results for these s
hemes may be found in [86℄.In parti
ular, for equation (2.2), a nonlinear blo
k-splitting pro
ess isoften applied. This is obtained from the following de
ompositions of thematri
es A and B A = A� �RA; B = B� �RB; (2.25)where A� and B� are nonsingular matri
es with a \simple" stru
ture. Thenonlinear equation (2.2) is then solved by means of the following iterationA� 
 Imy(i) � hB� 
 Imf (i)= (A� �A)
 Imy(i�1) � h(B� �B)
 Imf (i�1) + �; (2.26)i = 1; : : : ; �. At ea
h iteration, the equation (2.26) still represents a nonlin-ear system for y(i) 2 IRrm. A Newton type method is always adopted forits solution and the most widely used is, as before, the simpli�ed Newtonmethod. However, sin
e the matri
es A� and B� are 
hosen with a simplestru
ture, the arising linear systems are mu
h more 
heaply solvable. As anexample, the matri
es A� and B� are 
hosen lower triangular with 
onstantentries on the main diagonal, so that the simpli�ed Newton iteration forsolving (2.26) only requires to fa
tor one m�m real matrix.Obviously, for ea
h iteration in (2.26), one may iterate the simpli�edNewton method until 
onvergen
e. However, in many 
ases a single-inneriteration has been found to perform better and the 
orresponding pro
esshas been 
alled one-step splitting-Newton pro
ess, [71℄.



2.3. NONLINEAR SPLITTINGS 29We observe that, when the 
ontinuous problem is a linear di�erentialequation with 
onstant 
oeÆ
ient matrix, the one-step splitting-Newtonpro
ess is equivalent to the Newton-splitting one des
ribed in the previ-ous se
tion. This is be
ause, the simpli�ed Newton method exa
tly solves(2.2) and (2.26) in one iteration. It follows that the results obtained withthe linear analysis of 
onvergen
e applied to (2.11) 
an be dire
tly extendedto (2.26). In parti
ular, for the test equation (2.12), the iteration matrix
orresponding to (2.26) 
oin
ides with the one spe
i�ed in (2.13).A nonlinear splitting has been used, for example, in the 
ode GAM im-plementing methods in the family of BVMs, namely the Generalized AdamsMethods of orders 3,5,7,9, [20, 71℄. The �rst 
oeÆ
ient matrix of su
h meth-ods is given by A = 0BBB� 1�1 1. . . . . .�1 1 1CCCAr�r :Consequently, the �rst splitting matrix A� has been 
hosen equal to A.Con
erning the matrix B�, the fa
torizationB = LVhas been used to de�ne B� � L. Here L is a lower triangular matrix withdiagonal entries all equal to ` = det(B) 1r ;and V is a real matrix su
h that det(V ) = 1. More pre
isely, see (2.22),sin
e as q !1, the iteration matrix (2.13) approa
hesIr � V = Ir � L�1B;the stri
tly lower triangular entries in L were found by means of a suitableminimization te
hnique over the quantities�(Ir � L�1B); k(L�1B)rk 1r :The asymptoti
 ampli�
ation fa
tors of the iteration used in GAM havebeen reported in Table 2.2. As one 
an seen from the last two rows, theiterations 
orresponding to the last two higher order method were not A-
onvergent, though A(�)-
onvergent with � � �=2.



30 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.Table 2.2: Asymptoti
 ampli�
ation fa
tors for the iteration used in the
ode GAMOrder r �� ��(�=2:14) ��(�=2:64) ~� �(1)3 4 0.2562 0.2305 0.1806 0.1819 0.00195 6 0.5929 0.5326 0.4173 0.2585 0.02127 8 1.0048 0.9007 0.7038 0.3064 0.06299 9 1.3563 1.2113 0.9390 0.3014 0.07532.4 RemarksThe approa
h des
ribed in Se
tion 2.3 may be very 
ompetitive providedthat suitable matri
es A� and B� 
an be obtained. Nevertheless, when sat-isfa
tory 
onvergen
e properties are required, their derivation may be verydiÆ
ult. In parti
ular, many diÆ
ulties have been en
ountered when a zero-valued sti� ampli�
ation fa
tor is required in order to make the iterationwell-suited for the solution of dis
rete problems 
orresponding to the solu-tion of sti� di�erential equations.In the next 
hapter, it will be shown how the use of blended s
hemesallows to \naturally" derive iterative pro
edures with \low" arithmeti
 
om-plexity per step and very \good" 
onvergen
e properties.



Chapter 3Blended Impli
it MethodsBlended Impli
it Methods are methods whi
h, in addition to 
lassi
al re-quirement, su
h as high order of a

ura
y and \good" stability properties,do have favourable properties from the implementation point of view. Theyare obtained by means of a suitable 
ombination of two 
omponent methods,so that eÆ
ient nonlinear splittings are naturally de�ned for the solution ofthe obtained dis
rete problem.In the past years, many attempts have been made to derive numeri-
al methods for ODEs as the 
ombination of two methods. A well-knownexample is the popular �-method. Additional examples are provided bythe Blended Linear Multistep Formulas of Skeel and Kong [100℄ and by theBlended Blo
k BVMs of Brugnano [14℄. However, slight di�erent aims werepursued in doing this:� in the 
ase of the �-method and of the blended linear multistep for-mulas, the only aim was that of getting a method with better stabilityproperties than the two 
omponent ones;� in the 
ase of blended blo
k BVMs, the above aim was 
oupled withthat of getting an eÆ
ient implementation of the resulting method.Blended Impli
it Methods, instead, are obtained by means of a suitable
ombination of dis
rete problems derived from the same basi
 method sothat, with the latter, they share the same a

ura
y and stability properties.For this reason, we shall also speak about the blended implementation of thebasi
 method.3.1 Blended Implementation of Blo
k Impli
it Meth-odsIn order to unne
essarily 
ompli
ate the notation and to 
arry out the linearanalysis of 
onvergen
e, we shall 
onsider the appli
ation of the methods to31



32 CHAPTER 3. BLENDED IMPLICIT METHODSthe 
lassi
al test equationy0 = �y; y(t0) = y0; Re(�) < 0; (3.1)for whi
h, by setting as usual q = h�, the dis
rete problem (2.2), at step n,assumes the form: (A� qB)yn = �n: (3.2)We observe that the solution of the previous equation is not a�e
ted byleft-multipli
ation by A�1 or B�1 of both sides of the equation,(Ir � qA�1B)yn = A�1�n; (B�1A� qIr)yn = B�1�n: (3.3)The basi
 idea for the blended implementation of the method (3.2) relieson the fa
t that, by 
ombining equations in the form (3.3), the dis
retesolution does not 
hange. In more detail, let A1 be a nonsingular matrixwith a \simple" stru
ture. By multiplying on the left both sides of the �rstequation in (3.3), we then obtain(A1 � qB1)yn = �1n; (3.4)where B1 = A1A�1B; �1n = A1A�1�n: (3.5)Similarly, by 
onsidering another nonsingular and \simple stru
tured" ma-trix B2, by multiplying on the left the se
ond equation in (3.3) we obtain(A2 � qB2)y = �2n; (3.6)where A2 = B2B�1A; �2n = B2B�1�n: (3.7)Obviously, both equations (3.4) and (3.6) do have the same solution asequation (3.2), sin
e they are derived from the same method. In additionto this, let us de�ne a suitable weighting fun
tion �(q) su
h that�(0) = I; �(q)! O; as q !1; (3.8)being, hereafter, I and O the r�r identity and the zero matrix respe
tively.Then, also the following equation,



3.1. BLENDED IMPLEMENTATION OF BLOCK METHODS 33M(q)yn � �n(q) � (A(q)� qB(q))yn � �n(q) = 0; (3.9)where A(q) � �(q)A1 + (I � �(q))A2;B(q) � �(q)B1 + (I � �(q))B2;�n(q) � �(q)�1n + (I � �(q))�2n; (3.10)does have the same solution as (3.2). Equation (3.9) de�nes a blended im-pli
it method asso
iated with the blo
k method (3.2), due to the fa
t thatthe dis
rete problem is obtained as the \blending" of two equivalent formsof the same blo
k method. We observe that, sin
e the numeri
al solutionhas not been a�e
ted, the blended impli
it method (3.9) does have the samea

ura
y and stability properties of the method in (3.2) .The key point 
on
erning a blended impli
it method is that its stru
turenaturally indu
es the 
hoi
e of a nonlinear splitting for iteratively solving(3.9). As matter of fa
t, from (3.8), one easily veri�es that the matrix M(q)in (3.9) is su
h that:� M(q) = A1 +O(q) � A1; when q � 0;� M(q) = �q �B2 +O(q�1)� � �qB2; as q !1.Consequently, instead of solving (3.9), one may think to solve iterativelyN(q)y(i+1)n = (N(q)�M(q))y(i)n + �n(q); i = 0; 1; : : : ; (3.11)where N(q) � A1 � qB2: (3.12)This is be
auseN(0) =M(0); and N(q) �M(q); when jqj � 1: (3.13)We shall 
all (3.11) the blended iteration asso
iated with the blended method(3.9). The 
orresponding iteration matrix is then given by



34 CHAPTER 3. BLENDED IMPLICIT METHODSZ(q) � N(q)�1 (N(q)�M(q)) = I �N(q)�1M(q); (3.14)and the iteration will 
onverge if and only if the spe
tral radius �(q) of Z(q)is smaller than 1. We observe that, from (3.13), one immediately obtains,Z(0) = O; Z(q)! O; as q !1: (3.15)Consequently, see (2.19),�(0) = 0; �(1) � limq!1�(q) = 0: (3.16)Moreover, see (2.20), the se
ond property in (3.15) implies that�(1)� = 0; for all � � 1;so that the iteration (3.9) is parti
ularly well-suited for sti� problems.It must be stressed that the properties (3.16) of the blended iterationdo not depend on the parti
ular 
hoi
e of the matri
es A1 and B2 used in(3.4) and (3.6). They are only due to the blended implementation of themethod, namely to the parti
ular stru
ture of the matri
es M(q) and N(q)in (3.9) and (3.12). As a 
onsequen
e, additional 
onvergen
e properties ofthe iteration may be improved by means of an appropriate 
hoi
e of the twomatri
es A1 and B2. As an example, a possible 
riterion to be adopted fortheir de�nition is the minimization of the maximum ampli�
ation fa
tor ��of the iteration in order to possibly obtain an A-
onvergent (and, then, L-
onvergent) iteration. Con
erning this point, in the sequel, we shall alwaysassume the weighting fun
tion �(q) to be analyti
al in C� and the spe
trumof the matrix pen
il (3.12) to be 
ontained in C+, so that the maximumampli�
ation fa
tor of the blended iteration is given by�� = maxx�0 �(ix); (3.17)where, as usual, i denotes the imaginary unit. Moreover, we will assumethe iteration matrix to be well-de�ned in a neighbourhood of the origin.Consequently, from the �rst equation in (3.16), it follows that�(q) � ~� jqj; when q � 0; (3.18)where ~� is the nonsti� ampli�
ation fa
tor de�ned in (2.18).



3.2. CHOICE OF THE COMPONENT METHODS 35Con
erning the two \simple stru
tured" matri
es A1 and B2, we have
onsidered the following 
hoi
e, though di�erent ones are possible,A1 = I + LA; B2 = 
I + LB ; (3.19)where LA and LB are stri
tly lower triangular matri
es, and 
 is a positiveparameter. With su
h assumptions, we have that the linear systems requiredby the iteration (3.11) are lower triangular (blo
k lower triangular whenthe method is applied to a system of equations). Moreover, in the 
ase ofsystems, one only needs to fa
tor one matrix having the same size of the
ontinuous problem.Finally, in order to keep low the 
omputational 
ost, the weight fun
tion�(q) is de�ned as �(q) � diag(N(q))�1 = (I � q
I)�1; (3.20)so that the properties (3.8) are satis�ed, the iteration (3.11) is well-de�nedfor all q 2 C�, and, in the 
ase of systems, no additional fa
torizations arerequired, besides the one needed for N(q).With su
h assumptions, the only key-point whi
h we need to 
larify arethe following ones:1. the 
hoi
e of an appropriate basi
 method (3.2),2. the 
hoi
e of 
orresponding \simple stru
tured" matri
es A1 and B2in (3.19) (the remaining matri
es B1 and A2 being de�ned by (3.5)and (3.7), respe
tively).The �rst point will be dis
ussed in the next se
tion, whereas the se
ondone will be addressed in Se
tion 3.3.3.2 Choi
e of the 
omponent methodsLet now introdu
e the methods that we shall implement in blended form, a
-
ording to what has been said in the previous se
tion. Even though di�erent
hoi
es are possible, we have 
onsidered methods whi
h have been alreadyintrodu
ed in the past years by Watts and Shampine [104℄. Su
h methodsare 
hara
terized by the fa
t that ea
h one of the r equations whi
h de�nethe method itself 
orresponds to a linear multistep formula with the sameorder of a

ura
y. The numeri
al solution is therefore advan
ed by a blo
kof r equally a

urate new values at a time approximating the solution on aset of r uniformly distributed mesh-points. In more details, if we assume, for
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ity, the following uniform partition for the entire integration interval[t0; T ℄: tk = t0 + k � h; k = 0; : : : ; N � lr; h = T � t0N ; (3.21)then for ea
h n multiple of r the blo
k method provides the following rapproximations to y(t),yn+i � y(tn+i); i = 1; : : : ; r;starting from the approximation yn to y(tn). Consequently, for theoreti
alpurposes, the blo
k pro
edure may be 
onsider to be a one-step method.As a 
onsequen
e, su
h s
hemes posses features of both RK methods andLMF. In parti
ular, with RK methods, they share good stability propertiesfor high order methods and a stepsize variation strategy typi
al of one-steps
hemes (whi
h is simpler than those for LMF). With LMF, instead, theyshare the same simple representation of the lo
al trun
ation error, whi
hallows to de�ne eÆ
ient strategies for a variable-order implementation ofthe methods.We now dis
uss how blo
k methods with \good" 
lassi
al requirements
an be obtained. Even though the methods 
ould be also derived in theframework of Runge-Kutta methods (by means of the \V -transform" [22,23, 59℄) we prefer to use the same framework originally used in [104℄ (seealso [21℄). Let, therefore, de�ne the following r � (r + 1) matri
es,Â = [a jA℄ � 0B� �(1)0 �(1)1 : : : �(1)r... ... ...�(r)0 �(r)1 : : : �(r)r 1CA ; (3.22)B̂ = [b jB℄ � 0B� �(1)0 �(1)1 : : : �(1)r... ... ...�(r)0 �(r)1 : : : �(r)r 1CA ;where the 
oeÆ
ients on the ith row of the two matri
es de�ne a suitabler-step LMF. In the following, both the two matri
es A and B will be alwaysassumed to be nonsingular. Then, for ea
h n = 0; r; 2r; : : : ; the new blo
kof values is obtained as the solution of the following dis
rete problem:F (yn) � A
 Imyn � hB 
 Imfn + (a
 yn � hb
 fn) = 0; (3.23)



3.2. CHOICE OF THE COMPONENT METHODS 37where yn = 0B� yn+1...yn+r 1CA ; fn = 0B� fn+1...fn+r 1CA ; fj = f(tj; yj):Here the ve
tor �n in (2.2) is then given by�n = �(a
 yn � hb
 fn): (3.24)The following is a �rst important result 
on
erning the a

ura
y of su
hmethods, [21℄.Theorem 3.1 Let the matri
es (3.22) satisfy the following set of equations,Âq̂i = iB̂q̂i�1; i = 0; : : : ; p; (3.25)where q̂�1 � 0; q̂i = 0BBB� 0i1i...ri 1CCCA � � 0iqi � ; i = 0; 1; : : : : (3.26)Then the LMF de�ning the blo
k method (3.22) have a trun
ation errorwhi
h is at least O(hp+1).Proof The equations (3.25) are nothing but the usual order p 
onditions forLMF, see (1.11), simultaneously imposed for all the r LMF 
orrespondingto (3.22).By 
onsidering in (3.25) the equations 
orresponding to i = 0; 1, theabove result implies that when all methods in (3.22) are 
onsistent (p � 1)the �rst two 
olumns of the augmented matri
es Â and B̂ are related to the
orresponding square matri
es A and B by means of the following relationsa = �A1; b = Aq1 �B1; (3.27)where 1 � q0 denotes the ve
tor with all unit entries (see (3.26)). Asa 
onsequen
e, attention 
an be driven to the square matri
es A and Balone provided that, as we obviously assume, 
onsistent LMF are used. Inparti
ular, it is an easy matter to verify the following result.



