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Preface

Ordinary Differential Equations (ODEs) play a central role in the mathe-
matical modelling of real world phenomena. The solution of such equations
allows to find answers to such questions as how a physical system evolves or
what are the possible effects of changes in the system. In general, it is ex-
tremely difficult, if not impossible, to obtain an analytic solution of an ODEs.
It is for this reason that the research concerning numerical methods for the
approximate solution of such equations became so important. In particular,
the solution of Initial Value Problems (IVPs) for ODEs has been, and contin-
ues to be, one of the most active field of investigation in Numerical Analysis.
This is shown by the very rich amount of significant contributions during the
last fifty years. In addition, many of the obtained results have been collected
in several books, among which we quote [5, 20, 25, 35, 47, 58, 59, 76, 94].

Across the years, the required properties for a numerical method have
had an interesting evolution. Indeed, until the fifties, accuracy require-
ments were considered as the most important for the methods. After that,
stability requirements became focal, in particular in connection with the nu-
merical solution of stiff problems. More recently, attention has been devoted
to methods well suited for particular differential problems (like, for exam-
ple, Delay Differential Equations [8], Hamiltonian problems [61, 93], and
Stochastic Differential Equations [26]), and to methods well suited for an
efficient implementation on modern computers, including parallel comput-
ers. In the latter context, properties of the methods such as the definition of
efficient splittings, degree of parallelism, etc. have become focal, especially
in connection with the solution of large-size problems, and the present dis-
sertation deal with this topic. The thesis, in fact, is devoted to the so-called
Blended Implicit Methods. In addition to classical requirements, such as
high order of accuracy and “good” stability properties, the latter are meth-
ods defined in order to favourably meet implementation requirements. The
generated discrete problem, in fact, may be efficiently solved by means of
an iterative procedure based on a corresponding nonlinear splitting which is
“naturally” defined. The main result of the developed research consists in
the new code BiM for the numerical solution of stiff problems.
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The thesis is organized as follows. Chapter 1 is devoted to a brief intro-
duction on the reference continuous problem and on numerical methods for
its approximate solution. Some of the most important results concerning
the theory of numerical methods for ODEs are also reported, in particular
in connection with the solution of stiff problems.

Chapter 2 is devoted to discuss the most efficient techniques currently
used for the implementation of Block Implicit Methods. In more details,
the issue of the solution of the discrete problem generated, at each step of
integration, by a method in that class is addressed.

Blended Implicit Methods are then presented in Chapter 3 together with
the linear analysis of convergence of the associated iteration, which they
naturally define, for the solution of the discrete problem.

The implementation strategies, used in the development of the variable-
stepsize, variable-order code BiM, are, then, discussed in full details in Chap-
ter 4. It will be shown that almost all of such strategies are supported and
justified by the results obtained through the previously mentioned linear
analysis of convergence.

The numerical results obtained by using the new code are reported
and analyzed in Chapter 5. In particular, such results are compared with
those provided by some of the best codes for stiff ODEs currently available.
Finally, some directions for future researches concerning Blended Implicit
Methods are briefly sketched.
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Chapter 1

Introduction

This chapter is intended to present the basic notions concerning numerical
methods for the approximate solution of ODEs. In particular, some of the
most important results concerning the theory of Linear Multistep Formulae
and Runge-Kutta methods are recalled. Stiff problems and their numerical
solution are then, briefly, discussed in the last section.

1.1 The reference problem

The reference problem of the thesis is the first-order ODE

y'(t) =f(ty®),  telt,T] (1.1)

In the previous equation one can distinguish the independent variable ¢
which, often, in the described physical system, represents the time and the
dependent variable y(¢) which constitute the solution of the problem. Fre-
quently, y(t) is a vector valued function, i.e.,

y(t) : IR — R™, fty(t): R xR™ — R™,

where m is the dimension of the system.

In general, the solution of (1.1), in the case it exists, is not unique. An
additional requirement on the solution is necessary to obtain its uniqueness.
One of the most widely used is, certainly, to prescribe the value the solution
must assume at the initial time ¢;. The corresponding problem

{y’(t) = f(t.y(t)), t € [to, T, (1.2)
y(to) = yo € R™,

where 1 is the prescribed initial value, is known as an Initial Value Problem
(IVP) for the ODE (1.1). This kind of problems occur very frequently in
the applications since, in many cases, the state of the system is known at a

1



2 CHAPTER 1. INTRODUCTION

certain time and one is interested to know the state at a certain time in the
future.

The existence and uniqueness of the solution of the IVP (1.2) are (locally)
guaranteed by the following well-known theorem.

Theorem 1.1 Suppose that in the region D C R™T!, defined by

D ={(t,y) : [t = to| <a,ly —woll < b},

the function f(t,y) is continuous and satisfies the Lipschitz condition

1t y) = F(t,2)l] < Lily — 2|.

Then, there exists a unique solution of problem (1.2). Moreover, if

M= sap (|If(t2)]]),
(t,z)eD

the solution is defined in the interval |t — to| < min(a,b/M).

In the following, the hypotheses of the previous theorem will be always
assumed to be satisfied.

1.2 Numerical Methods for ODEs

The numerical solution of the IVP (1.2) is usually carried out by formally
executing the following three steps:

1. the definition of a suitable discrete set (or mesh) {t,}"=) in the in-
terval [to, T;

2. the replacement of the continuous problem by a discrete one, defined
on such a discrete set;

3. the solution of the discrete problem.

Concerning the first step, the mesh may be predetermined or, as it hap-
pens more frequently, generated dynamically during the integration process.
Actually, the problem of appropriately select the mesh points {tn}ZiéV plays
a central role on the possibility of obtaining, in an efficient way, a numerical
approximation to the solution of the differential equation. This argument
will be addressed in details in Chapter 4. Until then, for the sake of simplic-
ity, the simplest mesh, given by the following set of uniformly distributed
grid-points in [¢g, T,

T —t
N h)

t,=to+nh, n=0,1,...,N, h= (1.3)
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will be always considered. The parameter h in (1.3) is often called the step-
size or the steplength.

The third point, in the previous scheme, may either be a trivial or a
difficult task according to the discrete problem defined in the second step.
Actually, the main subject of the present dissertation will be the definition
of efficient techniques for its solution.

Finally, the discrete problem, replacing the continuous one on the dis-
crete set, strictly depends on the particular numerical method. As a matter
of fact, the latter defines the “rules” used in performing such a replacement.
From an historical point of view, the first method for ODEs is known as the
explicit Euler method due to Euler in the early days of calculus (1768). The
discrete problem generated by such method is the following one,

yn+1:yn+hfm anf(tnayn)a n=0...,N—1, (1'4)

where y,, represents, for each n, the numerical approximation of the solution
at t,, i.e.,
Yn = Y(tn).

Thus, at each step, such method assumes the knowledge of the incoming
data y, and the new approximation is obtained by assuming the slope of
the y function constant throughout the interval [¢,,t,11]. Equivalently, the
numerical integration proceeds by considering, after each step n, a new
(local) TVP to be approximated, with initial value given by y(t,) = yn.
This initiates the idea of local error where after each step the incoming
data is assumed to be exact. The accuracy of the numerical solution is
then measured by comparing the approximation, after one single step of
integration, with the Taylor series expansion of the local exact solution,
given by

hQ
Y(tng1) = y(tn) + hy'(tn) + gy"(tn) 4o

In particular, the Euler method is a first order one since it agrees with such
an expansion up to the first power of h. According to the approach adopted
for increasing the accuracy of the approximate solution, nowadays numerical
methods for ODEs may be subdivided into two main classes of methods:

o Multistep methods;
e One-step (Multistage) methods.