38 CHAPTER 3. BLENDED IMPLICIT METHODSCorollary 3.1 Let the matri
es de�ned in (3.22) satisfy (3.27) and the fol-lowing set of equationsAqi = iBqi�1; i = 2; : : : ; p: (3.28)Then the LMF de�ning the blo
k method (3.22) have a trun
ation errorwhi
h is at least O(hp+1).Let now de�ne, for ea
h j = 1; 2; : : : ; the following matri
es,Dj = diag ( 1; 2; : : : ; j ) ; Qj = (q1 : : : qj ) : (3.29)Then, the set of equations in (3.28) may be 
olle
ted into the following one:ADrQp�1 = BQp�1 (Ip�1 +Dp�1) : (3.30)Obviously, in the above equation it must be p � r + 1. In addition, whenp = r + 1, the following result holds true (see also [14℄).Theorem 3.2 If p = r + 1 then the matrix A�1B is uniquely determined.Proof In fa
t, when p = r + 1, the matrix Qr in (3.30) is, essentially, anonsingular Vandermonde matrix. Consequently, one obtains thatA�1B = DrQr (Ir +Dr)�1Q�1r : (3.31)whose right-hand side only depends on r.As already observed, the nonsingularity of the matri
es A and B impliesthat methods sharing the same matrixC = A�1B; (3.32)provides the same numeri
al solution and, as a 
onsequen
e, have the samea

ura
y and stability properties. In this sense, in [14℄ su
h methods havebeen 
alled equivalent methods. Then, from Theorem 3.2, it follows that allblo
k methods de�ned by a set of LMF with the highest order p = r+1 areequivalent.Let us now look at the stability properties of su
h equivalent methods.As already observed in the introdu
tion of the se
tion, blo
k methods are
onsidered as one-step methods for theoreti
al purposes. Consequently, asfor RK methods, the stability properties are studied by 
onsidering thestability fun
tion of the method. In parti
ular, see (3.23), sin
e the dis
reteproblem 
orresponding to the test equation (3.1) is given by



3.2. CHOICE OF THE COMPONENT METHODS 39(A� qB)yn = (qb� a)yn; (3.33)and the starting point for the subsequent appli
ation of the method is thelast entry in yn, the stability fun
tion of the method is given byg(q) � eTr (A� qB)�1 (qb� a) = det(W (q))det(Ir � qC) ; (3.34)where er is the last unit ve
tor in IRr while W (q) is obtained from thematrix Ir � qC, whose last 
olumn has been substituted by 1+ q(q1 �C1).The se
ond equality in (3.34) follows from the nonsingularity of A and B,the 
onsisten
y 
onditions in (3.27), and the Cramer's rule. The method istherefore A-stable provided thatRe(q) < 0 ) jg(q)j < 1:A ne
essary requirement for the above property to hold is the fun
tion g(q)to be well-de�ned in the left-half 
omplex plane. This leads to the followingde�nition.De�nition 3.1 A blo
k method is said to be pre-stable if the spe
trum ofthe 
orresponding matrix pen
il is 
ontained in C+.This fa
t implies that the result of Theorem 3.2 is useful only to de�nepre-stable methods up to r = 8; as matter of fa
t, by dire
t inspe
tion oneveri�es that the matrix on the right-hand side of (3.31) has eigenvalues withnegative real part when r � 9. Consequently, the 
orresponding methods
annot be pre-stable: in fa
t, the spe
trum of the pen
il (A� qB) 
oin
ideswith that of C�1 (see (3.32)), sin
e both the two matri
es A and B areassumed to be nonsingular.In order to obtain alternative 
riteria for 
hoosing C, we shall relax theorder 
onditions for the LMF on ea
h row of the blo
k method. In parti
ular,it will be 
onvenient to impose only the order r 
onditions: i.e. (see (3.30)and (3.32)) DrQr�1 = CQr�1 (Ir�1 +Dr�1) : (3.35)It remains one more 
ondition to be imposed and it will be used to �xthe spe
trum of the matrix C. Con
erning this point, the following resultapplies.



40 CHAPTER 3. BLENDED IMPLICIT METHODSTheorem 3.3 The matrix C de�ned asC = QrG�1FGQ�1r ; (3.36)where Qr is de�ned a

ording to (3.29), andG = 0B� 1! . . . r! 1CA ; F = 0BBB� �d01 �d1. . . ...1 �dr�1 1CCCA ; (3.37)is the unique matrix su
h that:(i) the 
hara
teristi
 polynomial is given byd(z) = rXi=0 dizi; dr = 1; (3.38)(ii) ea
h row of the 
onsistent blo
k method with matri
esA = Ir; B = C; (3.39)
orresponds to a LMF with an O(hr+1) trun
ation error.Proof We will prove that if the matrix C satis�es the properties (i) and(ii), then it must be ne
essarily equal to the matrix on the right-hand sideof equation (3.36). As matter of fa
t, be
ause of the se
ond requirement, wehave already seen that C must satisfy equation (3.35), whi
h is equivalentto (see (3.26) and (3.29)),Qr � 0T(Ir�1 +Dr�1)�1 � = CQr� Ir�10T � : (3.40)Let now denote with d̂ the unique ve
tor su
h thatQrd̂ = Cqr: (3.41)Then, we 
an 
olle
t the two previous equations into the following one:Qr � � 0T�Ir�1 +Dr�1)�1� � d̂ � = CQr: (3.42)Moreover, see (3.37), we observe that



3.2. CHOICE OF THE COMPONENT METHODS 41� � 0T(Ir�1 +Dr�1)�1 � d̂ � = G�1F̂G; (3.43)where F̂ = � � 0TIr�1 � �d � ; d � � 1r!Gd̂: (3.44)The matrix C is therefore similar to the Frobenius-type matrix F̂ . It followsthat the 
hara
teristi
 polynomial of C is given by the polynomial in (3.38)provided that, see (3.37), d � ( d0 : : : dr�1 )T ;or, equivalently, F̂ = F so that C must be equal to the matrix on the right-hand side in (3.36). By using similar arguments, it is easily proved that thelatter matrix always satis�es the properties in (i) and (ii) so that the proofis 
omplete.From the previous theorem it follows that on
e the desired 
hara
teristi
polynomial d(z) (or, equivalently, the desired spe
trum) for the matrix Chas been 
hosen, one 
an simply use the formula in (3.36) to derive the blo
kmethod with the pres
ribed properties. Let us now dis
uss how to properly
hoose the polynomial d(z) in order to obtain a method with \good" stabil-ity properties.We surely will 
hoose it in order to have all the roots 
ontained in C+,so that the method is pre-stable. This is not enough, however, to de�ne a\good" method. In fa
t, from (3.33) and (3.34) for n = 0, one obtainsyr(q) = det(W (q))det(Ir � qC)y0 � erqy0;so that (see (3.34) and (3.38))erq � g(q) = det(W (q))det(Ir � qC) = '(q)qrd(q�1) � '(q)�(q) ; (3.45)where '(q) = det(�W (q)) is a polynomial of maximum degree r and�(q) = rXi=0 diqr�i; dr = 1;is a polynomial of exa
t degree r sin
e we assume (Ir�qC) to be nonsingularin the left-half 
omplex plane.



42 CHAPTER 3. BLENDED IMPLICIT METHODSRemark 3.1 Observe that, be
ause of (3.35), the approximation in (3.45)must be at least O(qr+1) a

urate.The 
hara
teristi
 polynomial d(q) of the matrix C 
oin
ides, therefore,with the re
ipro
al and s
aled polynomial at the denominator of a rationalapproximation to the exponential. One of the most 
lassi
al ones is the Pad�e(�; r); ez � '�;r(z)��;r(z) ;where '�;r(z) and ��;r(z) are the unique polynomials of degree � and r,respe
tively, su
h that'�;r(z) = ��;r(z)ez +O(z�+r+1): (3.46)The expression of the two polynomials is well-known and is given by'�;r(z) = �Xi=0 (� + r � i)! �!(� + r)! i! (� � i)! zi; (3.47)��;r(z) = rXi=0(�1)i (� + r � i)! r!(� + r)! i! (r � i)! zi:Moreover, the following properties hold true for su
h polynomials (see [92℄and the referen
es therein).Theorem 3.4 For all �; r � 0:1. ��;r(z) � 'r;�(�z);2. if r � 1, all the zeros of the polynomial ��;r lie in the annulus(r + �)� < jzj < r + � + 4=3;where � � 0:278465 is the unique positive root of xex+1 = 1.By 
onsidering (3.45) and (3.46), the following 
hoi
e for the 
hara
ter-isti
 polynomial d(q) of the matrix C seems, therefore, appropriateqrd(q�1) = ��;r(rq): (3.48)As matter of fa
t, we observe, �rst of all, that from Remark 3.1 and(3.46) it follows that, if d(q) is de�ned as in (3.48), the polynomial '(q) in(3.45) is ne
essarily given by
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onsequen
e, the stability fun
tion g(q) of the method obtained throughthe 
hoi
e (3.48) 
oin
ides with the (�; r) Pad�e approximation to the expo-nential evaluated at rq. From the Ehle 
onje
ture [50℄, subsequently provedin [57℄ by Hairer, Wanner and N�rsett, it is known that methods with su
hstability fun
tion are A-stable, for ea
h r � 3, i� � 2 fr�2; r�1; rg. More-over, su
h methods are also L-stable only if � < r. In the present 
ase, welook for L-stable methods and, 
onsequently, we need to 
hoose appropriatevalues for the 
ouples (�; r), � 2 fr� 2; r� 1g. In order to make the proper
hoi
e, we observe that, for the test equation, we haveyr = '�;r(rq)��;r(rq) y0 � erqy0:We know that su
h an approximation is exa
t at q = 0 and as q ! 1(due to the L-stability of the methods). In addition to this, we also require,for � < 0 (see (3.1)), the dis
rete solution to have the same sign as the
ontinuous one (whi
h is the sign of y0), whatever the stepsize h used. Thisrestri
t the range of 
hoi
es for the 
ouple (�; r) to the following ones:� (r � 2; r) when r is even,� (r � 1; r) when r is odd,sin
e it is known that only for su
h values, when � 2 fr�2; r�1g, the Pad�eapproximation is analyti
 in C� with no real and negative zeros.Let now dis
uss the order of a

ura
y of the 
orresponding blo
k meth-ods. For this purpose, let us denote byŷ � 0B� y(t1)...y(tr) 1CA ; f̂ � 0B� f(t1; y(t1))...f(tr; y(tr)) 1CA ;where y(t) is the solution of the IVP (2.1). From (3.23) one then obtainsA
 Imŷ� hB 
 Im f̂ + a
 y0 � hb
 f0 = � ; (3.49)where � is the ve
tor with the trun
ation errors of the method. By assumingthat y(t) is suÆ
iently smooth, the entries of the latter ve
tor are given by
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�i = Xj>r y(j)(t0)j! hj  rXk=0 kj�1(k�(i)k � j�(i)k )!� Xj>r y(j)(t0)hjvji; i = 1; : : : ; r; (3.50)be
ause of the order r 
onditions (3.35). Consequently, by subtra
ting (3.23)from (3.49), we obtainA
 Im(ŷ � y)� hB 
 Im(f̂ � f) = � :By introdu
ing the ve
tor e = ŷ � y of the lo
al error, one then 
on
ludesthat the latter satis�es the equation�A
 Im � hB 
 Im Ĵ� e = � ; (3.51)where Ĵ = 0B� Ĵ1 . . . Ĵr 1CA ; (3.52)Ĵi = Z 10 J(ti; sy(ti) + (1� s)yi)ds � J0 +O(h);J(t; y) = ��yf(t; y) and J0 = J(t0; y0). Like any one-step method, the orderof a

ura
y is de�ned as follows.De�nition 3.2 The blo
k method 
orresponding to (3.51) has order p pro-vided that er = O(hp+1); where er is the last blo
k entry of the ve
tor e.Obviously, from (3.50) and (3.51), we have that the order of the methodis p � r. In general, the relations between the order 
onditions (3.50) andthe global order of the method may be very entangled, as the But
her theoryfor Runge-Kutta methods shows. Nevertheless, in 
ase we look for values ofp only slightly greater than r, the following result may be useful.Theorem 3.5 Consider the following possible 
ases for the method 
orre-sponding to (3.50)-(3.51)(0) eTr A�1vr+1 6= 0;



3.2. CHOICE OF THE COMPONENT METHODS 45(1) eTr A�1vr+1 = 0 and (eTr A�1vr+2 6= 0 or eTr CA�1vr+1 6= 0);(2) eTr A�1vr+1 = eTr A�1vr+2 = eTr CA�1vr+1 = 0;where, see (3.50), vj = 0B� vj1...vjr 1CA ; j > r: (3.53)Then the global order of the method is exa
tly p = r + i in 
ases i = 0; 1;and p � r + 2 in 
ase 2.Proof In fa
t, from (3.32), and (3.50)-(3.52) one obtainse = �Ir 
 Im � hC 
 Im Ĵ��1 �A�1 
 Im� �= hr+1(A�1vr+1)
 Im y(r+1)(t0) +hr+2 �(A�1vr+2)
 Im y(r+2)(t0)+C 
 Im Ĵ (A�1vr+1)
 Im y(r+1)(t0)�+O(hr+3)= hr+1(A�1vr+1)
 Im y(r+1)(t0) +hr+2 �(A�1vr+2)
 Im y(r+2)(t0) + (CA�1vr+1)
 J0 y(r+1)(t0)�+O(hr+3); (3.54)from whi
h, in view of De�nition 3.2, the thesis easily follows.By dire
t inspe
tion, one veri�es that the methods obtained with the
hoi
e in (3.48) satisfy the hypothesis (1), in the previous Theorem, whenr is odd, and the hypothesis (2), when r is even. In addition, in the latter
ase, some 
omputations allows to prove that the last blo
k entry in the lo
alerror is exa
tly O(hr+3) a

urate. The order of a

ura
y of the methods here
onsidered is, therefore, given byp = r + 1; when r is odd; r � 3; � = r � 2; r � 1; r: (3.55)p = r + 2; when r is even;All the previous 
onsiderations, lead us to 
hoose as basi
 methods forthe blended implementation the ones listed in Table 3.1. We remark thatthe blo
ksize r of ea
h method has been always 
hosen equal to the order
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 blo
k methodsPad�e (2,3) (2,4) (4,6) (6,8) (8,10) (10,12)r 3 4 6 8 10 12Order 4 6 8 10 12 14of the previous method in that list. This features, in fa
t, will be used toderive an eÆ
ient variable-order implementation of the methods themselves(see the next 
hapter). In Figure 3.1 the boundaries of the absolute stabilityregions of su
h methods have been plotted.3.3 Choi
e of the splitting matri
esIn this se
tion we shall study in more detail parti
ular 
hoi
es of appropriatematri
es A1 and B2, as de�ned in (3.19). As explained in Se
tion 3.1, thisuniquely de�nes the whole blended implementation of the underlying blo
kmethod. The remaining matri
es B1 and A2 are, in fa
t, de�ned a

ording to(3.5) and (3.7), respe
tively, and the weight fun
tion � is de�ned a

ordingto (3.12) and (3.20).To begin with, we derive from (3.9), (3.12) and (3.14) the following expres-sion for the ampli�
ation matrix of the blended iteration:Z(q) = N(q)�1 (N(q)�M(q))= N(q)�1� (I � �(q)) (A1 �A2) + q �(q)(B1 �B2)�: (3.56)Let now 
onsider the simpler 
ase where (see (3.19)),LA = LB = O; (3.57)sin
e in su
h a 
ase a 
omplete spe
tral analysis 
an be 
arried out. In fa
t,in su
h a 
ase, one obtains thatA1 = I ) B1 = C; B2 = 
I ) A2 = 
C�1: (3.58)This, in turn, allows us to easily derive the following result.Theorem 3.6 Assume that for the blended method (3.9) the previous equal-ities (3.57) hold true. Then, the eigenvalues of the ampli�
ation matrix(3.56)-(3.58) are given by
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Figure 3.1: Boundaries of the Absolute stability regions of the blo
k methodsin Table 3.1
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)2�(1� 
q)2 ; � 2 �(C): (3.59)Proof Sin
e the equalities (3.57) are satis�ed, then also (3.58) do. Conse-quently, by taking into a

ount (3.12) and (3.20), from (3.56) one obtainsZ(q) = (1� 
q)�1�
q(1� 
q)�1(
C�1 � I) + q(1� 
q)�1(C � 
I)�= q(1� 
q)�2 �C � 2
I + 
2C�1�= q(1� 
q)�2C�1 (C � 
I)2 :from whi
h the thesis follows.When (3.57) holds true, the above result allows the following easy 
har-a
terization of the spe
tral radius �(q) of the ampli�
ation matrix Z(q):�(q) = max�2�(C) ���� q(�� 
)2�(1 � 
q)2 ���� = ���� q(1� 
q)2 ���� max�2�(C) ����(�� 
)2� ���� : (3.60)Consequently, a simple expression 
an be obtained for the two parameters�� and ~� de�ned in (3.17) and (3.18), respe
tively. In fa
t, by expanding(3.60) at q = 0, one readily obtains that~�
 = max�2�(C) j�� 
j2j�j : (3.61)Similarly, for q = ix, one has that �(q) in (3.60) is given byx(1 + x2
2) ~�
 ; x � 0;whi
h is stri
tly monotone in
reasing in [0; 
�1), and de
reasing in (
�1;1).As a 
onsequen
e, one obtains that, at x = 
�1,��
 = ~�
2
 : (3.62)In (3.61) and (3.62) the subs
ript 
 has been used to state that thevalue of su
h parameters a
tually depends on the diagonal entry 
 in B2.The above relations allow the derivation of simple 
riteria for 
hoosing theparameter 
: indeed one may think to 
hoose it in order to minimize either(3.61), or (3.62), or a 
ombination of the two. Con
erning the minimizationof (3.61) and (3.62), a 
orresponding result 
an be derived. In order to stateit, let use set



3.3. CHOICE OF THE SPLITTING MATRICES 49�(C) = f�j = 'j ei�j ; j = 1; : : : ; rg; (3.63)and sort the eigenvalues by de
reasing arguments as follows (we re
all that�(C) � C+), �2 > �1 � � � � � �r > ��2 : (3.64)Sin
e the matrix is real, we shall only 
onsider the �rst ` = dr=2e eigenvalues,in the sequel. Let now assume that the moduli of su
h eigenvalues are stri
tlyin
reasing, that is, 0 < '1 < � � � < '`: (3.65)Consequently, the following preliminary result holds true.Lemma 3.1 Assume that (3.57) hold true and the eigenvalues of the matrixC satisfy (3.64)-(3.65). Then, for all values of 
 greater than or equal to
̂ � maxj2f2;:::;`g	j +q	2j + '1'j ; 	j = '1'j(
os �1 � 
os �j)'j � '1 ; (3.66)one has that j�1 � 
j2j�1j = maxj2f1;:::;`g j�j � 
j2j�j j : (3.67)Proof Indeed, in order for (3.67) to be satis�ed, for all j > 1 one must havej�j � 
j2j�j j � j�1 � 
j2j�1j :By multiplying both sides by j�1�jj, and taking into a

ount (3.65), onethen obtains the following se
ond order inequality,
2 � 2
	j � '1'j � 0;whi
h, 
onsidering that, be
ause of (3.64), 	j � 0 and that the dis
riminantof the equation is positive, is satis�ed for all
 � 	j +q	2j + '1'j :The previous lemma allows us to state the desired results.Theorem 3.7 Assume the hypotheses of Lemma 3.1 to be satis�ed and,moreover, let 
̂ be de�ned a

ording to (3.66). Then:



50 CHAPTER 3. BLENDED IMPLICIT METHODS1. the minimum value of �� is obtained at 
 = '1, and it is given bymin
>0 ��
 = 1� 
os �1; (3.68)provided that '1 � 
̂; (3.69)2. The minimum value of ~� is obtained at 
 = '1 
os �1, and it is givenby min
>0 ~�
 = '1 sin2 �1; (3.70)provided that '1 
os �1 � 
̂: (3.71)Proof Let us 
onsider the �rst point. By taking into a

ount (3.61) and(3.62), we have to solve the problemmin
>0 maxj2f1;:::;`g j'j ei �j � 
j22
'j :If su
h a minimum would be obtained at a value of 
 � 
̂ (see (3.66)) then,from Lemma 3.1, the previous problem would redu
e to the following simplerone,min
>0 '21 + 
2 � 2'1
 
os �12
'1 = min
>0 12 �'1
 + 
'1 � 2 
os �1� � min
>0 g�(
):Consequently, by 
onsidering that the only stationary point of g� is givenby dg�d
 ('1) = 0 and, moreover, d2g�(d
)2 ('1) > 0; from (3.69), one then obtainsthat at 
 = '1, ��'1 = g�('1) = 1� 
os �1:Similarly, for the se
ond point we obtain thatmin
>0 maxj2f1;:::;`g j'j ei �j � 
j2'j = min
>0 '21 + 
2 � 2'1
 
os �1'1= min
>0 �'1 + 
2'1 � 2
 
os �1� � min
>0 ~g(
);



3.3. CHOICE OF THE SPLITTING MATRICES 51provided that the minimum is obtained at a value of 
 � 
̂. Indeed, by
onsidering that the only stationary point of ~g is given by d~gd
 ('1 
os �1) = 0and, moreover, d2~g(d
)2 ('1 
os �1) > 0, from (3.71), one then obtains that, at
 = '1 
os �1, ~�'1 
os �1 = ~g('1 
os �1) = '1 sin2 �1:Remark 3.2 We observe that the above relation (3.66) and (3.69) 
an bealso written as'j'1 + '1'j < 2(1 + 
os �j � 
os �1); j = 2; : : : ; `: (3.72)By taking into a

ount (3.64)-(3.65), the previous inequalities are satis�edwhen all the eigenvalues of the matrix C are 
ontained in the small annuluswith internal and external radii given, respe
tively, by:%1 = '1; %2 = '1(1 + 2(
os �2 � 
os �1)): (3.73)A similar 
on
lusion 
an be obtained from (3.66) and (3.71),'j'1 + '1'j 
os2 �1 < 1 + 
os2 �1 + 2 
os �1(
os �j � 
os �1); (3.74)j = 2; : : : ; `;whi
h, however, is more restri
tive than (3.72).It turns out that both results in Theorem 3.7 apply to the methods listedin Table 3.1 (see Table 3.2). Moreover, a

ording to what was stated in Re-mark 3.2, the eigenvalues of the matrix C are 
ontained in the suitably smallannulus with internal and external radii de�ned in (3.73) (see Figure 3.2).Let now 
onsider in more details the 
onvergen
e properties of the blendediteration when q ! 1. We have already remarked that the sti� ampli�
a-tion fa
tor �(1) for the blended iteration (3.11) is \automati
ally" zero-valued be
ause of the se
ond property in (3.15). In addition to this, theprevious analysis allows to measure the rate at whi
h �(q) de
ays to 0 asq !1. As matter of fa
t, when jqj � 1 and 
 > 
̂, from (3.60)-(3.61) and(3.67) one easily obtains�(q) � ~�
2jqj � ~�(1)jqj ; where ~�(1) � ~�
2 = 2��
 : (3.75)As a 
onsequen
e, the previously de�ned parameter ~�(1) is a further ampli-�
ation fa
tor des
ribing the 
onvergen
e properties of the blended iteration



52 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.2: Values of the parameters 
̂, '1 and '1 
os �1 
orresponding to themethods in Table 3.1Order r Pad�e 
̂ '1 '1 
os �14 3 (2,3) .1233 .7387 .48776 4 (2,4) .1517 .8482 .39948 6 (4,6) .1415 .7285 .269610 8 (6,8) .1376 .6745 .210112 10 (8,10) .1356 .6433 .175214 12 (10,12) .1345 .6227 .1519
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Figure 3.2: Spe
trum of the matrix C for the blo
k methods in Table 3.1and 
orresponding annuli a

ording to (3.73).



3.3. CHOICE OF THE SPLITTING MATRICES 53(evidently, the smaller ~�(1), the better the L-
onvergen
e property of theiteration). In Table 3.3 we list the obtained values for the ampli�
ationparameters ~�, �� and ~�(1) of the iteration 
orresponding to the two val-ues of 
 
onsidered in Theorem 3.7. As one 
an see, when 
 is de�ned inorder to minimize the nonsti� ampli�
ation fa
tor, the resulting iterationturns out to be not A-
onvergent for methods with blo
ksize greater than 4.Moreover, from (3.61), (3.62) and (3.75) one 
an easily derive that the valueof 
 whi
h minimize the maximum ampli�
ation fa
tor is the same valuewhi
h minimize the geometri
 mean of ~� and ~�(1). It represents, therefore,a \good 
ompromise" with the requirement of a fast 
onvergent iterationboth when q � 0 and jqj � 1. Finally, for 
ompleteness, in Table 3.4, theaveraged ampli�
ation fa
tors (with respe
t to the in�nity matrix norm, see(2.20)) have been also listed.When the blended implementation does not satisfy (3.58), then the aboveanalysis 
annot be applied, sin
e the involved matri
es no more 
ommute.In su
h a 
ase, one must resort to 
omputational te
hniques in order tominimize either one of the two parameters (3.17) and (3.18). We observethat, from (3.20) and (3.56), one obtainsZ(q) = (A1 � qB2)�1�
q(1� 
q)�1(A2 �A1) + q(1� 
q)�1(B1 �B2)�= q(1� 
q)�1(A1 � qB2)�1�B1 �B2 + 
(A2 �A1)�;so that:� when q � 0,Z(q) � qA�11 �B1 �B2 + 
(A2 �A1)� � qR; (3.76)� when jqj � 1,Z(q) � 1
qB�12 �B1 �B2 + 
(A2 �A1)� � 1qR(1): (3.77)It follows that the ampli�
ation fa
tors ~� and ~�(1) are given, respe
tively,by the spe
tral radius of the above matri
es R and R(1). Con
erning al-ternative 
hoi
es for the matri
es A1 and B2, we have 
onsidered the 
asewhere A1 = 0BBB� 1�1 1. . . . . .�1 1 1CCCA ; B2 = 
I: (3.78)



54 CHAPTER 3. BLENDED IMPLICIT METHODS
Table 3.3: Asymptoti
 ampli�
ation fa
tors for the methods satisfying (3.58)with the 
hoi
es 
 = '1 and 
 = '1 
os �1 respe
tively.Order r Pad�e 
 �� ~� ~�(1)4 3 (2,3) .7387 .3398 .5021 .92016 4 (2,4) .8482 .5291 .8975 1.24768 6 (4,6) .7285 .6299 .9177 1.729510 8 (6,8) .6745 .6885 .9288 2.041312 10 (8,10) .6433 .7276 .9361 2.262114 12 (10,12) .6227 .7560 .9415 2.42824 3 (2,3) .4877 .4273 .4168 1.75246 4 (2,4) .3994 .8262 .6601 4.13728 6 (4,6) .2696 1.1660 .6287 8.650410 8 (6,8) .2101 1.4492 .6091 13.791812 10 (8,10) .1752 1.6993 .5956 19.394214 12 (10,12) .1519 1.9272 .5856 25.3685Table 3.4: Averaged ampli�
ation fa
tors for the blended iteration withdiagonal splitting (
 = '1).Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) 1.7311 .5820 .4693 .40666 4 (2,4) 2.7844 1.0301 .7895 .66088 6 (4,6) 7.2986 1.3512 .9614 .794910 8 (6,8) 18.9785 2.2408 1.4146 1.012312 10 (8,10) 54.1473 4.8439 1.8673 1.306114 12 (10,12) 167.4919 8.9677 2.5791 1.4882Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 2.5575 .8598 .6933 .60076 4 (2,4) 4.7233 1.7473 1.3392 1.12098 6 (4,6) 10.6335 1.9686 1.4007 1.158210 8 (6,8) 25.6036 3.0230 1.9085 1.365712 10 (8,10) 69.6657 6.2321 2.4024 1.680514 12 (10,12) 208.5873 11.1680 3.2119 1.8533



3.3. CHOICE OF THE SPLITTING MATRICES 55Table 3.5: Asymptoti
 and averaged ampli�
ation fa
tors for the methodssatisfying (3.78) with minimized maximum ampli�
ation fa
tor ��.Order r Pad�e 
 �� ~� ~�(1)4 3 (2,3) .6884 .2686 .3366 .62486 4 (2,4) .8351 .4045 .4513 .62208 6 (4,6) .7677 .5235 .4747 .859810 8 (6,8) .6151 .5468 .6032 2.051612 10 (8,10) .6046 .6482 .6884 3.668414 12 (10,12) .5819 .7417 .7462 5.7378Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) .9685 .4047 .3462 .30866 4 (2,4) 2.2948 .6252 .5285 .46988 6 (4,6) 7.3490 .8836 .7174 .623710 8 (6,8) 16.2617 1.5806 1.1758 .867212 10 (8,10) 52.4037 1.9002 1.4913 1.151314 12 (10,12) 167.8829 3.8893 1.9866 1.3105Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 1.4230 .4912 .4089 .37996 4 (2,4) 3.0605 .6621 .5761 .51858 6 (4,6) 9.5122 .9024 .6768 .627010 8 (6,8) 18.2097 1.1149 .8629 .725112 10 (8,10) 63.9458 1.9968 1.3118 .986214 12 (10,12) 205.1073 4.1068 1.7443 1.1984In Table 3.5 and in Table 3.6 we list the obtained results when 
hoosing 
 inorder to minimize �� and p~�kRk2, respe
tively. The in�nity matrix normhas been used for the 
omputation of the averaged ampli�
ation fa
tors.The se
ond 
riteria, for 
hoosing 
, has been adopted in order to \improve"the 
onvergen
e properties of the iteration when q � 0 and, at the sametime, to obtain in
reasing values for ~� when the order of the method in-
rease. This property, in fa
t, turns out to be useful for an eÆ
ient variableorder implementation of the methods. As told before, in su
h a 
ase theparameters have been numeri
ally 
omputed. We observe that the 
hoi
eof minimizing p~�kRk2 makes the method 
orresponding to r = 12 not A-
onvergent (though A(�)-
onvergent with � � �=2).Hereafter, we shall refer to the following three blended s
hemes:1. A1 and B2 as in (3.58) and 
 
hosen in order to minimize ��;2. A1 and B2 as in (3.78) and 
 
hosen in order to minimize ��;



56 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.6: Asymptoti
 and averaged ampli�
ation fa
tors for the methodssatisfying (3.78) with minimizedp~�kRk2.Order r Pad�e 
 �� ~� ~�(1)4 3 (2,3) .5802 .3020 .2692 .86386 4 (2,4) .5960 .5441 .3833 1.20188 6 (4,6) .5165 .6719 .4310 1.822110 8 (6,8) .4472 .7860 .4389 2.140212 10 (8,10) .4088 .9112 .4408 2.682114 12 (10,12) .3866 1.0010 .4583 4.1523Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) .9034 .4194 .3683 .33706 4 (2,4) 1.4129 .8798 .7153 .63368 6 (4,6) 4.1309 1.1826 .9404 .809610 8 (6,8) 8.8690 2.3211 1.5682 1.128912 10 (8,10) 24.7268 3.5040 2.3807 1.479414 12 (10,12) 77.7625 5.4215 3.5041 1.8642Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 1.0846 .4445 .3679 .31776 4 (2,4) 1.2992 .6259 .5871 .48318 6 (4,6) 2.8751 .9453 .6415 .542810 8 (6,8) 5.8632 2.2464 .9509 .631912 10 (8,10) 14.7973 3.9311 1.9095 .784214 12 (10,12) 42.8203 6.6707 3.3158 1.01833. A1 and B2 as in (3.78) and 
 
hosen in order to minimize p~�kRk2,as the type 1, 2 and 3 s
hemes, respe
tively. A 
omparative analysis ofTable 3.3 and Table 3.4 with Table 3.5 and Table 3.6 puts into eviden
ethe type 2 s
hemes as the ones with the best features from the point ofview of the ampli�
ation fa
tors, with the only ex
eption of the fa
tors~�(1) 
orresponding to the last two higher order methods. On the otherhand, the type 1 s
hemes allows to 
arry out a 
omplete spe
tral analysis ofthe ampli�
ation matrix. Moreover, the diagonal splittings 
hara
terizingsu
h s
hemes make them very appealing for an implementation on parallel
omputers.3.4 Numeri
al experimentsIn order to 
ompare the performan
es of the proposed blended s
hemeson some referen
e sti� problems taken from the CWI testset [79℄ for ODE



3.4. NUMERICAL EXPERIMENTS 57solvers, a Matlab 
ode had been realized. In parti
ular, the 
ode imple-mented variable-stepsize and variable-order strategies for the methods inTable 3.1 (we do not dis
uss here the details of su
h implementation sin
ethey will be fully des
ribed in the next 
hapter).We here report the results obtained on the following well-known testproblems:� Van der Pol, of size m = 2, sti� parameter � = 1000, and [t0; T ℄ =[0; 1000℄;� Robertson, of size m = 3, and [t0; T ℄ = [0; 4 � 106℄;� Pollution, of size m = 20, and [t0; T ℄ = [0; 60℄;� Ring Modulator, of size m = 15, parameter Cs = 10�9, and [t0; T ℄ =[0; 10�3℄;In Tables 3.7, 3.8, 3.9, and 3.10, some statisti
s 
on
erning the integra-tion of the previous four problems with the type 1, 2, 3 s
hemes previouslydes
ribed have been reported. In su
h tables, for ea
h run, we list: thevalues of the input toleran
es atol and rtol for, respe
tively, the absoluteand the relative error of the numeri
al solution, and the initial stepsize h0.Moreover, in su
h tables we 
ount as 1 step one single appli
ation of theblo
k methods. Finally, the pre
ision of the numeri
al solution is measuredwith the number of signi�
ant 
orre
t digits, de�ned ass
d � � log10 k(y � ytrue):=ytruek1; (3.79)where y denotes the numeri
al solution at t = T , while ytrue is a known ref-eren
e solution. The operator := used in (3.79) denotes the 
omponentwiseratio.In addition, in Figures 3.3, 3.4, 3.5, and 3.6, the 
orresponding Work-Pre
ision Diagrams have been plotted with the work measured either interms of fun
tion evaluations or of solved linear systems. The input toler-an
es, used for the diagrams, were:atol = rtol = 10�(2+k); k = 0; : : : ; 10;and the initial stepsize was: h0 = 10�6 for the Van der Pol, the Robertson,and the Pollution problems, and h0 = 10�8 for the Ring Modulator problem.The previous results show that, in spite of the di�erent values of theampli�
ation fa
tors of the 
orresponding iteration, the three s
hemes areable to provide 
omparable results for the 
onsidered test problems.



58 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.7: Results for the Van der Pol problem.Type 1 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 3.98 113 102 1583 317810�6 10�6 6.50 112 109 2166 434010�8 10�6 9.69 178 177 3967 794210�10 10�6 11.05 160 158 5405 10814Type 2 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 3.81 86 75 1383 277010�6 10�6 6.53 112 110 2393 479410�8 10�6 9.27 166 166 3750 750810�10 10�6 10.92 140 138 5271 10554Type 3 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 4.05 81 71 1350 270010�6 10�6 6.12 111 111 2326 466810�8 10�6 9.06 146 145 3710 742010�10 10�6 11.91 140 138 5389 10778Table 3.8: Results for the Robertson problem.Type 1 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 4.06 54 54 723 144610�6 10�6 5.67 99 99 1365 273010�8 10�6 8.01 86 86 2192 438410�10 10�6 9.80 130 130 3624 7248Type 2 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 3.91 55 55 690 138010�6 10�6 5.96 106 106 1321 264210�8 10�6 8.30 81 81 2103 420610�10 10�6 10.10 110 110 3386 6772Type 3 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 3.37 55 55 690 138010�6 10�6 5.69 108 108 1346 269210�8 10�6 8.04 81 81 2124 424810�10 10�6 10.48 106 106 3406 6812



3.4. NUMERICAL EXPERIMENTS 59Table 3.9: Results for the Pollution problem.Type 1 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 4.08 17 17 198 39610�6 10�6 5.99 31 31 381 76210�8 10�6 7.96 48 48 767 153410�10 10�6 9.31 49 49 1116 2232Type 2 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 4.49 17 17 189 37810�6 10�6 5.36 30 30 354 70810�8 10�6 8.24 48 48 724 144810�10 10�6 10.16 49 49 1100 2200Type 3 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�6 4.64 17 17 192 38410�6 10�6 5.63 24 24 351 70210�8 10�6 7.62 31 31 681 136210�10 10�6 10.17 49 49 1083 2166Table 3.10: Results for the Ring Modulator problem.Type 1 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�8 3.09 1366 1341 25982 5202810�6 10�8 5.01 1831 1765 43176 8650010�8 10�8 6.65 2068 1982 65376 13100410�10 10�8 9.51 2581 2506 96084 192376Type 2 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�8 2.54 1359 1325 26309 5275410�6 10�8 4.77 1580 1500 41217 8262610�8 10�8 6.98 2008 1925 64140 12861210�10 10�8 9.40 2295 2199 92015 184334Type 3 s
hemeatol=rtol h0 s
d steps a

ept f-eval lin-sys10�4 10�8 2.71 1413 1398 23376 4676010�6 10�8 4.93 1590 1518 40391 8084210�8 10�8 7.57 2198 2126 65124 13038810�10 10�8 8.49 2937 2845 97731 195626
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Figure 3.3: Work-Pre
ision Diagrams for the Van der Pol problem.