Multistep methods obtain higher accuracy by allowing the approximate solu-
tion at a point to depend on the values of the solution and of the derivatives
before the immediately previous point. One-step (multistage) methods, in-
stead, build up y,41 from values of the solution, and the corresponding
derivatives, at several internal points (or stages) between ¢, and t,1.
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1.3 Linear Multistep Formulae

The most popular multistep methods are, certainly, Linear Multistep For-
mulae (LMF), also called Linear Multistep Methods (LMMs). They generate
discrete problems with the following general form:

k k
Zajynﬂ-:hz:ﬁjfnﬂ, ’I’LZU,...,N—k, (1.5)
j=0 i=0

where f, = f(tn,yn), and k is called the stepnumber of the method. Thus,
a k-step LMF transforms the differential equation (1.2) in a linear, with
respect to y, and f,, difference equation of order k. Usually an IVP for the
continuous equation is solved by means of an IVP for the discrete one, that
is, a set of k initial values,

Yo, Y1y -+ - Yk—1, (16)

is always associated to (1.5). Since only yq is provided by the continu-
ous problem, a starting procedure is required to obtain the remaining ones.
Then, a recursive procedure may be applied to compute the overall numeri-
cal solution. In particular, explicit methods are, by definition, those methods
having O = 0. In this case, the algorithm for the solution of the discrete
problem turns out to be a trivial and cheap one. On the other hand, when
Br # 0 (i.e. the method is an implicit one) the solution of an algebraic
equation in IR™ is required, at each step, to get the new approximation.

A general theory concerning multistep methods was started by the work
of Dahlquist [44, 45] and became famous through the classical book of
Henrici [63]. In particular, in the 1956 paper [44], Dahlquist introduced
the fundamental concepts of consistency, 0-stability and convergence. The
latter property describes the asymptotical behaviour of the numerical so-
lution, with respect to the continuous one, when an increasing number of
mesh-points in [tg, T is used. More precisely, a LMF is said to be convergent
in [tg, T] if, starting from “sufficiently” accurate values and assuming that
the discrete problem is solved exactly, it provides approximations such that,

T —tg

li tn) — =0 h = :

When looking for the properties that a convergent LMF has to satisfy, it
was found fundamental the convergence of the numerical method in corre-
spondence of the following three problems:

y(0) = 0;
y(0) = 1;

—
o~

N
Il

0,
0,

[ ]
<
—

~~
N
Il
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e () =1, y(0)=0.
In particular, by introducing the polynomials,

k k

p(z) = Zajzj, o(z) = Zﬁjzj, (1.7)

it was found that convergence of a LMF for the first problem necessarily
requires p(z) to be a Von Neumann polynomial (i.e. all zeros of p(z) lie in
the unit disc and all zeros on the boundary are simple). LMF with such
property are called stable or 0-stable. Concerning the second problem in
the previous list, it can be proved that the numerical solution may converge
uniformly to the continuous one, only in the case where

p(1) = 0. (1.8)

The previous condition is, sometimes, referenced as the “pre-consistency
condition”. Finally, a O-stable and pre-consistent LMF is able to compute
the exact solution of the third problem, in the limit, only in the case where

p(1) =o(). (1.9)

A LMF is said to be consistent when it satisfies the consistency conditions
(1.8)-(1.9). Therefore, convergence for a LMF requires both consistency and
O-stability. In [44] Dahlquist proved that the last two properties are, indeed,
sufficient for convergence, thus leading to the well-known result:

convergence & consistency +  O-stability.

For a general IVP, the residual obtained when the sequence {y(t,)},
consisting of the values that the exact solution assumes at the mesh-points,
is inserted into the discrete problem,

k

k
Tn = Zaj y(tn-l-j) - hZﬁj f(tn-l-jay(tn-l-j))a (1-10)
=0

J=0

is called the truncation error of the method. By considering the Taylor
series expansion of the continuous solution at ¢,, it can be seen that, for a
consistent method, the truncation error depends, at least, quadratically on
h. The order of accuracy for a LMF is, then, defined as the largest p such
that

Tn = O(hP).

The same Taylor expansion allows to prove that p is given by the largest
integer such that the following order conditions hold true:
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k
> (o —s"'B) =0,  s=0,1,....p. (1.11)
j=0

In this case, the truncation error can be expressed as
Tn = Uppt Py PT (1) + O(hPF?),

where
k

Z (77 ey — (p + 1)37B)) (1.12)

)!
Jj=0

Up+1 =

is called the principal error coefficient of the method (obviously, the contin-
uous problem is assumed to be sufficiently smooth).

The following is a well-known result concerning the accuracy of the nu-
merical solution provided by a method of order p (see, for example, [20, 63]).

Theorem 1.2 If the continuous problem is sufficiently smooth and the ini-
tial conditions (1.6) are, at least, O(hP) accurate, then the numerical so-
lution provided by a 0-stable LMF of order p > 1 is such that, for each
n’

ly(tn) — ynll < CHP,

where the parameter C is independent of h.

Thought it is possible to find LMF of order p = 2k, in [44] Dahlquist
proved the following restriction on the maximum attainable order of a 0-
stable (and, therefore, convergent) LMF. This result is known as the first
Dahlquist barrier.

Theorem 1.3 A 0-stable k-step LMF has order not larger than k+ 1, if k
15 odd, and not larger than k + 2, if k is even.

Let us now, briefly, discuss some of the most famous families of LMF.
The first one was derived in the 1883 paper by Bashforth and Adams, [2]:
such methods are now known as the Adams-Bashforth methods. The basic
idea, used in deriving such methods, has been that of using the fundamental
theorem of calculus for a scalar equation,

Y(tn) = y(tnor) + / "y (s) ds,

tn—1

and then to approximate the integrand with the interpolating polynomial
through (t,—g, fn—k), ---, (tn—1, fn—1). The obtained methods were, there-
fore, explicit. An implicit version of the Adams methods was also introduced
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in the cited paper by Bashforth and Adams. However, such implicit methods
were studied, in their own-right, in 1926 by Moulton in [82], and, nowadays,
they are known as the Adams-Moulton methods. For each value of k, both
the explicit and the implicit Adams methods are convergent methods of or-
ders, respectively, p =k and p = k + 1, [76].

In 1952, Curtiss and Hirshfelder introduced another important family of
LMF known as the Backward Differentiation Formulae (BDF), [43]. Like
Adams methods are based on numerical integration, BDF are based on nu-
merical differentiation. In fact, the discrete problem generated by such meth-
ods has the following form:

fn+k =

> =

k
> agy;.
j=0

It is well-known that the BDF are convergent methods of order p = k pro-
vided that k£ < 6 (see, for example, [76]).