3.4. NUMERICAL EXPERIMENTS 61

1 2 3 4 5 6 7 8 9 10 11 12

10
3

Significant Correct Digits

F
u

n
ct

io
n

 E
va

lu
a

tio
n

s

Type 1
Type 2
Type 3

1 2 3 4 5 6 7 8 9 10 11 12

10
3

10
4

Significant Correct Digits

Li
ne

ar
 S

ys
te

m
s

Figure 3.4: Work-Pre
ision Diagrams for the Robertson problem.
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Figure 3.5: Work-Pre
ision Diagrams for the Pollution problem.
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ision Diagrams for the Ring Modulator problem.
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Chapter 4The 
ode BiMComputational 
odes represent an outstanding te
hnologi
al aspe
t of theMathemati
al S
ien
es. Moreover, these 
odes 
onstitute basi
 tools forproblem solving in applied �elds. The 
onstru
tion of su
h 
odes requires,in turn, the systemati
 solution of a number of related sub-problems, whi
h
onstitute the intermediate steps to rea
h the desired goal. This aspe
t ofNumeri
al Mathemati
s is usually underestimated and 
onsidered to be onlyof se
ondary importan
e. On the 
ontrary, it is a sour
e of new trends ofinvestigation and a ne
essary building blo
k to make Mathemati
s usablefrom people involved in solving real-life problems.With this premise, and in light of the numeri
al results provided by theMatlab prototype mentioned in Se
tion 3.4, we de
ided to implement in the
ode BiM the blended impli
it methods with splitting matri
es given byA1 = Ir; B2 = 
 Ir; (4.1)i.e., the type 1 s
hemes introdu
ed in the previous 
hapter. As we are goingto dis
uss in full details in the present 
hapter, the diagonal stru
ture of the
orresponding nonlinear splittings has allowed to 
onstru
t a 
omputational
ode for whi
h almost all of the implementation strategies are supportedby a linear analysis of 
onvergen
e of the iteration. In addition to this, theperfe
t degree of parallelism of su
h splittings, for what 
on
ern the fun
tionevaluations and the system solvings, makes these s
hemes very appealing foran implementation on parallel 
omputers.For later referen
e, we re
all that when the parameter 
 is sele
ted inorder to minimize the maximum ampli�
ation fa
tor of the iteration, thefollowing results apply (see Se
tion 3.3):
 = j�1j � min�2�(C) j�j; �� = 1� 
os �1; ~� = 2
��: (4.2)65



66 CHAPTER 4. THE CODE BIMMoreover, for sake of brevity, hereafter the following notation will be used forthe 
urrent blo
k of integration, sin
e the reported analysis equally appliesto ea
h appli
ation of the blo
k method:� (t0; y0) for the initial point of the blo
k,� t1; : : : ; tr for the internal abs
issae,� the ve
torsy = 0B� y1...yr 1CA ; f = 0B� f1...fr 1CA ; fj = f(tj; yj);for the 
urrent numeri
al solution.The organization of this 
hapter is the following: in Se
tion 4.1 we dis-
uss the nonlinear blended iteration applied to problem (1.2); Se
tion 4.2
on
erns with the lo
al error estimate used in the 
ode, on whi
h both thevariation of the stepsize and of the order of the method rely. The detailsof the latter are then dis
ussed in Se
tion 4.3. The problem of the even-tual re-evaluation of the Ja
obian and/or of the fa
torization involved in thenonlinear splitting is addressed in Se
tion 4.4.4.1 The nonlinear iterationWe start 
onsidering in full detail the nonlinear iteration generated by theblended impli
it methods with splitting matri
es as in (4.1) applied to prob-lem (2.1). In su
h a 
ase, the blended iteration (3.11) be
omes�y(i) = �� �� �(I � 
C�1)
 Imy(i) � h(C � 
I)
 Imf (i)�+
 �C�1 
 Imy(i) � hI 
 Imf (i)�� �� ; (4.3)y(i+1) = y(i) +�y(i); i = 0; 1; : : : ;where y(i) = 0B� y(i)1...y(i)r 1CA ; f (i) = 0B� f (i)1...f (i)r 1CA ; f (i)j = f(tj; y(i)j );the ve
tor � only depends on the initial 
ondition, and, if J0 denotes theJa
obian of f at (t0; y0),� = I 
 
�1; 
 = (Im � h
J0): (4.4)Consequently, if � iterations are performed to obtain 
onvergen
e, theoverall 
omputational 
ost is approximately given by:
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obian matrix J0,� the fa
torization of the m�m matrix 
 in (4.4),� r� fun
tion evaluations and� 2r� system solvings with the fa
tors of the matrix 
.Let us now brie
y sket
h the 
hoi
e of the starting ve
tor y(0) and thestopping 
riterion for the iteration (4.3). Con
erning the �rst point, theadopted strategy is similar to that used in most of the available 
odes:the default pro�le is obtained by using the interpolating polynomial overthe previous blo
k of points; alternatively, we use a 
onstant initial ve
tor(namely, the starting point repeated r times) in either one of the following
ases:- when we integrate over the very �rst blo
k;- after a failure of the iteration;- when the solution is very slowing varying. This last 
ondition is re
-ognized when, on the last blo
k (whose size is r, if the order has notbeen 
hanged), the following test is true:8j = 1; : : : m : jyrj � y0j j1 + jy0j j < minf10�2; 102�toljg and kfrk1 < 0:5;(4.5)where tolj � rtol (the pres
ribed relative toleran
e) if jy0jj > 10�1,tolj � atol (the pres
ribed absolute toleran
e) if jy0j j � 10�1 and,in general, y`j is the jth entry of y`.Let us now analyze the stopping 
riterion for the iteration (4.3). Letus 
onsider the ve
tor �y(i), as de�ned in that equation, and introdu
e thenormk�y(i)k � max`=1;:::;r j�y(i)` j � max`=1;:::;rvuut 1m mXj=1� �y`j1 + ratoljy0j j�2; (4.6)where ratol = rtolatol is the ratio between the spe
i�ed relative (rtol) andabsolute (atol) toleran
es, and y0 is the starting point for the 
urrent blo
k.Then, the iteration ends as soon as the following 
ondition is satis�ed,k�y(i)k � max�
; uroundrtol � � atol; (4.7)where uround is the ma
hine pre
ision (on input, rtol > uround) and theparameter 
 = 0:1. Moreover, in order to make more restri
tive the stopping



68 CHAPTER 4. THE CODE BIMTable 4.1: Values of various parameters for the methods implemented in the
ode BiM.p r Pad�e 
 �� ~� ~�(1) maxit faterr4 3 (2,3) .7387 .3398 .5021 0.9201 10 76 4 (2,4) .8482 .5291 .8975 1.2476 12 68 6 (4,6) .7285 .6299 .9177 1.7295 14 510 8 (6,8) .6745 .6885 .9288 2.0413 16 412 10 (8,10) .6433 .7276 .9361 2.2621 18 314 12 (10,12) .6227 .7560 .9415 2.4282 20 {
riterion when the solution has small entries and/or is slowly varying, thevalue of the parameter 
 may be de
reased as follows:- when ky0k�1 � jy0sj < 10�2, jf0sj < 10�4, and kf0k1 <10�3; then 
 = 5 � 10�3;- when (4.5) holds true, then 
 = minf
; 5 � 10�2g.The iteration (4.3) fails if the 
ondition (4.7) is not satis�ed within maxititerations, where this parameter depends on the method 
urrently used,a

ording to Table 4.1. The iteration also fails if i > 2 and �(i) > 0:99,where �(i) is the estimate of the spe
tral radius of the iteration matrix atthe ith iterate. Su
h an estimate is obtained, after at least two iterations,as follows:�(1) = k�y(1)kk�y(0)k ; �(i) =s�(i�1) k�y(i)kk�y(i�1)k ; if i � 2: (4.8)In 
ase of failure of the iteration (4.3) the order of the method is de-
reased (if r > 3) and the stepsize is halved.4.2 The lo
al error estimateThe algorithm used in the 
ode BiM for the estimate of the lo
al error isbased on deferred 
orre
tion. We observe that the latter is a useful frame-work for error estimation when solving ODEs [39, 41, 77, 78, 87, 88, 98, 99,101, 102, 105℄. Its main use is to provide a tool for the iterative improve-ment of the numeri
al solution. This approa
h has been su

essfully usedin numeri
al 
odes for BVPs (see, for example, [41, 77℄), where it is usedto obtain an approximation of the global error. Nevertheless, when solving
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h an approa
h may be also used to estimate lo
al errors, in 
on-ne
tion with mesh-sele
tion (see, e.g., [13, 20℄). This is exa
tly the use ofdeferred 
orre
tion whi
h has been 
onsidered in the 
ode BiM.We remark, on
e more, that, sin
e equivalent methods provide the samenumeri
al solution, they do have the same 
orresponding lo
al error. We 
an,therefore, assume, without loss of generality, the following normalization forthe matrix A and 
onsequently, from 
onsisten
y (see (3.27)), for the ve
tora in (3.22), A = Ir; a = �1 � � � 1 : : : 1 �T : (4.9)Conversely, one easily realizes that the ve
tor � with the trun
ationerrors (see (3.49)) depends on the parti
ular form of the dis
rete problem.As a matter of fa
t, from the de�nition given in (3.49), it is not diÆ
ultto prove that if the 
ouples of matri
es (A1; B1) and (A2; B2) de�ne twoequivalent methods, then the following equality must hold(A�11 
 Im)� 1 = (A�12 
 Im)� 2;where � 1 and � 2 are the ve
tors with the trun
ation errors of the two meth-ods, respe
tively. In the sequel, we will denote with � the ve
tor 
orrespond-ing to the blo
k method with the normalization in (4.9), i.e. the methodwritten in the �rst equivalent form (see (3.58)) in the blended implementa-tion. The ve
tor 
orresponding to the se
ond equivalent form is, therefore,given by 
 C�1 
 Im� : (4.10)Moreover, as dis
ussed in Se
tion 3.2, the basi
 blo
k method (3.23) isde�ned in order to have the equations on ea
h row with an O(hr+1) lo
altrun
ation error. Therefore, provided the lo
al 
ontinuous solution y(t) issuitably regular, � admits the expansion (see (3.50))� = vr+1 
 hr+1y(r+1)(t0) + vr+2 
 hr+2y(r+2)(t0) + : : : : (4.11)Consequently, (see, for example, [59, pag. 123℄) a �rst order approxima-tion to the lo
al error is given by (see (4.4))e = � � : (4.12)It follows that we 
an obtain an eÆ
ient estimate of the lo
al error on
ean estimate of the lo
al trun
ation error � is available. For this purpose, letus re
all that it is possible to uniquely de�ne two r� (r+1) matri
es [~a j ~A℄and [~b j ~B℄,
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[~a j ~A℄ � 0B� �1 1... . . .�1 1 1CA ; (4.13)[~b j ~B℄ � 0B� ~�(1)0 ~�(1)1 : : : ~�(1)r... ... ...~�(r)0 ~�(r)1 : : : ~�(r)r 1CA ;su
h that the 
oeÆ
ients on ea
h row of the two matri
es de�ne an r-stepLMF with an O(hr+2) trun
ation error (see Theorem 3.2). Deferred 
or-re
tion is then implemented by plugging in the numeri
al solution in thedis
rete problem de�ned by the blo
k method (4.13), thus obtaining (see,for example, [13, 20℄)Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 � �� : (4.14)The leading term in the arithmeti
 
omplexity for the lo
al error estimateis therefore given by the solution of the r linear systems with the fa
tors of
 required in (4.12) (see also (4.4)). Moreover, the estimate of � requires toin
lude the matrix ~B in the data stru
ture of the 
ode. We are now going toprove that, be
ause of the properties of the methods used in the 
ode BiM,deferred 
orre
tion allows a noti
eable short 
ut in its a
tual implementation.This result will be proved in the more general 
ase of blo
k impli
it methodswith internal abs
issae: t0 + 
1h; : : : ; t0 + 
rh;where 0 < 
1 < : : : < 
r (in parti
ular, for the methods implemented inthe 
ode BiM, one has 
i = i, i = 1; : : : ; r). From the analysis reported inSe
tion 3.2, it 
an be seen that the matrix Dr in (3.29) and the ve
tors qiin (3.26) generalize toDr = diag( 
1 : : : 
r ); qi = Dir1:The order 
onditions (3.27) and (3.28), with p = r, then be
ome:Dr1� b�B1 = 0; (4.15)Dir1� iBDi�1r 1 = 0; i = 2; : : : ; r: (4.16)We observe that, from (4.15), the ve
tor b turns out to be uniquely deter-mined, provided all LMF are 
onsistent, by the 
hoi
e of the matrix B. The



4.2. THE LOCAL ERROR ESTIMATE 71latter turns out to be uniquely determined by the order 
onditions (4.16)and by �xing its spe
trum (see Se
tion 3.2). Moreover, for i = r+ 1, (4.16)be
omes Dr+1r 1� (r + 1)BDrr1 = wr+1 � 0B� wr+1;1...wr+1;r 1CA ; (4.17)where wr+1 � (r + 1)! vr+1: (4.18)The ve
tor vr+1 
ontains the leading 
oeÆ
ients of the trun
ation errors ofthe LMF 
orresponding to ea
h equation of the blo
k method (see (3.50)and (3.53) for the parti
ular 
ase 
i = i; i = 1; : : : ; r). Then, from (4.16)and (4.17), it is not diÆ
ult to obtainD2rV �BDrV G = wr+1eTr ; (4.19)where G = diag( 2 : : : r + 1 ); V = 0B� 1 
11 : : : 
r�11... ... ...1 
1r : : : 
r�1r 1CA : (4.20)Sin
e the abs
issae f
ig are supposed to be distin
t, the Vandermonde ma-trix V in (4.20) turns out to be nonsingular. Consequently, one immediatelyobtains B = �D2rV �wr+1eTr �G�1V �1D�1r : (4.21)Now, in order to apply deferred 
orre
tion, we need an additional 
oupleof matri
es in the form (4.13), whose rows de�ne r-step LMF of order (atleast) r + 1, de�ned over the same set of abs
issae f
ig. The 
orrespondingorder 
onditions are, therefore, given by:Dr1� ~b� ~B1 = 0; (4.22)Dir1� i ~BDi�1r 1 = 0; i = 2; : : : ; r + 1: (4.23)Similarly to what seen in (4.15), now (4.22) uniquely de�nes the ve
tor ~b,on
e ~B is �xed. For the latter matrix, from (4.23) one readily obtains that~B = D2rV G�1V �1D�1r ; (4.24)



72 CHAPTER 4. THE CODE BIMthat is, the matrix is uniquely determined by the order 
onditions. The lat-ter equation generalizes the result of Theorem 3.2, 
on
erning the parti
ular
ase 
i = i; i = 1; : : : ; r:Let us now report some results 
on
erning the fa
torization of a Van-dermonde matrix (a
tually, its transpose as it is the matrix V ), to be usedlater. Though some of them are partially known (see, for example, [1℄), su
hresults are here 
ast in the most general and appropriate form for subsequentreferen
e. For this purpose, we need to introdu
e the following notations:� !j(x) = Qj�1k=1(x � 
k), j = 1; : : : ; r, is the jth Newton polynomialde�ned by the 
onsidered abs
issae;� xj [
1; : : : ; 
i℄ is the divided di�eren
e of the fun
tion xj over the ab-s
issae 
1; : : : ; 
i.The following basi
 properties are also re
alled, for sake of 
ompleteness:P1: !j(
i) = 0, if i < j;P2: xj�1[
1; : : : ; 
i℄ = 0, for j < i; xj�1[
1; : : : ; 
j ℄ = 1.An easy 
onsequen
e of the above properties is the following result.Lemma 4.1 The matri
esL = (wj(
i))i;j=1;:::;r ; U = �xj�1[
1; : : : ; 
i℄�i;j=1;:::;r ; (4.25)are lower and unit upper triangular, respe
tively.Then, the following result follows.Lemma 4.2 Let V;L; U be de�ned a

ording to (4.20) and (4.25). Then,V = LU: (4.26)Proof In fa
t, for all i; j = 1; : : : ; r, one has:eTi LUej = rXk=1!k(
i)xj�1[
1; : : : ; 
k℄ = 
j�1i ;where the last equality is due to the fa
t that the 
orresponding left-handside is the interpolating polynomial of the fun
tion xj�1, over the abs
issae
1; : : : ; 
r, evaluated at 
i.



4.2. THE LOCAL ERROR ESTIMATE 73Lemma 4.3 The inverse of the matrix L in (4.25) is given byL�1 = (`ij) � 8><>: 0; if j > i;1Qik=1;k 6=j(
j � 
k) ; if j � i:Proof By 
onsidering that`ii � (!i(
i))�1 ; i = 1; : : : ; r;and that both L and L�1 are lower triangular, it is then suÆ
ient to provethat eTi L�1Lej = 0; for i > j:In su
h a 
ase, by taking into a

ount P1, one obtains:eTi L�1Lej = iX�=1 wj(
�)Qik=1;k 6=�(
� � 
k) = wj [
1; : : : ; 
i℄ = 0;where the last equality follows from the fa
t that, for j < i, the polynomialwj has degree less than or equal to i� 2.From Lemma 4.3, the following result follows.Corollary 4.1 Let g(t) be a given fun
tion and let gi = g(t0 + 
ih), i =1 : : : ; r. Then,L�10B� g1...gr 1CA = 0B� h0g[t0 + 
1h℄...hr�1g[t0 + 
1h; : : : ; t0 + 
rh℄ 1CA :Proof From Lemma 4.3, for all i = 1; : : : ; r, one obtains thateTi L�10B� g1...gr 1CA = iX�=1 g�Qik=1;k 6=�(
� � 
k)= hi�1 iX�=1 g�Qik=1;k 6=�(
� � 
k)h= hi�1g[t0 + 
1h; : : : ; t0 + 
ih℄:Now, we are going to prove the result whi
h will allow us to signi�-
antly simplify the pro
edure for the lo
al error estimate, thus providingthe \short 
ut" previously mentioned. Moreover, su
h result 
learly quan-ti�es the approximation to the trun
ation error provided by the left-handside of equation (4.14).
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0 = 0 and g(t) be any fun
tion su
h thatg(t0 + 
ih) = f(t0 + 
ih; yi); i = 0; : : : ; r: (4.27)Then, (see (4.18)),Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 == � hr+1r + 1wr+1 
 g[t0 + 
0h; : : : ; t0 + 
rh℄: (4.28)Remark 4.1 By 
onsidering that the dis
rete solution is an O(hr+1) ap-proximation to the (lo
al) solution at the grid points, and re
alling that (see(2.1)) y0 = f(t; y), one easily realizes that, under suitable smoothness as-sumptions for f ,g[t0 + 
0h; : : : ; t0 + 
rh℄ = 1r!y(r+1)(t0) +O(h):From (4.18), it then follows that (4.28) provides a �rst order approximationto the leading term at the right-hand side of equation (4.11).Proof The numeri
al solution satis�es the dis
rete problemIr 
 Imy � hB 
 Imf � 1
 y0 � hb
 f0 = 0: (4.29)Therefore, by subtra
ting (4.29) from the left-hand side of (4.28), and bysetting ~f = � f0f � � 0B� f0...fr 1CA ;where fi = f(t0 + 
ih; yi) � g(t0 + 
ih); i = 0; : : : ; r; from (4.15){(4.24) weobtain: Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 == h([b jB℄ � [~b j ~B℄)
 Im~f= h(B � ~B)[�1 j Ir℄
 Im~f= �hwr+1eTr G�1V �1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr V �1D�1r [�1 j Ir℄
 Im~f = (�):From (4.25)-(4.26), property P2, Corollary 4.1, and 
onsidering that 
0 = 0,one then obtains:



4.2. THE LOCAL ERROR ESTIMATE 75(�) = � hr + 1wr+1eTr U�1L�1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr L�1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr L�1 264 �1
1 1
1... . . .�1
r 1
r 375
 Im~f= � h2r + 1wr+1eTr L�1 264 �1(
1�
0)h 1(
1�
0)h... . . .�1(
r�
0)h 1(
r�
0)h 375
 Im~f= � h2r + 1wr+1eTr L�1 
 Im0B� g[t0 + 
0h; t0 + 
1h℄...g[t0 + 
0h; t0 + 
rh℄ 1CA= � hr+1r + 1wr+1 
 g[t0 + 
0h; : : : ; t0 + 
rh℄:Sin
e the ve
tor wr+1 is known, see (4.18) and (3.50)-(3.53), from theprevious theorem it follows that we 
an dire
tly 
ompute the divided di�er-en
e at the right-hand side of equation (4.28), in order to obtain the estimateof � via deferred 
orre
tion. This implies that the matrix ~B is no longerrequired. In parti
ular, when 
i = i, i = 0; : : : ; r; as it happens for themethods implemented in the 
ode BiM, one obtains (see (4.18) and (4.27))hr+1r + 1wr+1 
 g[t0 + 
0h; : : : ; t0 + 
rh℄ = vr+1 
 (h�rf0) ; (4.30)where, here, � represents the (
omponentwise) di�eren
e operator. More-over, see (4.4), the �rst order approximation (4.12) to the lo
al error redu
esto e = � � = �vr+1 
 �h
�1�rf0� ; (4.31)so that it 
an be obtained at the 
ost of only one linear system solvingwith the fa
tors of 
. From the previous analysis, it follows that ea
h blo
kentry of the ve
tor e is O(hr+1), provided that the 
orresponding entry ofthe ve
tor vr+1 is nonzero. Nevertheless, from Theorem 3.5 and (3.55),we observe that, sin
e the last entry in vr+1 is 0, the last blo
k entry in(4.31), say er, is 0 as well, whereas we need an O(hp+1) approximation, ifp is the order of the method. In order to obtain a 
orresponding suitableapproximation also for er, we then 
onsider the last blo
k entry of the ve
tor(see (4.4), (4.10)-(4.11))
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C�1vr+1 
 h�rf0); (4.32)where s = 1, when r = 3, and s = 2, otherwise. This entry turns out to bethe one of largest norm and this feature will be useful for what we shall seein Se
tion 4.3.1, when speaking about the handling of the \order redu
tion"phenomenon for sti� problems.4.3 Stepsize and Order VariationIn this se
tion we des
ribe the strategies for the variation of both the step-size of integration h and the order p of the method. Both strategies rely onthe estimate of the lo
al error previously dis
ussed.First of all, the norm used to measure the error is the same norm de�nedin (4.6). As a 
onsequen
e, on one hand, from (4.4), (4.12), (4.31), and (4.32)one obtains thatkek = maxnvr1 j
�1Æ(r)(f0)j; jerjo = O(hr+1); (4.33)where vr1 � kvr+1k1 and Æ(r)(f0) � h�rf0. On the other hand, the quan-tity jerj =vuut 1m mXj=1� erj1 + ratoljy0j j�2 = O(hp+1); (4.34)already 
omputed to obtain (4.33), provides an estimate for keupk, namelythe error 
orresponding to the use of the next higher-order method. Thisfeature will be 
onveniently exploited when we shall speak about the ordervariation strategy. Before that, let us 
onsider the problem of the stepsizevariation in detail. If rtol and atol are the pres
ribed relative and absolutetoleran
es, the 
urrent solution is a

epted provided that (see (4.33))kek � atol: (4.35)The new stepsize, to be used by the same method, is then obtainedthrough extrapolation:hnew = h�sftyerr � atolkek � 1r+1 ; (4.36)where sftyerr = 120 if (4.35) holds true and sftyerr = 110 otherwise.Similarly, if r < 12 the stepsize to be used by the next higher-order methodwould be



4.3. STEPSIZE AND ORDER VARIATION 77hup = h�sftyup � atolkeupk� 1p+1 ; (4.37)where the approximation keupk = jerj is used (see (4.34)) and, moreover, wehave set sftyup = sftyerr=2. We shall use su
h an estimate for the stepsizeof the higher order method when dis
ussing the order variation strategy.Moreover, by denoting with ĥnew the sele
ted stepsize for the subsequentintegration step and with rnew the blo
ksize of the 
orresponding method tobe used, we setĥnew  minfmaxfĥnew; 0:12 � hg; 10 � h; hmax; (T � t0)=rnewg;where, by default, hmax � (T � t̂0)=8 being t̂0 the initial time of the IVP. Inaddition to this, if 0:1 � h � t0 � uround (the ma
hine pre
ision), then theexe
ution ends be
ause the sele
ted stepsize is too small. Finally, we alsouse the following heuristi
s: if nfail 
onse
utive failures have o

urred (ei-ther for the 
onvergen
e of the iteration or for the a

ura
y) before the lastsu

essful step, then the stepsize is in
reased only after at least nfail+ 1
onse
utive su

essful steps o

ur.Let us now 
onsider the problem of the order variation. The aim is thatof redu
ing the global 
omputational 
ost for getting a dis
rete solution witha pres
ribed a

ura
y. For this purpose, we normalize the 
ost with respe
tto the width of the 
overed interval. By negle
ting, for sake of simpli
ity,Ja
obian and fun
tion evaluations, whose 
ost in general is strongly problemdependent, we then introdu
e the following spe
i�
 
ost per step fun
tion forthe method with blo
ksize r:
tot(�; r;m; h) = 
fa
t + 
it + 
errrh ; (4.38)where 
fa
t is the 
ost for the fa
torization of the matrix 
 in (4.4), 
it isthe number of 
ops required by � iterations in (4.3), and 
err is the 
ost for
omputing the estimate (4.33) of the lo
al error. In parti
ular, in 
ase of afull m�m Ja
obian,
fa
t � 23 m3; 
it � 
it(r; �;m) � 4r�m2; 
err � � 4m2; if r = 3;6m2; otherwise.Corresponding formulae are used in 
ase of a banded Ja
obian.Therefore, the next higher-order method, with blo
ksize rup (see these
ond 
olumn in Table 4.1), requiring �up iterations for satisfying the samestopping 
riterion, and using a stepsize hup for getting the same a

ura
y,would be preferable in the subsequent step provided that
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tot(�up; rup;m; hup) < 
tot(�new; r;m; hnew); (4.39)where hnew and �new are the stepsize and the number of expe
ted iterationsfor the 
urrent-order method. Therefore, the problem is easily solved, on
ewe have an estimate for the above quantities. We have already seen howto get estimates for hnew and hup (see (4.36) and (4.37), respe
tively). Itremains to obtain estimates for �new and �up. We observe that, if the samestopping 
riterion has to be satis�ed, then the following equalities shouldapproximately hold, �� = (�new)�new = (�up)�up :In the above equation, � is the spe
tral radius of the 
urrent iteration matrix(estimated by (4.8)), � is the (known) number of iterations 
arried out tosatisfy the 
onvergen
e 
riterion (4.7), and �new, �up are the spe
tral radiiof the iteration matri
es of the 
urrent-order method, by using the newstepsize hnew, and of the next higher-order method, respe
tively. By takinginto a

ount that the sti� ampli�
ation fa
tor of both methods is 0, and
onsidering (3.18), we then obtain the following estimates,�new = � log �log �(hnew=h) ; �up = � log �log �(~�up=~�)(hup=h) ; (4.40)where ~� and ~�up are the nonsti� ampli�
ation fa
tors of the 
urrent and thenext higher-order methods, respe
tively (see Table 4.1). Finally, in order toprevent errati
 behaviour in some pathologi
al 
ases, the previous strategyis applied provided that all the following three 
onditions are satis�ed:1. 0:8h � hnew � 1:25h;2. at least maxf2; nfailg su

essful 
onse
utive steps have been 
arriedout with the 
urrent-order method, when the previous nfail stepsfailed to satisfy the a

ura
y requirement (4.35);3. the (estimated) spe
tral radius of the 
urrent iteration, say �, is \suit-ably small". The latter 
ondition is assumed to be ful�lled, providedthat � < �p, where the parameter �p is de�ned so that all methods dohave a pres
ribed absolute 
ost to obtain 
onvergen
e. In more detail,by setting �4 = 10�2j log10minf10�1; atol; rtolgj; (4.41)we require that, for all allowed orders p, the quantity 
it(rp; �p;m)(see Table 4.1 and (4.38)) is 
onstant, for the same stopping 
riterion,
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ksize and the number of iterations requiredby the pth order method, p = 4; 6; 8; 10; 12; 14. This leads to theequalities,rp �p = rp�2 �p�2; ��pp = ��p�2p�2 ; p = 6; 8; 10; 12; 14;whi
h provide the following re
ursion with starting value given by(4.41): �p = (�p�2) rprp�2 ; p = 6; 8; 10; 12; 14: (4.42)We observe that the sequen
e f�pg is a de
reasing one.A
tually, the last 
ondition is relaxed when � � 3 and both the 
on-ditions of stepsize stagnation and 
onvergen
e stagnation, as des
ribed inSe
tion 4.3.1 below, are veri�ed.So far, we have dealt with the strategy for in
reasing the order of themethod to be used at the subsequent step of numeri
al integration. However,it may be 
onvenient to de
rease the order of the method as well. Obviously,the 
riterion based on the minimization of the spe
i�
 
ost per step (4.38)
ould be, in prin
iple, also used to de
rease the order of the method, pro-vided that an estimate for hlow, namely the stepsize to be used by the nextlower-order formula, is available. Its 
omputation, based on a pro
eduresimilar to that required for evaluating hnew, would require an additionallinear system with the matrix 
 to be solved. Nevertheless, we de
ided notto systemati
ally resort to su
h a 
riterion for de
reasing the order, be
ausethere is numeri
al eviden
e that it is seldom e�e
tive. Instead, we 
hose tolower the order p to p� 2 (when r > 3, see Table 4.1), in either one of thefollowing two situations:� a failure of the nonlinear iteration (4.3) o

urs (in su
h a 
ase, hnew =h=2, as we have already said at the end of Se
tion 4.1);� all the following four 
onditions hold true:1. in the last step the 
urrent-order method has been su

essful;2. the nonlinear iteration (4.3) has required more than 3 iterations;3. the (estimated) spe
tral radius of the iteration matrix, �, satis�es� > �p, where �p is again de�ned a

ording to (4.42), but withthe initial 
ondition, in pla
e of (4.41),�4 = 0:5; (4.43)
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Figure 4.1: Variable versus �xed order implementation.4. if 
ondition (4.45) below is satis�ed, then hlow � hnew.In this 
ase, the new stepsize is set equal to:� hlow; if (4.45) and hlow � hnew hold true,minfhlow; hnewg; otherwise.In order to put into eviden
e the e�e
tiveness of the above order varia-tion strategy, in Figure 4.1 the results obtained for the Robertson problem(already introdu
ed in Se
tion 3.4) have been reported. In the �gure weplot the elapsed time (in se
onds) for the solution of the problem versus thenumber of signi�
ant 
orre
t digits (see (3.79)). As one 
an see, the plot ofthe variable order method is almost always below those of the �xed orderones, thus 
on�rming the e�e
tiveness of the order variation strategy.4.3.1 Order redu
tion re
overyA parti
ular handling is required in order to get rid of the so 
alled orderredu
tion phenomenon (see, for example, [59, 
hapter IV.15℄). Su
h a phe-
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urs when, in the test equation (3.1), h! 0 but q = h� is large.In su
h a 
ase, in fa
t, the expansion (4.11) of the trun
ation error be
omes� = qr+1 vr+1 y0 + qr+2 vr+2 y0 + : : : ;and the lo
al error is given by (I � qC)�1� . However, the latter expressionadmits di�erent expansions, depending on the \size" of q. In parti
ular,� when jqj is small, then(I � qC)�1� = qr+1 vr+1 y0 + qr+2 (vr+2 + Cvr+1) y0 + : : : ;and the prin
ipal term of ea
h entry behaves like qr+1, with the ex-
eption of the last one, whi
h depends on higher order terms;� when jqj is large, then(I � qC)�1� � �qr C�1vr+1 y0 + : : : : (4.44)In su
h a 
ase, the prin
ipal term of ea
h entry behaves like qr, in-
luding the last one.The 
on
lusions in the latter 
ase make evident the fa
t that jerj (see(4.34)) is no more an estimate for keupk. On the other hand, when q is large,it happens that, see (4.33)-(4.34),kek = jerj; (4.45)i.e., the norm of the last (blo
k) entry of the ve
tor de�ned in (4.32). More-over, the latter ve
tor turns out to be an approximation to the prin
ipalterm of the expansion (4.44). In 
on
lusion, when the order redu
tion phe-nomenon o

urs, the strategy for the order variation previously des
ribed,whi
h relies on the higher order a

ura
y of the last entry of the lo
al er-ror, may fail. Indeed, this a
tually happens for the well-known Prothero-Robinson problem (see [89℄). In su
h a 
ase, also the stepsizes stagnate. Inthe 
ode BiM, the order redu
tion phenomenon is re
ognized when (4.45)holds true or all the following 
onditions are satis�ed:order stagnation: the order of the method has not been in
reased by theabove mentioned strategy;error stagnation: jerj faterr � kek, where the parameter faterr is 
ho-sen a

ording to Table 4.1. When su
h a 
ondition holds true, thismeans that the last entry of the lo
al error is \not too small", withrespe
t to the remaining ones. This is, indeed, usually the 
ase, whenit 
orre
tly estimates the error for the next higher-order method. Theparameter faterr is, at the moment, 
hosen in a heuristi
 way;