In order to define a “good” method, convergence is, obviously, a neces-
sary requirement. However, there exist important differential problems for
which such property is certainly not enough. Convergence, in fact, does not
take into account the effects that perturbations, like, for example, the ones
due to round-off errors, produce on the numerical solution. Moreover, by
definition, convergence is a limit property for values of h approaching 0 and,
on the contrary, in the practice, the used stepsize is a fixed nonzero value.
The midpoint method,

Ynt2 = Yn +2h fni1, (1-13)

is a classical example that is frequently used to show how, even for arbitrar-
ily small stepsizes, convergence may not provide useful indications on the
accuracy of the numerical solution. Such method, in fact, is convergent of
order p = 2. In spite of this, when it is used to approximate the solution of
the TVP,

y'(t)=2-10" (e ' —y(t)) —e !, te0,1], y(0)=1, (1.14)

“large errors” are obtained in the numerical solution computed in standard
double precision, regardless the (nonzero) value of the stepsize (see, for ex-
ample, [20]).

A theory for error propagation for a fixed value of the stepsize h, is,
therefore, needed. The development of such a theory requires, in general,
the analysis of the stability properties of solutions of nonlinear difference
equations and, unfortunately, the available mathematical tools do not pro-
vide suitably simple instruments for this task. However, when the solution
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belongs to a suitable neighbourhood of a uniformly asymptotically stable
equilibrium point, the first approzimation stability theorem may be applied
thus allowing to confine the previous analysis to linear problems, [20]. In
addition to this, a consideration on the interval of existence of the solu-
tions is required. It is, in fact, obvious that the case where h is finite and
n — 0o, requires the existence of the continuous solution for all ¢ > ¢ty and
the existence of the numerical solution for all ¢, = ¢ty + nh. The previous
requirements are fulfilled when both the exact and the numerical solutions
belong to a neighbourhood of a uniformly asymptotically stable constant
solution. All such arguments justify the study of the methods on the well-
known Dahlquist test equation

I(t) = (t), t > to, Re( ) < 0,
{ o(to) — 10, : g (1.15)

whose solution is given by y(t) = yoet(!=*). Therefore, the continuous prob-

lem, admits y(¢) = 0 as asymptotically stable equilibrium point. Moreover,
from (1.5), one can verify that the discrete problem for (1.15) admits the
constant solution y, = 0 as equilibrium point and that the corresponding
stability properties are determined by the roots of the stability polynomial
associated to the method (see (1.5) and (1.7)),

m(2,q9) = p(2) —qo(z),  q=hp. (1.16)

In particular, the zero sequence is an asymptotically stable equilibrium
point, for the discrete problem, provided all the roots of 7(z,q) lie inside
the unit disk (i.e. m(z,¢) is a Schur polynomial). This lead to the definition
of the region D of Absolute stability for a LMF as the region of the complex
g-plane for which 7(z, q) is a Schur polynomial.

A LMF is able to provide qualitatively correct results for (1.15) only in
the case where ¢ € D. In this context, the midpoint method (1.13) cer-
tainly represents a limit case, since its region of Absolute stability is empty.
In other cases, like, for example, for the Adams methods (with the only
exception of the Trapezoidal rule), the intersection of D with the left-half
complex plane is a bounded region and, if the method is 0-stable, the origin
belongs to the boundary of D. When this happen, the stability properties
of the numerical method determines an upper bound for the allowed stepsize.

In 1963, Dahlquist understood the great advantage gained, in solving
certain classes of problems, by the use A-stable methods, namely methods
with a stability region which includes all the left-half complex plane. As it
will be discussed in Section 1.5, stiff problems represent an important class
of differential problems, since frequent in the applications, whose numerical
integration effectively requires the use of an A-stable method. However in
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[46], the same author proved the well-known second Dahlquist barrier which
states a severe restriction on the possibility of obtaining high order A-stable
LMF. More precisely, the following results were proved in that paper.

Theorem 1.4 There are no explicit LMF which are A-stable. The mazi-
mum order of an A-stable implicit LMF is two.

In looking for “nearly” A-stable methods, the property of A(«a)-stability,
with @ &~ m/2, turns out to be one of the most desirable. By definition,
in fact, the previous property holds when the region of Absolute stability
contains the sector

Co={qeC:|rm—arg(q)| < a}. (1.17)

In such a case, the method is able to provide qualitatively correct results
for all values of p in (1.15) such that |7 — u| < @, without requiring any
restriction on the stepsize. The already mentioned BDF are, for example,
A(a)-stable method for each k£ < 6, [76]. As a consequence, many numerical
codes, designed for the solution of stiff differential problems, are based on
such formulae or subsequent modifications of them [11, 12, 40, 65].

In attempting to circumvent the Dahlquist’s barriers, many approaches
have been adopted. Among them we quote the approach based on the use
of higher derivatives of the solution, as in the case of the Second Derivative
Multistep Methods of Enright [51]; the approach based on suitable combi-
nations of two or more methods, as for the Blended Multistep Methods of
Skeel and Kong [100], and the approach based on the use of further stages,
additional nodes or off-step points, as in the case of the Modified Extended
BDF of Cash [38].

Another important and recent contribution to the analysis of multistep
methods is, certainly, due to Brugnano and Trigiante. In the 1998 book [20],
the authors introduced Boundary Value Methods (BVMs). The basic idea,
on which such methods rely, is to adopt alternative choices for the additional
conditions required by the discrete problem (1.5). In more detail, this is done
by approximating the continuous IVP (1.2) by means of a discrete Boundary
Value Problem (BVP). In the preface of that book, in fact, the authors write:

“Fven if initial value problems are easier in the realm of infinite preci-
sion arithmetic (i.e. real or complex numbers), boundary value problems are
safer in the realm of finite precision”.

By means of an appropriate choice for the boundary conditions, meth-
ods with very good stability properties were then obtained. Among them,
we mention the Generalized Adams Methods (GAMs) and the Generalized
Backward Differentiation Formulae (GBDF).
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1.4 Runge-Kutta Methods

Runge-Kutta (RK) methods are generally considered as the most popular
one-step (multistage) methods. The first method adopting the “multistage
philosophy” to obtain higher accuracy, is generally attribute to Runge in
1895, [91]. Further early contributions, to what are now known as Runge-
Kutta methods, are those due to Heun, Kutta and Nystrom, [64, 75, 85].
In particular, the famous fourth-order method in Kutta’s paper is often re-
ferred to as the Runge-Kutta method.

At each step of integration, an r-stage Runge-Kutta method advances
the numerical solution as follows:

T
YUnt1 = Yn + D> bif (tn + cilt, Yin), (1.18)
i=1
where
r
=1

Here, the quantities y;,, called the internal stages, represent approximations
to the solution at the points ¢, + c;h, generally internal to the interval
[tn,tn+1]. The coefficients of a RK method are, usually, collected into the
following Butcher array,

cl|l A
bT

where,

c1 by aiy - Gy
A

Cr by Gr1 '+ Qpp

o
Il
o
Il

The previous notation allows to rewrite the discrete problem (1.18)-(1.19)
in the more compact form,

Yyn = 1®y, + h(A & L,)f,, (1.20)
Yn+1 = Yn + h(bT ® Im)fna (1'21)
where I,,, is the identity matrix of order m, 1 = (1,...,1)T € R", and

Yin fln
: fn :
Yrn frn

, mef(tn"‘Czh;ym)

«
3
I
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A RK method is called explicit when the matrix A is strictly lower trian-
gular, implicit otherwise. As for LMF, the procedure for the solution of the
discrete problem greatly simplifies in the case of explicit methods. This is
much more true for RK methods since, at each step, the new approximation
depends on 7 new unknowns in IR™.