82 CHAPTER 4. THE CODE BIMstepsize stagnation: the ratio between the new stepsize, hnew, and the
urrent one, h, belongs to the interval [0:95; 1:05℄;
onvergen
e stagnation: the ratio between the 
urrent estimated spe
-tral radius, � (see (4.8)), and the one of the previous iteration, �old,belongs to the interval [0:95; 1:05℄.On
e the error redu
tion phenomenon is re
ognized, it is possible to getrid of it, as explained in the sequel. The basi
 idea is to obtain an estimatefor keupk in a form similar to (4.33):keupk � vrup1 j
�1Æ(rup)(f)j: (4.46)Indeed, the quantity vrup1 is known. Con
erning the se
ond term, Æ(rup)(f)
an be approximated by suitable �rst (in the 
ase r = 3) or se
ond (inthe 
ase r > 3) di�eren
es of Æ(r)(f), sin
e this fun
tion has already been
omputed at the previous blo
ks. On
e the estimate (4.46) is available, theusual formula (4.37) 
an then be used, in order to predi
t hup.An additional question needs to be 
onsidered, at this point, by observingthat, when q is not small, then (3.18) is not valid. The latter approximatedequality, in turn, was used in order to predi
t �new and �up from the knowl-edge of �, h, hnew, hup (see (4.40)). However, when q is large we know that,see (3.75), �(q) � ~�(1)jqj ;where the values of the parameter ~�(1) are listed in Table 4.1. The previousresult allows us to derive the following estimates for �new and �up, alternativeto (4.40):�new = � log �log �(h=hnew) ; �up = � log �log �(~�(1)up =~�(1))(h=hup) ; (4.47)where ~�(1) is the parameter of the 
urrent-order method, and ~�(1)up is thatof the next higher-order one.Remark 4.2 It must be stressed that in the estimates (4.47), the ratiosh=hnew and h=hup are exa
tly reversed, with respe
t to those used in (4.40).This is due to the use of the approximation (3.75) in pla
e of (3.18).The estimates (4.47) are then used in the 
he
k (4.39), in order to de
idewhether to in
rease the order of the method to be used in the subsequentstep, when the order redu
tion phenomenon is diagnosed. Finally, we men-tion that, for robustness, when (4.45) holds true, the order is not in
reasedwhen the following two 
onditions are both ful�lled:
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tral radius for the higher order method,�up = � ~�(1)up~�(1) hhup ; (4.48)is larger than the 
orresponding maximum allowed value, as de�nedby (4.42)-(4.43).Indeed, the �rst 
ondition ensures that the approximation (4.48), derivedfrom (3.75), is appropriate also for the next higher-order method.4.4 Ja
obian evaluation and LU fa
torizationIn Se
tion 4.1 we have already observed that the overall 
omputational 
ostfor the solution of the dis
rete problem generated by a blended impli
itmethod approximately amounts to:� the evaluation of J0, the Ja
obian matrix at (t0; y0),� the fa
torization of the m�m matrix 
 (see (4.4)),� r� fun
tion evaluations,� 2r� system solvings with the fa
tors of the matrix 
,if � iterations are required to obtain 
onvergen
e. Obviously, the relative
omputational 
ost of the �rst two entries, with respe
t to the overall 
om-putational 
ost, depends on the 
ontinuous problem and on �. In parti
-ular, their relative 
ost in
reases when � de
reases. Therefore, when theblended iteration (4.3) 
onverges rapidly, the overall 
omputational 
ost ofthe iteration 
an be redu
ed signi�
antly by means of one of the followingapproximations: J0 � Jold; and=or 
 � 
old; (4.49)where Jold and 
old are the analogues of J0 and 
 at the previous blo
k ofpoints. It is 
lear that (see (4.4)) in both 
ases a perturbation is introdu
edin the matrix � and, therefore, the spe
tral radius of the 
orrespondingiteration matrix turns out to be a�e
ted. In the following two se
tions, weshall study this aspe
t by means of a linear analysis, whi
h relies on theparti
ular stru
ture of the dis
rete problem.



84 CHAPTER 4. THE CODE BIM4.4.1 The blended iteration with approximate Ja
obianLet us 
onsider the appli
ation of the method, 
orresponding to the blendediteration (4.3), to the test problem:y0 = �(t)y; y(t0) = y0 2 IR; Re(�(t)) < 0;and let us denote with � the value of �(t) at the initial point of the 
urrentsub-interval of integration. Then, we 
an write� = �old(1 + Æ); (4.50)where �old is the 
orresponding value of � at the previous blo
k of pointsand Æ 2 C is a suitable parameter. The approximate blended iteration,
orresponding to the use of the previous Ja
obian, is therefore given byy(i+1) = y(i) � �̂ h�̂ �(I � 
C�1)y(i) � h(C � 
I)f (i)�+
 �C�1y(i) � hf (i)�� �̂i ; i = 0; 1; : : : ; (4.51)where �̂ � (1� 
q̂)�1I; q̂ � h�old; (4.52)and (see 3.10), �̂ � �̂(�1 � �2) + �2:We shall 
onsider the additional �rst order approximation f (i) � �y(i) sothat the iteration (4.51) 
an be rewritten asy(i+1) = y(i) � �̂ h��̂ �I � 
C�1 � q(C � 
I)�+ 
 �C�1 � qI��y(i) � �̂i= y(i) � �̂ h��̂ �I � 
C�1 � q̂(1 + Æ)(C � 
I)�+
 �C�1 � q̂(1 + Æ)I��y(i) � �̂i ; i = 0; 1; : : : ; (4.53)where (see (4.50) and (4.52)) q � h� = q̂(1 + Æ). The spe
tral radius of the
orresponding iteration matrix depends, therefore, on both q̂ and Æ: let itbe �̂(q̂; Æ). The following result holds true.Theorem 4.2 If jÆj < �Æ with �Æ suÆ
iently small, then the spe
tral radius�̂(q̂; Æ) of the ampli�
ation matrix, say Z(q̂; Æ), of the iteration (4.53) is su
hthat1. when q̂ � 0 �̂(q̂; Æ) � jq̂j ~�(Æ); (4.54)



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 85where ~�(Æ) = 8>><>>: ��� (�1�
)2�1 + Æ�1��� ; when Im(Æ) � 0;��� (��1�
)2��1 + Æ��1��� ; when Im(Æ) < 0; (4.55)and, see (3.63)-(3.65), �1 is the eigenvalue of C with minimum mod-ulus and positive imaginary part;2. when q̂ !1 �̂(1)(Æ) � limq̂!1 �̂(q̂; Æ) = jÆj: (4.56)Proof The ampli�
ation matrix 
orresponding to (4.53) is given by (see(4.52))Z(q̂; Æ) = I � �̂2 �I � 
C�1 � q̂(1 + Æ)(C � 
I) + 
�̂�1(C�1 � q̂(1 + Æ)I)�= q̂(1� 
q̂)2C�1 �(C � 
I)2 + ÆC(C � 
2q̂I)� : (4.57)Therefore, sin
e jÆj is assumed to be bounded, when q̂ � 0 one hasZ(q̂; Æ) � q̂ C�1 �(C � 
I)2 + ÆC2� ;so that �̂(q̂; Æ) � jq̂j max�2�(C) ����(�� 
)2� + Æ����� � jq̂j ~�(Æ):We observe that, when � = �old or, equivalently, see (4.50), when Æ = 0,~�(0) 
oin
ides with the nonsti� ampli�
ation fa
tor 
orresponding to the\exa
t" blended iteration (see (3.61)), i.e.~�(0) = ~�: (4.58)From the result in Lemma 3.1, it then follows that, for all Æ 2 C with jÆjsuitably small, ~�(Æ) is obtained in 
orresponden
e of �1 or of the 
omplex
onjugate ��1. In parti
ular, by 
onsidering that 
 = j�1j and Im(�1) > 0,one veri�es that����(�1 � 
)2�1 + Æ�1���� � ����(��1 � 
)2��1 + Æ��1���� , Im(Æ) � 0:This 
ompletes the �rst part of the proof. On the other hand, when jq̂j ! 1,from (4.57) and the hypothesis on jÆj one obtainsZ(q̂; Æ)! �Æ I;
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h (4.56) easily follows.The previous theorem immediately implies that the blended iteration is nomore L-
onvergent. Nevertheless, one is still able, by estimating jÆj, to
ontrol the 
onvergen
e properties of su
h iteration when jq̂j � 1. On theother hand, when q̂ � 0 the following result holds true.Theorem 4.3 If q̂ � 0, � > 0 is a suitably small �xed parameter, andjÆj � ~�(0)�(1 + �)~�(0) + 
 ; (4.59)then �̂(q̂; Æ) . �(q)(1 + �)where �(q) is the spe
tral radius of the iteration matrix with exa
t Ja
obian.Proof We observe that, sin
e jÆj is bounded,q̂ � 0 ) q = q̂(1 + Æ) � 0and, therefore, see (3.18) and (4.58)Sk81,Sk86,,�(q) � ~�(0)jqj = ~�(0)jq̂jj1 + Æj:Moreover, when � is suitably small the term on the right-hand side of (4.59)is suÆ
iently small so that the �rst result of Theorem 4.2 applies. From(3.61), (4.50), (4.54)-(4.59), and by re
alling that 
 = j�1j, it then followsthat �̂(q̂; Æ) � jq̂j ~�(Æ) � jq̂j(~�(0) + jÆj
) � jq̂j ~�(0) (1 � jÆj)(1 + �)� jq̂jj1 + Æj ~�(0) (1 + �) � �(q)(1 + �):An immediate 
onsequen
e of the previous two theorems is that an es-timate of jÆj is needed in order to 
ontrol the perturbation on the spe
-tral radius of the iteration matrix. From (4.50) we obtain Æ = (� ��old)=�old. Consequently, estimates of j� � �oldj and of j�oldj are needed.In general, when we are solving problem (1.2), we will need to estimateÆ = kJ0 � Joldk=kJoldk. By 
onsidering a suitable ve
tor � su
h thatjj�jj1 = 1, we then evaluate the ve
tor g = f(t0; y0+ s ��)� f0, with s > 0a suitably small parameter, thus obtaining the following estimates:kJ0k1 � 1skgk1; kJ0 � Joldk1 � 1skg � goldk1:



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 87We observe that, for the linear autonomous equation y0 = J y, one obtainskg � goldk1 = 0, so that the re-evaluation of the Ja
obian is not needed, inthis 
ase, as one would expe
t.Con
erning the 
hoi
e of the parameter � (see (4.59)) made in the 
odeBiM, if p is the order of the method with blo
ksize rp (see Table 4.1) thenthe 
orresponding parameter, say �p, is 
hosen as follows:�4 = 5 � 10�2; �p = (�p�2) rprp�2 ; p = 6; 8; 10; 12; 14:The previous 
riterion is applied only when, at the previous blo
k ofpoints, (4.45) does not hold true and the blended iteration has been suf-�
iently \fast" 
onvergent. In parti
ular, by denoting with �old and �oldthe spe
tral radius of the iteration matrix and the number iterations at theprevious blo
k of points, respe
tively, in the 
ode BiM a fast 
onvergen
e isassumed when �old < 5 � 10�2 or �old < 4: (4.60)On the other hand, when (4.45) is satis�ed, we assume jqj � 1 and theJa
obian is not re-evaluated provided that (4.60) holds true andjÆj � �Æ(1);where the value of �Æ(1) depends on the order of the method, as spe
i�ed inTable 4.2.The previous analysis, requiring an additional fun
tion evaluation to getthe estimate of Æ, is a
tually applied provided that m > 5 (i.e., the size ofthe 
ontinuous problem is not very small). Moreover, an additional 
lassi
al
ontrol, used in many 
odes to de
ide whether the Ja
obian should be notevaluated, is also used in the 
ode BiM. In more detail, the Ja
obian is notevaluated when the blended iteration for the previous blo
k of points turnsout to be \very fast" 
onvergent. This is re
ognized when the following
ondition is satis�ed: �old < �J or �old < 3;where �J depends on the order of the method, a

ording to the values listedin Table 4.2.4.4.2 The blended iteration with approximate fa
torizationWe now study the 
ase where the following approximation is 
onsidered
 � 
old; (4.61)



88 CHAPTER 4. THE CODE BIMTable 4.2: Parameters of the methods used in the 
ode BiM.p r �Æ(1) �J x1 x2 dmin dmax4 3 5 � 10�2 5 � 10�3 -1.4487 2.3593 0.90 1.106 4 4 � 10�2 4 � 10�3 -1.4983 3.1163 0.91 1.098 6 3 � 10�2 3 � 10�3 -1.4662 3.5197 0.92 1.0810 8 2 � 10�2 2 � 10�3 -1.4290 3.7538 0.93 1.0712 10 1 � 10�2 1 � 10�3 -1.3964 3.9104 0.94 1.0614 12 9 � 10�3 9 � 10�4 -1.3689 4.0240 0.95 1.05(see (4.3)-(4.4)), in order not to evaluate the new fa
torization. First of all,it must be stressed that the previous approximation is allowed only whenthe Ja
obian has not been evaluated sin
e, otherwise, su
h evaluation wouldresult to be useless. Consequently, we assume that only the stepsize has
hanged, from the previous iteration. We shall, therefore, resort to a linearanalysis of 
onvergen
e, by applying the method to the test problem (3.1).In su
h a 
ase, the blended iteration (4.3), with the approximation (4.61),be
omesy(i+1) = y(i) � �old ���old �I � 
C�1 � q(C � 
I)�+
 �C�1 � qI��y(i) � ��i= y(i) � �old ���old �I � 
C�1 � qold d (C � 
I)�+
 �C�1 � qold dI��y(i) � ��i ; i = 0; 1; : : : ; (4.62)where hold is the stepsize used for the previous blo
k of points, qold = hold�,�old = (1� 
qold)�1I; q � h� = � hhold� qold � d qold; (4.63)and (see 3.10), �� � �old(�1 � �2) + �2:Therefore, the spe
tral radius, say ��(qold; d), of the 
orresponding iterationmatrix will now depend on both qold and d. The following theorem holdstrue.Theorem 4.4 If jd� 1j is suÆ
iently small, then the spe
tral radius of theiteration matrix of (4.62) is su
h that1. when qold � 0, ��(qold; d) � jqoldj ~�(d� 1); (4.64)where ~�(�) is de�ned a

ording to (4.55);



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 892. when qold !1, ��(1)(d) � limqold!1 ��(qold; d) = jd� 1j: (4.65)Proof We observe that the iteration (4.62) formally 
oin
ides with the it-eration (4.52)-(4.53) with the substitutions q̂  qold and Æ  d� 1. Conse-quently, from Theorem 4.2, one immediately obtains ��(qold; d) = �̂(qold; d �1), and, hen
e, the thesis follows.From the previous theorem, one immediately obtains that d 2 (0; 2) is ane
essary requirement for a satisfa
tory behaviour of the iteration for sti�problems. More pre
isely, when (4.45) holds true, so that we may assumejqoldj � 1, re-fa
torization is avoided provided that, see Table 4.2,jd� 1j � �Æ(1):Let now suppose qold � 0. The following analysis is devoted to pro-vide an estimate of the number, say ��, of iterations in (4.62), depending onthe number of iterations � that would have been required without the ap-proximation (4.61). The latter number 
an be estimated from the iterationparameters as dis
ussed in Se
tion 4.3 (see (4.40)). In order to derive the
riterion used in the 
ode BiM, we shall look for values of d (see (4.63)) su
hthat �� � ��; � = 1 +m(6r�)�1; (4.66)where r is the blo
ksize of the blended impli
it method and m is the sizeof the 
ontinuous problem. Indeed, for su
h value of the parameter �, oneveri�es that the 
ost of the linear algebra involved in the blended iterationwith the approximation (4.61) is less than or equal to the 
ost of the exa
titeration plus the 
ost to fa
tor 
 (evidently, for sake of simpli
ity, the 
ostof fun
tion and Ja
obian evaluations has been negle
ted). Moreover, weobserve that if the stepsize has not been 
hanged, i.e. h = hold, than, see(4.63), d = 1 and q = qold. In this 
ase, from Theorem 4.4 and (4.58), oneimmediately obtains ��(q; 1) = �(q);where �(q) is the spe
tral radius of the \exa
t" blended iteration. By as-suming that the same stopping 
riterion has to be satis�ed, we then obtain��(qold; d)�� = ��(q; 1)� and, therefore,�� = � log ��(q; 1)log ��(qold; d) :Consequently, the inequality in (4.66) 
an be written as��(qold; d)���(q; 1) � 1: (4.67)



90 CHAPTER 4. THE CODE BIMWe observe that (see (4.63)), sin
e d is bounded, then qold � 0 implies q � 0as well. Therefore (see (4.55)), by setting �old the spe
tral radius of theiteration matrix at the previous integration step, one obtains,��(qold; d) � jqoldj~�(d� 1) � � �old~�(0)� ~�(d� 1); (4.68)��(q; 1) � jqj ~�(0) � �old d:From (4.67)-(4.68), it follows then that d must satisfy~�(d� 1)�d � �old� ~�(0)�old �� : (4.69)Moreover, sin
e d� 1 is real, from (4.55) one obtains that (see (4.2))~�(d� 1) � ���� (�1 � 
)2�1 + (d� 1)�1���� = 
(d2 + 2x1d+ x2) 12 ; (4.70)where x1 = 2��(�� � 1)� 1; x2 = 1 + 4��:The values of x1 and x2 for the methods implemented in the 
ode BiM arelisted in Table 4.2. From (4.69) and (4.70), it follows that the stepsize ratiod must satisfy (d2 + 2x1d+ x2)�2d � �old� ~�(0)
�old�� : (4.71)Only one of the following two 
ases may then o

ur:1. d � 1;2. d < 1.In the �rst 
ase, i.e. when the stepsize has been in
reased, from Ta-ble 4.2 it is possible to verify that the inequality (4.71) is satis�ed for � = 1and d 2 [1; 2). Clearly, from (4.66) one obtains that this will hold true forall � � 1. Consequently, (see (4.63)) in the 
ode BiM we don't re-fa
torize,when the stepsize has been in
reased, unless d > dmax (see Table 4.2), wherethe last inequality is aimed to guarantee fast 
onvergen
e for sti� problemsand the �rst result in Theorem 4.4 to hold true.In the se
ond 
ase, i.e. when the stepsize has been de
reased, we 
anassume 1 > d � dmin, for a �xed dmin > 0 (see Table 4.2, for the values used