The order of accuracy, for a RK method, is defined on the base of the
asymptotical behaviour, as h approaches 0, of the local error. The latter is
given by the difference between the exact and the numerical solution after
one step of integration, under the assumption of an exact starting value.
In particular, a RK method has order p provided that, for a sufficiently
smooth function f defining the continuous problem, there exist a constant
C, independent of h, such that

ly(to + h) —y1]| < CRPHL.

The analysis of the order conditions for the coefficients of a RK method is
definitely much more complicated, with respect to the same for LMF. The
main reason is the fact that, in general, the numerical solution, at each step,
is built up from the derivatives evaluated at stage values having a lower
accuracy. The basic idea, used for such analysis, is to compare, term by
term, the series expansions, in powers of h, for the exact and the numerical
solutions at the end of a single step of integration. However, the terms in-
volved in such expansions become greatly complicated quite soon and this
has been one of the main difficulties encountered in the early time of the
research on such methods. The major contribution concerning the analysis
of the order conditions for RK methods is due to Butcher. In his 1963 paper
[27], based on the earlier work by Gill [55] and Merson [80], he related the
various terms involved in the Taylor series expansions, of both the exact
and the approximated solution computed by a Runge-Kutta method, to the
graphs of the so-called rooted trees. Making use of the resulting theory, in
[30, 34], Butcher proved quite complicated relationships between the mini-
mum number of stages r to obtain explicit methods of order p > 4.

In the 1964 paper [28], on implicit RK methods, Butcher introduced the
so-called simplifying assumptions consisting in a set of conditions which,
when satisfied, reduce, significantly, the number of conditions needed to ob-
tain a method with a prescribed order. This, in turn, made it possible to
derive methods of higher order. In [28], in fact, Butcher introduced implicit
RK methods based on the Gaussian quadrature formulae of order p = 2r,
while in [29] the same author introduced the Radau I and Radau IT methods,
of orders p = 2r — 1, and the Lobatto III methods of orders p = 2r — 2.

When a RK method is applied to the test equation (1.15), the obtained



12 CHAPTER 1. INTRODUCTION

numerical solution satisfies

Yn+1 = 9(q) Yn, (1.22)

where it can be proved, (see [59]), that g(q), called the stability function of
the method, is given by

_ det (I, —qA+q1b")
g(q)_ det(Ir—q.A) ’

being I, the identity matrix of order r. The region of absolute stability D
for a RK method is, therefore, defined as

(1.23)

D={qeC:|g(q) <1}.

Consequently, explicit RK methods always have a bounded stability domain
since, for such methods, g(g) is a polynomial (see (1.23)). Implicit methods,
instead, have a rational stability function and methods of arbitrarily high
order can be A-stable. In particular, in 1969, Ehle proved the implicit Gauss
RK methods to be A-stable while the Radau I, Radau II and Lobatto III
methods to be not, [49]. Moreover, Ehle took up the ideas of Butcher and
constructed the well-known A-stable Radau TA, Radau ITA, Lobatto IITA,
and Lobatto ITIB methods. In the same year, the Radau ITA methods were
found, independently, by Axelsson together with an elegant proof of their
A-stability, [6]. The general definition of the Lobatto IIIC methods is due
to Chipman [42]; see also the paper by Axelsson [7].

The linear stability theory, based on the analysis of the methods on the
test equation (1.15), seems to suggest that methods with a stability domain
which exactly coincides with the left-half complex plane (i.e. perfectly A-
stable methods) have to be considered as “optimal” methods. The previous
property, however, turns out to be not as desirable as it may appear. It can
be proved, in fact, that the stability function of perfectly A-stable methods
is such that

lim [g(q)| = 1.

q—0

This means that, when ¢ is close to the real axis and has a very large negative
real part, the continuous solution of (1.15) fast decays to zero while the
modulus of the numerical solution is very slowly damped. Therefore, in
order to reflect the behaviour of the continuous solution, one should have
g(q)| € 1 as ¢ = —oo. This leads Ehle to introduce the following property
for a method [49]:

Definition 1.1 A method is called L-stable if it is A-stable and if, in ad-
dition,
lim g(q) = 0.

q— 0
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1.5 Stiff Differential Equations

Stiff differential equations arise in a countless amount of applications and
their numerical solution has challenged Numerical Analysts as well as Ap-
plied Mathematicians during the last fifty years.

The first appearance of the term “stiff”, in connection with the numerical
solution of ODEs, is in the paper by Curtiss and Hirschfelder [43] published
in 1952. In that work, the authors showed that certain types of problems,
arising from chemical kinetics, are best solved by means of appropriately
selected numerical methods. The analysis carried out in that paper was the
first example of the “tailoring” of the method to the properties of the contin-
uous problem to be solved, which has become common practice nowadays.
Since then, the phenomenon of stiffness for ODEs has been one of the most
studied subject in Numerical Analysis. Nevertheless, a precise mathematical
characterization of stiffness, able to cover the most important facets of the
phenomenon, has not yet been given. As a matter of fact, in the Lambert
book [76], five different definitions of stiffness can be found.

From the early time of the research on stiff problems, there has been a
large agreement on the fact that stiffness occurs when very different time
scales are present in a problem. The term itself, in fact, seems to derive
from such peculiarity since it seems to descend from mechanical models of
systems of weights connected with springs having very different rigidity con-
stants (stiff constants). The solutions of the corresponding equations are,
therefore, characterized by fast modes, corresponding to the effects of the
stronger springs, and slow modes, corresponding to the effect of the soft ones.

The classical example, which is always used to discuss the phenomenon
of stiffness, is the linear autonomous equation,

y'(t) = Ay(t),  te€[to,T], (1.24)
where the coefficient matrix A has distinct, real and negative eigenvalues,

Mmamzul<N2<---<Mmzumin<0-

The general solution of such equation takes the form

m

y(t) = Z c;etti (t*to)vi,

i=1
where, for each i, v; € C™ is an eigenvector corresponding to u; and the

coefficient ¢; € € depends on the initial value y(tg). In particular, when the
extreme eigenvalues of A are such that

|Mmam| > |Mmin|a
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the general solution of (1.24) is made up by “fast” modes, corresponding to
the eigenvalues of largest modulus, and “slows”, modes corresponding to the
smallest modulus ones. In such a case, to get a complete information on the
system, it is necessary to keep integrating until the slowest modes became
negligible. This requires to take, at least, T' — tg & |fmin| . On the other
hand, the fast modes significantly contribute to the solution only during a
very short initial period, say [to, to + |tmaz| ']- Therefore, the different time
scales for (1.24), giving rise to the phenomenon of stiffness, are given by the
modulus of the extreme eigenvalues and the stiffness ratio,

|Mmax|

bl
‘Nmin‘

is traditionally used as a measure of the stiffness of the problem. More gen-
erally, when the spectrum of the coefficient matrix in (1.24) is contained in
C™, the problem is stiff when the eigenvalues of A have very different real
parts.