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 91in the 
ode BiM). In su
h a 
ase, one derives that a suÆ
ient 
ondition for(4.71) to be satis�ed is given byd2 + 2x1d+ x3 � 0; (4.72)where x3 = x2 � (dmin�old) 2� (~�(0)=(
�old))2 :Consequently, in the 
ode BiM, re-fa
torization is avoided, when the stepsizeis redu
ed, unless (4.72) turns out to be not satis�ed or d < dmin. Weobserve that, be
ause of (4.65), we have required jdmin � 1j = jdmax � 1j.
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Chapter 5Numeri
al ExperimentsDuring the development of the 
ode BiM several numeri
al experiments ondiÆ
ult sti� test problems, taken from the CWI testset [79℄ (now availableat the University of Bari [73℄) and from the Geneva testset [62℄, have beenperformed and, in the following se
tions, the most signi�
ant results arereported. In addition, in order to put into eviden
e the e�e
tiveness of theproposed approa
h, su
h results are 
ompared with those provided by someof the most eÆ
ient 
odes 
urrently available for the numeri
al solution ofsti� IVPs for ODEs:� DASSL (June 1991) implementing Ba
kward Di�erentiation Formulaeof orders from 1 through 5 (L. R.Petzold, [11℄);� GAM (November 1999) based on the Generalized Adams Methods oforders 3; 5; 7; 9 (F. Iavernaro and F.Mazzia, [71℄);� MEBDFDAE (November 1998) based on the Modi�ed Extended Ba
k-ward Di�erentiation Formulae of orders ranging from 1 to 7 (J. Cash,[40℄);� RADAU5 (January 2002) implementing the Radau IIa impli
it Runge-Kutta method of order 5 (E.Hairer and G.Wanner, [59℄);� RADAU (January 2002) whi
h is a variable-order version of RADAU5 im-plementing the Radau IIa impli
it Runge-Kutta methods of orders 5; 9and 13 (E. Hairer and G.Wanner, [59℄);All exe
utions have been 
arried out on a dedi
ated AMD Duron 1:3GHz
omputer, under Linux, and by using, for ea
h 
ode, the same 
ompileroption �O3 for optimization. Numeri
al experiments have been performedby using di�erent values for the input parameters 
onsisting of: the stepsizeh0 to be used for the �rst step (not needed for DASSL) and the pres
ribedabsolute (atol) and relative (rtol) toleran
es for the numeri
al solution.In the following se
tions, for ea
h problem, we report:93



94 CHAPTER 5. NUMERICAL EXPERIMENTS� a brief introdu
tion des
ribing the origin of the problem and the 
orre-sponding mathemati
al formulation. The reader interested in furtherdetails may �nd them in the 
ited referen
es;� the run 
hara
teristi
s of some tests performed with the problem.They 
onsist of the following statisti
s des
ribing the numeri
al in-tegration: steps, providing the total number of steps needed by thesolver (in
luding the reje
ted steps due to error test failures and/or
onvergen
e test failures); a

ept, giving the number of a

epted steps;f-eval and j-eval representing, respe
tively, the total number of fun
-tion and ja
obian evaluations, and LU-de
 for the total number of LU-de
ompositions (not available for DASSL). Con
erning the latter one,we remark that the values reported in 
orresponden
e of the 
odesBiM, GAM and MEBDFDAE refers to the fa
torizations of matri
es withthe same dimension m of the 
ontinuous problem. The RADAU andRADAU5 
odes, instead, 
ount (at most) 1 fa
torization per step. Were
all that su
h 
odes require, at ea
h step, the fa
torization of 1 realm � m matrix and (r � 1)=2 m � m 
omplex ones, where r is theblo
ksize of the method (see Se
tion 2.2.1 and [60℄). A 
omparisonbased on the number of LU-de
omposition must, therefore, take 
areof this fa
t.In addition, for ea
h run, we report the elapsed time (in se
onds)needed for the integration and the pre
ision of the numeri
al solutiony with respe
t to a referen
e one, say ytrue, at the end of the integrationinterval. The latter is measured both in terms of the signi�
ant 
or-re
t digits (s
d), already de�ned in Se
tion 3.4, and of the mixed-errorsigni�
ant 
orre
t digits (mes
d), de�ned asmes
d � � log10 (k(y � ytrue):=(artol+ jytruej) k1) ;where artol � atolrtol ( 1 : : : 1)T 2 IRm and := represents the 
omponen-twise ratio operator.� the Work-Pre
ision Diagrams (WPDs) plotting the \work", measuredin terms of the elapsed-time required for the integration, versus the\pre
ision" measured in terms of both s
d and mes
d.



5.1. THE ELASTIC BEAM PROBLEM 955.1 The elasti
 Beam problemThe problem originates from me
hani
s and des
ribes the motion of a thinelasti
 beam of length 1 whi
h is supposed inextensible. Moreover, it is as-sumed that the beam is 
lamped at one end and a for
e F a
ts at the freeend. It was originally des
ribed by a partial di�erential equation subje
t toboundary 
onditions. The semi-dis
retization in spa
e of this equation leadsto a sti� system of n nonlinear se
ond-order di�erential equations whi
h isrewritten to �rst order form thus providing a sti� system of nonlinear ODEsof size 2n. The eigenvalues of the 
orresponding Ja
obian are purely imag-inary and vary between �6400i and 6400i. A 
omplete des
ription of theproblem 
an be found in [59℄.Numeri
al experiments on this problem have been done for n = 40 (lead-ing to a system of 80 ODEs). Moreover, the equation has been integrated for0 � t � 5. Table 5.1 and Figure 5.1 present, respe
tively, the 
orrespondingrun 
hara
teristi
s and the work-pre
ision diagrams. For the latter ones weused: h0 = atol = rtol = 10�(2+m=8); m = 0; : : : ; 40.We remark the high regularity of the WPDs 
orresponding to the 
odesBiM and GAM. The widely 
haoti
 behaviour of the 
ode MEBDFDAE and thehigh ineÆ
ien
y of the 
ode DASSL are mainly due to the la
k of A-stabilityof the higher order formulae on whi
h su
h 
odes are based.Table 5.1: Run 
hara
teristi
s for the Elasti
 Beam problem (h0 = atol =rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBiM 10�2 1.83 2.18 14 14 289 12 14 4:88 � 10�210�4 2.63 3.45 63 63 1224 58 61 2:18 � 10�110�6 4.08 4.73 332 332 7038 301 312 1:18 � 100DASSL 10�2 0.62 1.45 63 60 101 7 2:26 � 10�210�4 1.57 1.98 28473 28269 30714 276 2:86 � 10010�6 3.36 4.20 53079 52532 58352 650 5:84 � 100GAM 10�2 1.76 2.03 16 15 485 14 16 5:89 � 10�210�4 2.80 3.65 51 49 1793 47 51 2:16 � 10�110�6 3.93 4.92 244 242 8699 237 244 1:04 � 100MEBDFDAE 10�2 1.25 1.52 57 55 740 8 8 2:59 � 10�210�4 2.23 2.49 274 270 2514 26 26 9:45 � 10�210�6 3.19 4.02 4622 4620 30577 303 303 1:25 � 100RADAU 10�2 1.99 2.59 23 20 176 16 23 1:18 � 10�110�4 2.49 3.57 62 55 406 43 61 3:13 � 10�110�6 2.84 3.73 58 58 847 41 55 4:53 � 10�1RADAU5 10�2 1.99 2.59 23 20 176 16 23 1:17 � 10�110�4 2.49 3.57 62 55 406 43 60 3:02 � 10�110�6 2.89 3.77 162 148 1114 95 139 7:31 � 10�1
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Figure 5.1: Work-Pre
ision Diagrams for the elasti
 Beam problem.



5.2. THE BRUSSELATOR WITH 1D DIFFUSION PROBLEM 975.2 The Brusselator with 1D di�usion problemThe problem arises from 
hemi
al kineti
s. Its mathemati
al formulation isa rea
tion-di�usion partial di�erential equation. In parti
ular, the followingone-spatial variable formulation of the problem has been 
onsidered [59℄:( �u�t = A+ u2v � (B + 1)u+ ��2u�x2 ;�v�t = Bu� u2v + � �2v�x2 ;with 0 � x � 1, 0 � t � 10, A = 1, B = 3, � = 1=50 and boundary
onditions u(0; t) = u(1; t) = 1; v(0; t) = v(1; t) = 3;u(x; 0) = 1 + sin(2�x); v(x; 0) = 3:The equation is transformed into a large sti� system of ODEs by meansof the method of lines applied to the di�usion terms. In parti
ular, a gridof 500 points has been 
onsidered for the spa
e interval, thus leading to anIVP for a system of 1000 ODEs. By 
onsidering the following ordering forthe 
omponents of the solutiony � ( u1 v1 u2 v2 : : : )T ;where ui and vi represent the approximations at the i-th spatial grid point,the Ja
obian of the resulting system turns out to be banded with upper andlower bandwidth equal to 2.Table 5.2 and Figure 5.2 present, respe
tively, the run 
hara
teristi
sand the work-pre
ision diagrams of the numeri
al experiments on this prob-lem. For the diagrams we used: h0 = atol = rtol = 10�(2+m=4); m =0; : : : ; 44. We observe that sin
e only the 
omponents with indexes 7k +1; k = 0; : : : ; 142 are provided for the referen
e solution, the reported s
dvalues refer only to them. Moreover, the mes
d values have not been 
om-puted sin
e this measure of the pre
ision is of interest only when it refers toall the 
omponents of the numeri
al solution (see [73℄).



98 CHAPTER 5. NUMERICAL EXPERIMENTSTable 5.2: Run 
hara
teristi
s for the Brusselator 1D problem (h0 = atol =rtol). Solver rtol s
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�5 6.36 33 32 663 28 33 2:86 � 10�110�8 9.64 50 50 1268 38 49 5:20 � 10�110�11 12.77 74 73 2501 55 73 1:11 � 100DASSL 10�5 4.13 133 131 161 18 1:04 � 10�110�8 6.79 474 473 550 24 3:60 � 10�110�11 9.68 1442 1440 2014 49 1:16 � 100GAM 10�5 5.41 26 24 847 21 26 4:08 � 10�110�8 8.22 37 36 1392 27 36 7:34 � 10�110�11 11.41 74 72 3055 58 74 1:62 � 100MEBDFDAE 10�5 5.83 121 120 182 19 19 2:79 � 10�110�8 7.68 263 261 380 31 31 6:98 � 10�110�11 11.06 614 614 861 59 59 1:66 � 100RADAU 10�5 5.54 46 44 320 38 46 1:85 � 10�110�8 9.04 43 40 656 29 43 3:32 � 10�110�11 11.59 49 46 1169 28 49 5:60 � 10�1RADAU5 10�5 5.54 46 44 320 38 46 1:81 � 10�110�8 8.15 124 123 846 92 107 4:56 � 10�110�11 10.66 381 381 2637 58 169 1:18 � 100
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Figure 5.2: Work-Pre
ision Diagrams for the Brusselator 1D problem.



5.3. THE EMEP PROBLEM 995.3 The Emep problemThe problem is the 
hemistry part of the EMEP MSC-W ozone 
hemistrymodel whi
h is in development at the Norwegian Meteorologi
al Institute ofOslo, [73, 95, 96, 97℄. About 140 rea
tions with a total of 66 spe
ies are in-volved in the model. The time interval [t0; T ℄ = [3600 � 4; 3600 � (�4+24�5)℄
overs 112 hours of simulation (the time is measured in se
onds). Moreover,some of the involved spe
ies undergo a dis
ontinuity at sunrise and sunset
orresponding to to t = 3600 (�4 + 24 i) with i = 1; 2; 3; 4.The equation has been solved by subdividing [t0; T ℄ into 9 adja
ent sub-intervals determined by the previous dis
ontinuities. Table 5.3 and Fig-ure 5.3 
ontain, respe
tively, the run 
hara
teristi
s and the work-pre
isiondiagrams for the Emep Problem. Sin
e 
omponents y36 and y38 are rel-atively very small and 
onsidered physi
ally unimportant, they are notin
luded in the 
omputation of the s
d values. For the WPDs we used:rtol = 10�(2+m=4); m = 0; : : : ; 36; atol = 1 and h0 = 10�7.We observe that, even thought the 
odes DASSL and MEBDFDAE turn outto be the most eÆ
ient ones in solving this problem, the 
ode BiM is ableto provide very regular results (see in parti
ular the WPD with the mes
don the abs
issae in Figure 5.3). As a matter of fa
t, this is not the 
ase forthe 
odes GAM, RADAU and RADAU5.Table 5.3: Run 
hara
teristi
s for the Emep problem (atol = 1, h0 = 10�7).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�3 2.13 2.13 368 360 5635 240 364 3:65 � 10�110�6 4.63 4.65 727 669 16960 549 713 1:01 � 10010�9 7.01 7.48 978 859 29064 647 930 1:64 � 100DASSL 10�3 2.40 2.40 1149 1093 2171 189 1:62 � 10�110�6 4.83 4.83 4145 3965 6981 459 4:99 � 10�110�9 7.40 7.68 9022 8770 12811 708 9:11 � 10�1GAM 10�3 3.46 3.46 316 282 11148 210 316 5:15 � 10�110�6 5.97 5.98 444 407 22184 324 432 1:02 � 10010�9 7.25 7.69 758 648 35939 485 697 1:65 � 100MEBDFDAE 10�3 2.35 2.35 1020 960 2247 172 172 1:81 � 10�110�6 5.18 5.18 2887 2728 5343 441 441 4:74 � 10�110�9 7.80 8.24 4962 4731 8107 713 713 7:74 � 10�1RADAU 10�3 2.46 2.46 436 382 3837 277 436 6:89 � 10�110�6 3.60 3.62 463 390 10241 281 463 2:03 � 10010�9 5.47 5.94 651 547 13929 408 650 2:81 � 100RADAU5 10�3 2.46 2.46 436 382 3837 277 436 6:80 � 10�110�6 4.43 4.45 965 905 8026 760 930 1:47 � 10010�9 5.57 6.04 1867 1756 13882 1462 1724 2:68 � 100
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Figure 5.3: Work-Pre
ision Diagrams for the Emep problem.



5.4. THE MEDICAL AKZO NOBEL PROBLEM 1015.4 The Medi
al Akzo Nobel problemThe Medi
al Akzo Nobel resear
h laboratories formulated this problem inthe study of the penetration of radio-labeled antibodies into a tissue thathas been infe
ted by a tumor, [67℄. This study was 
arried out for diagnosti
as well as therapeuti
 purposes.The mathemati
al formulation of the model leads to a rea
tion di�usionsystem of size 2 in one spatial dimension, (see [73℄ for further details). Theproblem is then transformed into a sti� IVP for a system of 2N ODEs bymeans of the method of lines. The Ja
obian of su
h system is banded withupper and lower bandwidth equal to 2.Numeri
al experiments were done in the 
ase N = 200. Table 5.4 andFigure 5.4 show the run 
hara
teristi
s and the work-pre
ision diagramsrespe
tively. For the latter ones, we used atol = rtol = 10�(2+m=4); m =0; : : : ; 28, h0 = 10�5 rtol.We remark the 
ompetitiveness of the results provided by the 
ode BiM.In addition to this, when 
ompared to the other variable-order 
odes, theWPD 
orresponding to the 
ode BiM turns out to be the most regular.Table 5.4: Run 
hara
teristi
s for the Medi
al Akzo Nobel problem (atol =rtol; h0 = 10�5 � rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�3 3.65 3.66 73 73 972 62 73 8:78 � 10�210�6 7.23 7.29 152 152 2967 131 152 3:07 � 10�110�9 9.82 9.83 216 216 5998 194 214 6:36 � 10�1DASSL 10�3 2.34 2.35 254 239 395 50 7:16 � 10�210�6 4.64 4.71 898 873 1272 86 2:39 � 10�110�9 7.61 7.65 2363 2336 2906 120 5:72 � 10�1GAM 10�3 3.89 3.91 61 61 1538 53 61 1:14 � 10�110�6 7.17 7.18 99 99 4034 82 99 3:50 � 10�110�9 9.54 9.55 138 137 8516 114 138 7:95 � 10�1MEBDFDAE 10�3 3.36 3.44 241 230 420 53 53 9:00 � 10�210�6 6.38 6.44 686 667 1005 95 95 2:57 � 10�110�9 8.61 8.67 1342 1312 1911 147 147 5:40 � 10�1RADAU 10�3 3.62 3.68 71 70 598 43 71 5:67 � 10�210�6 6.59 6.65 85 85 1527 49 85 2:35 � 10�110�9 9.11 9.17 142 142 2490 85 141 3:91 � 10�1RADAU5 10�3 3.62 3.68 71 70 598 43 71 5:49 � 10�210�6 5.49 5.50 182 182 1370 124 169 1:29 � 10�110�9 8.31 8.46 522 522 3384 336 401 3:23 � 10�1
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Figure 5.4: Work-Pre
ision Diagrams for the Medi
al Akzo Nobel problem.