Looking at the solution curves of a stiff scalar equation, one often recog-
nize a smooth “slowly varying” solution (the steady-state solution) which is
approached by the other ones after a rapid transient phase. A well-known
example, showing such behaviour, is provided by the following equation,
[89]:

y'(t) = ulyt) — ) + ¢ (1), y(to) = o, (1.25)

where 1 < 0 and ¢(t) is a slowly varying smooth function. It is not difficult
to verify that the corresponding solution curves are given by

y(t) = (yo — d(t0))e="0) + ¢(t),

(see the plots in Figure 1.1 for the case u = —50 and ¢(¢) = cos(t)). The
different time scales, giving rise to the phenomenon of stiffness, are recog-
nized to be |u|, which measure the rapidity at which ¢(¢) is approached by
the other solutions, and a “measure” of the rate at which the solution ¢(t)
varies. The latter, in turn, often determines the required length of the inte-
gration interval for obtaining a complete information about the behaviour
of the solution.

Probably, the difficulties in formulating a unifying definition of “stiff
problems” are mainly due to the fact that it is better understood what
goes wrong when numerical methods, not designed for such problems, are
used to try to solve them. In the first line of the first section of the Hairer
and Wanner’s book [59], one of the most comprehensive on the subject, the
authors write:

“Stiff equations are problems for which explicit methods don’t work”.
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Figure 1.1: Solution curves for (1.25) with 4 = —50 and ¢(t) = cos(t).

Obviously, this is only an empirical definition and, consequently, not math-
ematically acceptable. Nevertheless, the authors refer to explicit methods
since they always have a bounded stability domain. Moreover, an immediate
consequence of the different time scales present in a stiff ODE is that such
equation are best solved, both in terms of efficiency and of error accumula-
tion, when an appropriate strategy for the definition of the discrete partition
is adopted. On the base of the required accuracy for the numerical solution,
the above strategy has to be able to select the most suitable value for the
stepsize h. In particular, this implies the need for a fine mesh during the
transient phase and the possibility of using a much more coarser mesh in the
stationary one. The previous arguments, however, are based only on con-
siderations concerning the required accuracy for the numerical solution. On
the other hand, when a method with a bounded stability domain is used, the
constraints on the stepsize, arising from the lack of stability properties, have
to be respected by the stepsize variation strategy. In particular, when such
types of methods are used to integrate stiff ODEs, the stability properties of
the method often force the use of stepsizes which, in the stationary phase,
are “unrealistically” small with respect to the smoothness of the continuous
solution. For this reason, the numerical approximation of stiff equations
requires the use of A-stable, and therefore implicit, methods.
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Chapter 2

The implementation issue of
Block Implicit Methods

In the recent years the implementation issue has become focal for numerical
methods for ODEs. Indeed, since a number of stable, high order methods
are currently available, one of the main reasons to use a method in place of
another is given by its computational cost. In particular, for block implicit
methods the main problem to be addressed for an efficient implementation
consists in the definition of “suitable” strategies for the solution of the dis-
crete problem generated at each step of integration. The present chapter
is devoted to discuss the most efficient techniques currently used for such
purpose.

2.1 Introduction

When applied to the IVP

{y@):f@w@»a t € [to, T1, (2.1)

y(tﬁ) =Y € IRma

an r-Block Implicit Method generates, at each step of integration n, a dis-
crete problem in the form:

F(yn) = A® Iyyn — hB ® Inf, — 1, =0, (2.2)

where the matrices A, B € IR"*" define the method, I, is the identity
matrix of order m, h is the stepsize and the vector m, only depends on

17
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already known quantities. The block vectors

Yin fin
Yn = ) f, = ) fin = f(tinayin)a
y’r’n fT'n

contain r values of the discrete solution or the internal stage values of the
step.

Instances of methods falling in this class are RK methods, a number of
General Linear methods [35, 58, 59] and, more recently, block BVMs [20].

In the following, we shall always assume the two matrices A and B to
be nonsingular so that the underlying method is an implicit one. More
precisely, in the case of RK methods with ezplicit stages, like the Lobatto
schemes, r equals the number of implicit stages and the matrix B is obtained
by considering only the corresponding coefficients, [68].

First of all, it must be observed that in (2.2) a multiplication from the
left by (A_1 ® Im) of both sides of the equation allows to normalize the
first coefficient matrix to the identity. Nevertheless, sometimes it could be
preferable to keep the more general formulation (2.2), as in the case, for ex-
ample, of block BVMs [20]. Moreover, as discussed in full details in the next
chapter, the more general formulation in (2.2) presents some advantages in
discussing the implementation issues of the method.

For a nonlinear differential equation, the implementation of block im-
plicit methods requires, therefore, the solution of an algebraic equation of
size rm at each step of integration. This is the reason for which, for many
years, it was generally believed that, in spite of their better stability prop-
erties, block implicit methods would never be competitive with respect, for
example, to A(a)-stable LMF with o ~ 7.

As a consequence, the problem of devising efficient algorithms for the
solution of (2.2) has been extensively studied for various classes of methods
(see, e.g.,[4, 14, 33, 68, 69]), also with reference to the implementation on
different computer platform [25, 52, 53], and this is still an active field of
research in the area. In the sequel, for sake of simplicity, the step index n
will be always omitted since the reported analysis equally applies to each
step of integration. Therefore, without loss of generality, we can analyze the
first step of integration.

During the early time of stiff computation people were usually think-
ing of a simple fixed-point iteration to solve (2.2). Nevertheless a similar



2.2. THE SIMPLIFIED NEWTON METHOD 19

approach essentially transforms the method into an explicit one, thus de-
stroying the good stability properties of the underlying implicit one.

Then, the use of procedures based on Newton’s type methods, in par-
ticular those based on the simplified Newton method, and procedures based
on suitable nonlinear splittings for the nonlinear equation (2.2) has become
a common practice. The following sections are devoted to a review of such
implementation techniques.

2.2 The simplified Newton method

The simplified Newton method is characterized by the following approxima-
tion of the Jacobian matrix of the function F' in (2.2)

Jp~ (A® I, — hB® Jy),

where

JUE

0
6_£(t0’y0)

denotes the Jacobian matrix of f at the initial point of the step. The discrete
problem (2.2) is, therefore, solved by means of the following iteration:

(A® I, — hB ® Jo) Ay = —F(y(@), 5 3
y(i+1D) = y() 1 Ay(), 1=0,1,.... 23

Obviously, the constant coefficient matrix in (2.3),
M= (A®I, —hB®Jy), (2.4)

has to be evaluated only once and, in addition, this requires only one eval-
uation of the Jacobian matrix of f. In spite of this, the use of direct solvers
for solving the linear systems in (2.3) turns out to be extremely costly since
the factorization of the rm X rm matrix M is required. If we do not consider
(for sake of simplicity) the terms due to function and Jacobian evaluations
then, at least for large-size problems, the leading term in the arithmetic
complexity of the iteration (2.3) is given by %(r -m)? flops, where we count
as one flop one of the four basic floating point binary operations with real
quantities. This cost is considerably higher if compared, for example, with
the complexity of the procedure for the solution of the discrete problem gen-
erated by a LMF.