5.5. THE PLATE PROBLEM 1035.5 The Plate problemThe plate problem is a linear non-autonomous problem with 
onstant 
oef-�
ient matrix arising from the des
ription of the movement of a re
tangularplate under the load of a 
ar passing a
ross it, [59℄. The mathemati
alformulation of the problem is:8<: �2u�t2 + ! �u�t + ���u = f(x; y; t); (x; y) 2 
;uj�
 = 0; �uj�
 = 0;u(x; y; 0) = 0; ��tu(x; y; 0) = 0:The domain 
 � [0; 2℄ � [0; 4=3℄, representing the plate, is dis
retizedon a grid of 8� 5 interior points thus leading to an IVP for a se
ond-ordersystem of 40 ODEs. This is then transformed into a system of 80 �rst-orderODEs.Numeri
al experiments for this problem were done for ! = 1000, � = 100and integration interval [t0; T ℄ = [0; 7℄. Table 5.5 and Figure 5.5 
ontain,respe
tively, the run 
hara
teristi
s and the 
orresponding work-pre
isiondiagrams. The input parameters used for the diagrams are the following:h0 = atol = rtol = 10�(2+m=4); m = 0; : : : ; 44.As one 
an see from the values listed in Table 5.5, the implementedstrategy 
on
erning the evaluation of the Ja
obian re
ognize the problem tobe linear with a 
onstant 
oeÆ
ient matrix and, 
onsequently, su
h evalu-ation is almost always avoided. Moreover, this is a problem for whi
h theorder redu
tion phenomenon o

urs and the reported results prove the ef-fe
tiveness of the 
orresponding re
overy implemented in the 
ode BiM (seeSe
tion 4.3.1).Table 5.5: Run 
hara
teristi
s for the Plate problem (h0 = atol = rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�5 5.41 7.41 21 20 522 3 19 3:99 � 10�210�8 7.40 9.51 38 37 1315 2 31 9:37 � 10�210�11 10.12 12.19 61 60 2728 2 49 1:90 � 10�1DASSL 10�5 2.81 4.95 115 112 181 15 1:76 � 10�210�8 5.62 7.98 524 520 710 26 5:78 � 10�210�11 8.14 10.08 3424 3413 4877 44 3:32 � 10�1GAM 10�5 3.50 5.64 22 20 655 17 22 4:17 � 10�210�8 6.26 8.40 38 35 1561 29 38 9:62 � 10�210�11 9.27 11.41 68 66 3641 59 68 2:09 � 10�1MEBDFDAE 10�5 3.35 5.29 96 91 152 9 9 1:77 � 10�210�8 7.14 9.08 206 202 299 23 23 3:94 � 10�210�11 10.22 12.16 445 442 636 35 35 7:80 � 10�2RADAU 10�5 3.18 5.43 21 19 107 3 18 6:07 � 10�210�8 4.42 6.56 30 29 181 2 25 9:47 � 10�210�11 6.81 8.91 47 44 341 4 37 1:51 � 10�1RADAU5 10�5 3.20 5.34 27 25 117 3 21 6:09 � 10�210�8 5.07 7.18 87 85 394 3 32 1:15 � 10�110�11 6.46 8.50 292 289 1438 4 75 3:34 � 10�1
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Figure 5.5: Work-Pre
ision Diagrams for the Plate problem.



5.6. THE POLLUTION PROBLEM 1055.6 The Pollution problemThe problem is a 
hemi
al model 
onsisting of 25 rea
tions and 20 rea
ting
ompounds. It represents the 
hemi
al rea
tion part of the air pollutionmodel developed at The Dut
h National Institute of Publi
 Health and En-vironmental Prote
tion (RIVM) and it is des
ribed by Verwer in [103℄.The mathemati
al formulation of su
h model produ
e a sti� IVP for asystem of 20 nonlinear ODEs, [73℄. The time interval [0; 60℄ is suÆ
ient toadequately represent the behaviour of the rea
tants.Numeri
al experiments for this problem have been done with the follow-ing set of input parameters h0 = atol = rtol = 10�(2+m=2); m = 0; : : : ; 22.The 
odes RADAU and RADAU5 fail to solve the problem for m = 0 sin
ethe used stepsize be
ame too small. The run 
hara
teristi
s and the work-pre
ision diagrams are reported in Table 5.6 and Figure 5.6 respe
tively.Table 5.6: Run 
hara
teristi
s for the Pollution problem (h0 = atol = rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�4 4.49 6.25 14 14 198 14 14 1:35 � 10�310�7 5.81 9.24 24 24 571 21 24 3:82 � 10�310�10 9.32 12.53 43 43 1241 29 43 8:25 � 10�3DASSL 10�4 1.96 3.89 35 34 55 13 8:43 � 10�410�7 4.13 5.94 135 135 190 22 2:67 � 10�310�10 5.93 9.92 381 378 497 37 6:81 � 10�3GAM 10�4 3.53 5.58 13 12 284 9 13 1:49 � 10�310�7 6.64 8.70 25 24 743 15 24 4:11 � 10�310�10 5.79 12.91 36 36 1463 26 36 8:37 � 10�3MEBDFDAE 10�4 3.15 5.18 37 37 57 10 10 8:73 � 10�410�7 4.74 6.72 123 123 184 19 19 2:72 � 10�310�10 6.98 10.75 247 247 352 34 34 5:45 � 10�3RADAU 10�4 1.23 3.05 22 18 156 15 21 1:70 � 10�310�7 3.78 5.59 32 29 227 21 32 2:48 � 10�310�10 7.75 8.77 35 35 449 21 35 4:09 � 10�3RADAU5 10�4 1.23 3.05 22 18 156 15 21 1:68 � 10�310�7 3.78 5.59 32 29 227 21 32 2:44 � 10�310�10 7.39 8.78 65 65 458 31 46 4:10 � 10�3
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Figure 5.6: Work-Pre
ision Diagrams for the Pollution problem.



5.7. THE RING MODULATOR PROBLEM 1075.7 The Ring Modulator problemThe problem originates from ele
tri
al 
ir
uit analysis and des
ribes the be-haviour of the so-
alled \ring modulator". The latter is an ele
tri
al 
ir
uitwhi
h produ
e a mixed signal starting from two input signals: one withlow-frequen
y and the se
ond with high frequen
y, [70, 73℄. The appli
ationof the Kir
ho� Current and Voltage Laws to ea
h 
losed loop present in the
ir
uit yields an IVP for a system of 15 nonlinear ODEs.The type and diÆ
ulty of the problem depends on the value of the 
a-pa
ity Cs in the 
ir
uit. The numeri
al results here presented refers toCs = 2 � 10�12 farad, for whi
h the resulting problem is a sti� di�erentialequation. In Table 5.7 and in Figure 5.7 the run 
hara
teristi
s and thework pre
ision diagrams are shown. The input parameters used for the di-agrams are the following h0 = atol = rtol = 10�(4+m=4); m = 0; : : : ; 32.Failed runs due to over
ow o

urs when the Radau 
ode is used to solve theproblem with input toleran
es 
orresponding to m = 0 � 11; 15 � 17. Weremark that, with respe
t to the sour
e 
ode available at [73℄, the 
ontrolaimed to prevent over
ow has been omitted.Table 5.7: Run 
hara
teristi
s for the Ring Modulator problem (h0 = atol =rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�4 2.22 2.91 18406 17998 420799 16831 18258 2:41 � 10010�7 6.17 7.11 25741 25091 816709 25077 25733 4:56 � 10010�10 8.83 9.52 29380 28609 1422679 28591 29376 8:13 � 100DASSL 10�4 0.46 1.15 85466 82972 115884 3510 1:26 � 10010�7 2.52 3.21 248615 244982 322234 7720 3:62 � 10010�10 4.93 5.62 749570 743521 1071129 17106 1:11 � 101GAM 10�4 1.73 2.41 13482 11731 475787 11532 13468 2:41 � 10010�7 5.32 6.01 19443 18041 914241 17194 19310 4:74 � 10010�10 7.96 8.65 34488 33218 1763773 30011 33581 9:09 � 100MEBDFDAE 10�4 1.78 2.46 65732 65404 99268 6419 6419 1:17 � 10010�7 4.64 5.33 155991 155293 217989 13796 13796 2:67 � 10010�10 7.28 7.97 348393 347390 464821 25611 25611 5:82 � 100RADAU 10�10 7.83 8.52 19617 16807 454097 7572 17076 2:90 � 100RADAU5 10�4 1.45 2.14 36373 28683 176940 8923 32269 1:49 � 10010�7 3.81 4.49 102504 93116 545239 12302 54807 3:58 � 10010�10 6.12 6.81 288746 279396 1704967 13033 142688 1:04 � 101
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Figure 5.7: Work-Pre
ision Diagrams for the Ring Modulator problem.



5.8. THE ROBERTSON PROBLEM 1095.8 The Robertson problemThe problem des
ribes the kineti
s of an auto
atalyti
 rea
tion given in1966 by Robertson, [90℄. The model involves three 
hemi
al spe
ies and the
orresponding mathemati
al formulation is:8<: y01 = �0:04 y1 + 104 y2 y3;y02 = 0:04 y1 � 104 y2 y3 � 3 � 107y22;y03 = 3 � 107y22 ;where t 2 [0; T ℄ and initial value y0 = (1; 0; 0)T .Numeri
al experiments for this problem have been done for T = 4 � 106.Table 5.9 and Figure 5.8 show respe
tively the run 
hara
teristi
s and the
orresponding work-pre
ision diagrams. For the diagrams we used h0 =atol = rtol = 10�(2+m=4); m = 0; : : : ; 44. In Table 5.8, we list the failedruns o

urred during the experiments.We observe that, when high a

ura
y is required for the numeri
al solu-tion, the 
odes BiM and RADAU are the most eÆ
ient ones.Table 5.8: Failed runs for the Robertson problem.Solver m reasonDASSL 1,2 error test failed repeatedlyMEBDFDAE 3,4,5 hmin redu
ed by a fa
tor of 1010RADAU and RADAU5 0-8 stepsize too smallTable 5.9: Run 
hara
teristi
s for the Robertson problem (h0 = atol = rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�5 5.50 8.79 59 59 1038 59 59 7:28 � 10�410�8 8.28 11.57 58 57 2213 53 58 1:53 � 10�310�11 11.39 14.48 93 92 3960 86 93 2:77 � 10�3DASSL 10�5 2.13 5.99 226 219 341 40 8:72 � 10�410�8 4.56 8.49 776 752 1116 75 2:86 � 10�310�11 7.29 10.94 1855 1817 2526 113 6:34 � 10�3GAM 10�5 4.92 8.21 51 43 1726 39 49 1:09 � 10�310�8 6.66 10.36 55 55 2989 45 55 2:03 � 10�310�11 9.65 13.03 101 101 5719 89 101 3:89 � 10�3MEBDFDAE 10�5 4.11 7.40 213 212 305 39 39 6:68 � 10�410�8 7.35 10.65 500 496 747 63 63 1:62 � 10�310�11 9.37 12.66 991 988 1446 114 114 3:19 � 10�3RADAU 10�5 3.93 7.22 61 59 488 56 61 4:57 � 10�410�8 6.83 10.12 147 145 1057 139 147 9:88 � 10�410�11 8.88 12.16 104 103 1952 91 104 1:42 � 10�3RADAU5 10�5 3.93 7.22 61 59 488 56 61 3:94 � 10�410�8 6.83 10.12 147 145 1057 139 147 8:82 � 10�410�11 8.49 11.78 416 415 2914 217 229 2:12 � 10�3
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Figure 5.8: Work-Pre
ision Diagrams for the Robertson problem.



5.9. THE VAN DER POL PROBLEM 1115.9 The van der Pol problemThe van der Pol problem originates from ele
troni
s and des
ribes the be-haviour of a nonlinear va
uum tube 
ir
uit, [59℄. The standard mathemati
alformulation of the problem is:z00 + �(z2 � 1)z0 + z = 0; � > 0:This equation has two periodi
 solutions: the 
onstant solution z(t) � 0,that is unstable, and the nontrivial periodi
 solution (
orresponding to theinitial 
onditions z(0) = 2; z0(0) = 0), whi
h it is an attra
tive limit 
y
le,sin
e all the other nontrivial solutions approa
h it, as t!1.Numeri
al experiments on this problem have been done by performingthe 
lassi
al transformation into a �rst-order system of 2 ODEs, and 
on-sidering the initial value (2; 0)T , Finally, we 
onsider the value � = 1000and the integration interval [0; �℄. In Table 5.10 and Figure 5.9, the run
hara
teristi
s and the work-pre
ision diagrams are shown. For the latterones, we used h0 = atol = rtol = 10�(2+m=4); m = 0; : : : ; 44.Table 5.10: Run 
hara
teristi
s for the van der Pol problem (h0 = atol =rtol).Solver rtol s
d mes
d steps a

ept f-eval j-eval LU-de
 CPUBIM 10�5 6.15 6.40 79 69 1848 66 79 9:32 � 10�410�8 8.97 9.66 123 117 3940 108 123 1:93 � 10�310�11 11.96 13.71 157 157 6397 144 157 3:12 � 10�3DASSL 10�5 4.10 4.49 354 335 574 64 1:06 � 10�310�8 6.09 6.54 973 959 1537 74 2:93 � 10�310�11 8.89 9.34 3275 3251 4861 116 9:33 � 10�3GAM 10�5 6.15 6.34 66 50 2751 42 66 1:25 � 10�310�8 7.73 7.94 101 87 5988 62 101 2:73 � 10�310�11 10.35 10.75 126 118 7743 63 117 3:54 � 10�3MEBDFDAE 10�5 3.77 4.21 336 313 562 48 48 8:67 � 10�410�8 7.07 7.47 668 647 1090 74 74 1:74 � 10�310�11 9.99 10.58 1560 1544 2337 160 160 3:98 � 10�3RADAU 10�5 4.33 5.88 127 113 1116 93 125 7:49 � 10�410�8 6.47 7.92 137 134 1877 106 133 1:12 � 10�310�11 10.95 11.14 143 135 3403 98 138 1:77 � 10�3RADAU5 10�5 5.22 6.04 146 131 1133 93 134 6:57 � 10�410�8 7.48 7.92 373 368 2813 181 306 1:63 � 10�310�11 9.46 9.95 1147 1146 8394 243 854 4:70 � 10�3



112 CHAPTER 5. NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7 8 9 10 11 12 13

10
−3

10
−2

Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

BiM     
DASSL   
GAM     
MEBDFDAE
RADAU   
RADAU5  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
−3

10
−2

Mixed−Error Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Figure 5.9: Work-Pre
ision Diagrams for the van der Pol problem.



5.10. FINAL REMARKS 1135.10 Final RemarksThe previous results prove that the 
ode BiM turns out to be a robust andreliable one. We think that su
h pe
uliarities are mainly due to the resultsobtained with the linear analysis of 
onvergen
e for the blended iterationwhi
h have allowed to 
onstru
t a 
ode with a very little heuristi
s inside.Moreover , we think that, in evaluating the usability of a numeri
al software,the 
apability of providing regular and robust results has to be taken intofull a

ount.In terms of eÆ
ien
y, the new 
ode turns out to be 
ompetitive withrespe
t to some of the best 
odes 
urrently available. In parti
ular, weremark that the 
ode BiM always well 
ompare with respe
t to the 
odeGAM. This 
omparison turns out to be of parti
ular interest be
ause of thefollowing 
onsiderations:� both 
odes make use of a nonlinear splitting for the solution of the dis-
rete problem generated by the implemented blo
k impli
it methods;� the nonlinear iteration used in BiM requires the solution of twi
e linearsystems per iteration with respe
t to the one used in GAM, for methodswith the same blo
ksize r.As a 
onsequen
e, the obtained results prove the high eÆ
ien
y of the pro-posed blended implementation in terms of 
onvergen
e properties of the
orresponding nonlinear iteration.The 
ode BiM is 
urrently available at the WEB site:http://www.math.unifi.it/~brugnano/BiM/The page 
ontains the Fortran77 sour
e �les of the 
ode. Moreover, theresults obtained in several numeri
al experiments, among whi
h the oneshere reported, are also available on that page. In addition, for ea
h testproblem, a 
orresponding Fortran77 sour
e 
ode is available . The latter
ontains the routines for the fun
tion and ja
obian evaluations, the de�nitionof the initial value and of the integration interval and, �nally, the referen
esolution with respe
t to whi
h the pre
ision of the numeri
al solution hasbeen 
omputed.



114 CHAPTER 5. NUMERICAL EXPERIMENTS5.11 Future Resear
hSeveral dire
tions for future resear
hes 
on
erning blended impli
it methods
an be foreseen. Among them, we quote the following ones:� The resear
h for the implementation on parallel 
omputer of the 
odeBiM . As already observed, the diagonal splitting used in the 
odeBiM determines a perfe
t degree of parallelism of the blended iter-ation, for what 
on
erns the system solvings and the fun
tion eval-uations. An implementation on parallel 
omputer of su
h methodsseems, therefore, to be promising. Obviously, a ne
essary requirementfor the e�e
tiveness of the parallel 
ode, at least for small/medium sizeproblems, is a \reasonable" balan
e between the peak performan
e ofthe pro
essor elements of the parallel 
omputer and the 
ost for theinterpro
essor 
ommuni
ations. When large size problems have to besolved, instead, the use of an algorithm for a parallel de
ompositionis mandatory. The previous 
onsiderations refers to a general-purposeIVP parallel solver. However, when the 
ontinuous problem is of largesize and has a sparse Ja
obian matrix (as it happens, for example,for the ODEs arising from the appli
ation of the method of lines torea
tion-di�usion PDEs in more than 1 dimension), the use of itera-tive methods for linear systems, in pla
e of dire
t ones, may be more
onvenient. In solving this kind of problems, a parallel version of the
ode BiM seems to have great potentialities;� The extension of the 
ode BiM for the solution of linearly impli
itDAEs, M y0(t) = f(t; y); (5.1)with 
onstant mass matrixM and index lower or equal to 3, is a furtherimportant argument of future resear
h. In this 
ontext, the 
hoi
e ofthe weight fun
tion � in (4.4) has to be adapted. Then, a linear analysisof 
onvergen
e of the obtained iteration is required. Moreover, theproblem of the lo
al error estimates needed for the variation of boththe stepsize and the order of the method has to be investigated;� Finally, the sear
h for di�erent Blended Impli
it Methods, with re-spe
t to the ones implemented in the 
ode BiM, represents an interest-ing subje
t of further investigation. As an example, the use of basi
blo
k impli
it methods with non uniformly distributed internal abs
is-sae may result in an improvement of the 
onditioning of the 
oeÆ
ientmatrix C of the method and, 
onsequently, of the dis
rete problem.
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