The first attempts to reduce the cost for the solution of the Newton sys-
tems (2.3) were based on the idea of using methods with simple structured
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matrices A and B. In particular, since for RK methods A = I, see (1.19),
the research was focused on methods with a lower triangular coefficient ma-
trix B, [3, 83]. The obtained methods have been variously named across
the years. Today, it is usual to call them diagonally implicit Runge-Kutta
methods (DIRK) or, in the case of equal diagonal entries, singly diagonally
implicit Runge-Kutta methods (SDIRK). The above methods have the obvi-
ous advantage of allowing to solve the linear systems in (2.3) in r successive
stages with only m-dimensional systems to be solved at each stage. How-
ever, they also have disadvantages. One of the most important is given
by their low stage order which, in view of the order reduction phenomenon
(see [89]), make them not really appropriate for the solution of stiff problems.

According to the general ways of solving linear systems, that is by using
direct or iterative procedures, it is possible to classify the currently used
algorithms into the following main categories:

e diagonalization (or block diagonalization) of the matrices A and B;
e definition of suitable linear splittings for the systems in (2.3);

The following sections are devoted to discuss the two possibilities.

2.2.1 Diagonalization

The algorithm described in the present section has been proposed by Butcher
in his 1976 paper [33] on the implementation of implicit RK methods. As
already observed, each Newton iteration in (2.3) requires the solution of the
linear system (the index ¢ has been omitted for simplicity),

MAy = —F(y), (2.5)
where, for RK methods (see (2.4)), the matrix M becomes

M=I,1I,—hB®J.

The main idea of the algorithm proposed in [33] has been that of using
the Jordan form of the matrix B to define two nonsingular r X r matrices P
and @ such that

€9 1 )\2
PQ = L ; PBQ =

e 1 Ar

Here ¢; = 0,1 while o(B) = {\1,..., A\, } represents the spectrum of B. The
system (2.5) was then transformed into the following equivalent one,
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MAy = —F(y), (2.6)

where
Ay = (Q'®In) Ay, Fly)=(P®I,) F(y), (2.7)
M = (PQ)®I,—h(PBQ)® J. (2.8)

The matrix M is therefore composed by diagonal blocks of the form
I, — hAJy with possibly complex A and subdiagonal blocks of either the zero
or the identity matrix. Since each of the transformations in (2.7) requires
O(m) operations, the overall advantage, in terms of arithmetic complexity,
of this procedure is determined by the spectrum of the matrix B. In partic-
ular, the higher the number of real and multiple eigenvalues of the matrix B,
the lower the computational cost for solving (2.6). In order to take full ad-
vantage from the Butcher procedure, in [22, 84] the so-called singly implicit
Runge-Kutta methods (SIRKs), namely methods with a real one-point spec-
trum matrix B, were introduced. However, the obtained methods were less
favourable than Runge-Kutta methods with complex eigenvalues in terms
of accuracy and stability properties.

A slight different procedure is the one currently used in the RADAUbS
and RADAU codes both implementing the Radau ITA implicit Runge-Kutta
methods [59]. The basic idea, used in such codes, essentially consists in
reducing B to a block diagonal matrix by means of a real similarity trans-
formation. That is

Ay
T 'BT =A= , (2.9)
As

where A; = A;, if ); is a real eigenvalue of B, while

a —f
Ai:(ﬂ a)’

if \; = a+if is a complex conjugate pair. In addition, the linear subsystem
arising in (2.6), in correspondence of a complex conjugate pair o +i/3, given

by,
Im — ha Jg hﬁ Jg U1 _ Z1
—hﬂ JO Im — ha JU u9 - zZ9 ’
is transformed in the following equivalent m-dimensional complex one:

((Im —haJy) — ihf J0>(u1 Fiug) = (21 +i2).
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It follows that, if the matrix B has k distinct real eigenvalues and [ =
(r — k)/2 distinct conjugate pairs, the corresponding procedure requires the
factorization of k& m x m real matrices and [ complex matrices of the same
dimension. As a consequence, since the complexity for the factorization of
complex matrices is approximately 4 times the complexity for the factoriza-
tion of real matrices, the leading term in the arithmetic complexity of the
overall procedure is approximately given by

2

3
As an example, the spectrum of the matrix B corresponding to the Radau ITA
method of order 5 is composed by one real eigenvalue and one complex con-
jugate pair. In such a case, when compared to the %(3 -m)? operations
required for the factorization of M in (2.4), a factor of about 5 has been
gained.

(k +41)m> flops.

The approach discussed in the present section is very popular for RK
methods since the matrix A in (2.2) is the identity matrix. The general-
ization to block methods with nonsingular matrices A and B requires such
matrices to be diagonalizable by means of the same similarity transforma-
tion.

However, a severe drawback of the described approach consists in the
possible ill-conditioning of the matrix 7" in (2.9). This is especially true for
methods with large blocksize r (see, for example, [9, 10]).

2.2.2 Linear Splittings

The main idea of the procedure described in this section consists in using
an iterative solver for the Newton systems in (2.3). More precisely, instead
of solving the linear system for Ay(®,

(A® I, — hB ® Jo) Ay = —F(y®), (2.10)

required by the outer (or primary) iteration in (2.3), the following inner (or
secondary) iteration is applied

(A* ® I, — hB* ® Jy) AyY) =
((A* A @Iy —h(B"—B)® J0>Ay(j_1’i) ~ F(y®), (2.11)

j=1,...,v, where v is a suitable, possibly small, integer while A* and B*
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are two nonsingular r X r matrices. The vector Ay® is then adopted as
the solution of (2.10) and the numerical solution is updated as (see (2.3)),

Concerning the choice of the splitting matrices A* and B* in (2.11), the
competitiveness of the inner iteration is the commonly used criterion for
their definition. As a consequence, it must be observed, first of all, that a
simple structure is a necessary requirement for them, since the arithmetic
complexity for the solution of the linear systems in (2.11) is expected to be
much lower than that of the original one.

However, this is certainly not enough for competitiveness. As matter of
fact, the efficiency of such inner-outer iteration scheme strictly depends on
the convergence properties of the inner iteration. Concerning this point, the
common practice [68, 69] is to carry out a linear analysis of convergence of
the iteration, thus studying its behaviour on the linear problem

y'(t) = Jy(t).

For such problem, the simplified Newton method globally converges in one
iteration. It follows that one has to consider only the behaviour of the inner
iteration. Moreover, since the iteration matrix in (2.11) is a function of
the Jacobian matrix .J, convergence is determined by the behaviour of the
iteration matrix in correspondence of each eigenvalue p of J. The scalar test
equation

y'(t) =pyt), pneC, (2.12)

is, therefore, always adopted as the reference problem for the linear analysis
of convergence. In such a case, by setting, as usual,

q = hp,
the iteration (2.11) will converge to the solution of (2.10) provided that the
spectral radius, say p(q), of the iteration matriz or amplification matriz,
Z(q) =1, — (A* —¢B*)"'(A—¢B), (2.13)

is smaller than 1. The region of convergence of the iteration is therefore
defined as

F'={qeC: pg <1} (2.14)

Obviously, it would be desirable the region of convergence to be as large as
possible and the ideal case would be that of a globally convergent inner iter-
ation. Nevertheless, this cannot be accomplished by using constant splitting
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matrices A* and B* with a suitably “simple” structure. The region T is,
therefore, always strictly contained in C. A first reasonable requirement,
that is always demanded, is the convergence of the iteration for all values of
q =~ 0. This is the case, for example, when the spectral radius p(q) is such
that

p(0) =0, p(q) analytical in B(0,¢), (2.15)

where B(0, ¢) is a suitable neighbourhood of the origin. Under such assump-
tions, in fact, for each values of u, the procedure is effective provided a
sufficiently small stepsize h is used. Moreover, the assumptions (2.15) on
p(q) do not impose severe restrictions on the possible choices of the split-
ting matrices. For example, they obviously hold true when A* = A. In the
sequel, therefore, we shall always assume them to be verified.

Evidently, when the continuous problem is a stiff differential equation,
additional requirements on the convergence of the inner iteration are neces-
sary. As a matter of fact, the use of A-stable methods has been preferred
since their stability properties do not impose any restriction on the stepsize
h to be used when Re(u) < 0. In order not to introduce restrictions on h at
the implementation level of the method, it is therefore desirable the use of
iterative procedures converging for all values of ¢ € C~. These arguments
lead to the following definitions.

Definition 2.1 The iteration (2.11) is said to be A-convergent if
C CT.

Similarly, the iteration is said to be A(a)-convergent if the sector C,, defined
in (1.17), is contained in T.

Clearly, the iteration (2.11) cannot be A-convergent if the pencil A*—qB*
is singular for some values of ¢ € €. Therefore, the following condition on
the spectrum of the matrix pencil is a pre-requirement for the A-convergence
of the iteration:

MA*,B*) = {q € C:det(A* —¢B*) =0} C C*. (2.16)

The splitting matrices are always chosen in order to satisfy this requirement.
Moreover, when (2.16) holds true, p(q) is analytical in C~ so that, by the
maximum-modulus principle, A-convergence is equivalent to require

3

p* = max p(q) < 1. (2.17)

us

arg(q)=7%

The parameter p* is called the mazimum amplification factor of the iteration.
This is a first important evaluation parameter measuring the convergence
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properties of the iteration. In fact, since it refers to the worst case situ-
ation, when Re(y) < 0, it serves as an indicator of the robustness of the
procedure. Nevertheless, when stiff differential equations are to be solved,
one has to consider that stiff and nonstiff modes are present in the iteration
error components. Therefore, it is also very important to consider the be-
haviour of the iteration for values of ¢ close to 0 and values of ¢ approaching
infinity. Then, the following parameters are defined to measure additional
convergence properties of the iteration:

e the nonstiff amplification factor,

p = lim M; (2.18)
=0 ||
o the stiff amplification factor,
p(>) = lim p(q). (2.19)
q—0

Concerning the nonstiff amplification factor, it must be stressed that, since

q~0 = p(q) = p lql,

a moderate value for p would be desirable. Regarding the stiff amplification
factor, instead, in [68, 69] the authors underlined the fact that a strong
damping of the stiff error components is crucial for a fast overall convergence
of the iteration. The competitiveness of the algorithm requires, therefore,
a small valued or, possibly, a zero valued, parameter p(°). This lead to the
following definition

Definition 2.2 An A-convergent iteration such that p(°) = 0 is called L-
convergent.

In some cases, the previously defined amplification factors may not pro-
vide sufficient information. This often happens when the matrix Z(q) in
(2.13) is highly nonnormal so that parameters defined trough the eigenval-
ues of the involved matrices do not give insight into the behaviour of the
iteration during the initial phase of the procedure. The so-called averaged
amplification factors, corresponding to v inner iterations, are therefore also
considered. In detail, by considering a suitable matrix norm || - ||, and by
defining,

@) = 1 2(a)" ],

the averaged amplification factors are defined as,

py = sup _py(q),  py =lim p”(Q), p™ = lim py(g).  (2.20)
arg(q)=3% >0 |q| =0
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We conclude the present section with a discussion of some of the recently
proposed linear splittings for the solution of the Newton linear systems in
(2.3). The main idea used in the derivation of the splitting matrices has
been that of defining B* as a lower triangular matrix L obtained from a
suitable factorization of B. Concerning the matrix A no splitting has been
yet considered for it (i.e. A* = A), since it has always a very simple (and
convenient) structure.

Some of such schemes were proposed by Van der Houwen and De Swart
in [68, 69]. In particular, for the Parallel Triangularly Implicit Runge-Kutta
(PTIRK) method the matrix L was defined as the lower triangular factor in
the Crout LU decomposition of B, i.e.

B=LU,

where

L=|° . U= 221

Ly 1
The unit diagonal entries on the main diagonal of U determines the
equivalence between the A-convergence and the L-convergence properties of

the iteration. This can be easily seen by considering that, when A* = A = I,
and since B* = L, the iteration matrix (2.13) reduces to

Z(q) = q(I, —qL)~"(B — L) = q(I, — qL)"'L(U - I,,).

Consequently,
qg— 0 = Z(q) = (I, = U), (2.22)
and, see (2.19),
p>) = lim p(q) = p(I, - U) = 0. (2.23)
q—00

Moreover, see (2.20), the stiff components are removed from the iteration
error within r iterations, i.e. p$°°) = 0. In addition, for RK methods based
on collocation with positive and distinct abscissae, the authors proved the
A-convergence of the iteration, see also [66]. The asymptotic amplification

factors of the PTIRK method for some RK methods are listed in Table 2.1.
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Table 2.1: Asymptotic amplification factors for the PTIRK method

Method H Order r H P H P H p(>) ‘
Gauss 4 2 || 0.14 || 0.08 0
Radau ITA 3 21 0.18 || 0.15 0

5 31 0.37 | 0.19 0

7 4| 0.50 || 0.17 0
Lobatto IITA 4 2 || 0.14 || 0.08 0

6 31 0.30 || 0.12 0

Concerning the arithmetic complexity of the iteration, the diagonal entries in
L were found to be distinct. As a consequence, see (2.21), the corresponding
inner-outer iteration (2.10)-(2.11) requires the factorization of the following
m X m matrices,

(Im — Wi Jy),  i=1,...,r

However, in [68] the authors do not consider this as a severe limitation for
the algorithm since all the above factorizations are each other independent
and they were concerned with a parallel implementation on 7 processors of
the algorithm.

A relevant improvement on the described procedure for an efficient im-
plementation on sequential computers was found by Amodio and Brugnano
in [4] for methods having the first coefficient matrix A equal to the identity.
In fact, the authors proved that, whenever det(B) > 0, as it is the case for
an A-stable method with A = I, a transformation matrix T exists such
that

B=TBT '=LU,
where L and U are defined according to (2.21), with
0=l =... =, = det(B)".

The authors, therefore, proposed to solve the linear systems in the Newton
iteration (2.10) by first performing the variable transformation

v = (T ® L)y, (2.24)
which requires O(m) operations, and then, for the obtained linear system,

(Ir ®I, —hB® J0> Ay(i) =—(T®I,) F(y(i)),
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by using an inner iteration with splitting matrices A* = I, and B* = L.
The leading term in the arithmetic complexity of such iteration was, there-
fore, reduced to §m3 flops required for the factorization of only one m x m
matrix. The proof of competitiveness, with respect to the PTIRK method,
was completed by means of a comparison based on the amplification fac-
tors of the two iterations which, for many RK methods, shows comparable
convergence properties, [4].

2.3 Nonlinear splittings

The roles of the primary and secondary iteration in (2.10)-(2.11) may be
exchanged. As matter of fact, one may think of first performing a nonlinear
splitting on (2.2) to obtain a “simple structured” system to be solved by
an appropriate method for nonlinear equations. The most famous nonlinear
iterative processes are of course the extensions to nonlinear systems of the
well-known iterative methods, namely the Jacobi, Gauss-Seidel and SOR
methods. Convergence results for these schemes may be found in [86].

In particular, for equation (2.2), a nonlinear block-splitting process is
often applied. This is obtained from the following decompositions of the
matrices A and B

A=A*-R,, B=DB"-Rs, (2.25)

where A* and B* are nonsingular matrices with a “simple” structure. The
nonlinear equation (2.2) is then solved by means of the following iteration

A* @ Iny") — hB* @ I,,,£")
= A —A)@Ly" Y —h(B*—B) QL) +n,  (2.26)

i =1,...,v. At each iteration, the equation (2.26) still represents a nonlin-
ear system for y() € IR"™™. A Newton type method is always adopted for
its solution and the most widely used is, as before, the simplified Newton
method. However, since the matrices A* and B* are chosen with a simple
structure, the arising linear systems are much more cheaply solvable. As an
example, the matrices A* and B* are chosen lower triangular with constant
entries on the main diagonal, so that the simplified Newton iteration for
solving (2.26) only requires to factor one m x m real matrix.

Obviously, for each iteration in (2.26), one may iterate the simplified
Newton method until convergence. However, in many cases a single-inner
iteration has been found to perform better and the corresponding process
has been called one-step splitting-Newton process, [71].



2.3. NONLINEAR SPLITTINGS 29

We observe that, when the continuous problem is a linear differential
equation with constant coefficient matrix, the one-step splitting-Newton
process is equivalent to the Newton-splitting one described in the previ-
ous section. This is because, the simplified Newton method exactly solves
(2.2) and (2.26) in one iteration. It follows that the results obtained with
the linear analysis of convergence applied to (2.11) can be directly extended
to (2.26). In particular, for the test equation (2.12), the iteration matrix
corresponding to (2.26) coincides with the one specified in (2.13).

A nonlinear splitting has been used, for example, in the code GAM im-
plementing methods in the family of BVMs, namely the Generalized Adams
Methods of orders 3,5,7,9, [20, 71]. The first coefficient matrix of such meth-
ods is given by

TXr

Consequently, the first splitting matrix A* has been chosen equal to A.
Concerning the matrix B*, the factorization

B=LV

has been used to define B* = L. Here L is a lower triangular matrix with
diagonal entries all equal to

1
T

¢ =det(B)r,

and V is a real matrix such that det(V) = 1. More precisely, see (2.22),
since as ¢ — oo, the iteration matrix (2.13) approaches

I, -V =1I-L"B,

the strictly lower triangular entries in L were found by means of a suitable
minimization technique over the quantities

1
p(l =L7'B),  |(L7'B)|.

The asymptotic amplification factors of the iteration used in GAM have
been reported in Table 2.2. As one can seen from the last two rows, the
iterations corresponding to the last two higher order method were not A-
convergent, though A(a)-convergent with o &~ 7/2.
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Table 2.2: Asymptotic amplification factors for the iteration used in the
code GAM

Order r H o ‘ p*(m/2.14) ‘ p*(m/2.64) H p H p(oo) ‘
3 4 | 0.2562 0.2305 0.1806 0.1819 || 0.0019
5 6 || 0.5929 0.5326 0.4173 0.2585 || 0.0212
7 8 || 1.0048 0.9007 0.7038 0.3064 || 0.0629
9 9 || 1.3563 1.2113 0.9390 0.3014 || 0.0753

2.4 Remarks

The approach described in Section 2.3 may be very competitive provided
that suitable matrices A* and B* can be obtained. Nevertheless, when sat-
isfactory convergence properties are required, their derivation may be very
difficult. In particular, many difficulties have been encountered when a zero-
valued stiff amplification factor is required in order to make the iteration
well-suited for the solution of discrete problems corresponding to the solu-
tion of stiff differential equations.

In the next chapter, it will be shown how the use of blended schemes
allows to “naturally” derive iterative procedures with “low” arithmetic com-
plexity per step and very “good” convergence properties.



Chapter 3

Blended Implicit Methods

Blended Implicit Methods are methods which, in addition to classical re-
quirement, such as high order of accuracy and “good” stability properties,
do have favourable properties from the implementation point of view. They
are obtained by means of a suitable combination of two component methods,
so that efficient nonlinear splittings are naturally defined for the solution of
the obtained discrete problem.

In the past years, many attempts have been made to derive numeri-
cal methods for ODEs as the combination of two methods. A well-known
example is the popular #-method. Additional examples are provided by
the Blended Linear Multistep Formulas of Skeel and Kong [100] and by the
Blended Block BVMs of Brugnano [14]. However, slight different aims were
pursued in doing this:

e in the case of the #-method and of the blended linear multistep for-
mulas, the only aim was that of getting a method with better stability
properties than the two component ones;

e in the case of blended block BVMs, the above aim was coupled with
that of getting an efficient implementation of the resulting method.

Blended Implicit Methods, instead, are obtained by means of a suitable
combination of discrete problems derived from the same basic method so
that, with the latter, they share the same accuracy and stability properties.
For this reason, we shall also speak about the blended implementation of the
basic method.

3.1 Blended Implementation of Block Implicit Meth-

ods

In order to unnecessarily complicate the notation and to carry out the linear
analysis of convergence, we shall consider the application of the methods to

31
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the classical test equation

y' =py,  ylto) =wo,  Re(u) <0, (3.1)

for which, by setting as usual ¢ = hu, the discrete problem (2.2), at step n,
assumes the form:

(A—qB)yn = n,. (3.2)

We observe that the solution of the previous equation is not affected by
left-multiplication by A~!' or B~! of both sides of the equation,

(I, — inlB)Yn = Ail"'lna (BilA —ql)yn = Bil"'ln- (3.3)

The basic idea for the blended implementation of the method (3.2) relies
on the fact that, by combining equations in the form (3.3), the discrete
solution does not change. In more detail, let A; be a nonsingular matrix
with a “simple” structure. By multiplying on the left both sides of the first
equation in (3.3), we then obtain

(A1 — ¢B1)yn = N1p» (3.4)

where

B; = A{A7'B, M, = A1A™n,,. (3.5)

Similarly, by considering another nonsingular and “simple structured” ma-
trix Bo, by multiplying on the left the second equation in (3.3) we obtain

(A2 - qu)y = Mon; (36)

where

Ay = ByB7A, Mo, = BB~ 'n,,. (3.7)

Obviously, both equations (3.4) and (3.6) do have the same solution as
equation (3.2), since they are derived from the same method. In addition
to this, let us define a suitable weighting function 6(q) such that

0(0) =1, 0(q) = O, as ¢ — oo, (3.8)

being, hereafter, I and O the r X r identity and the zero matrix respectively.
Then, also the following equation,
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M(q)yn —n,(q) = (Alg) — ¢B(q)) yn —nn(q) = 0, (3.9)
where
Alg) = 6(q)Ar + (I —6(q))As,
B(q) = 6(¢9)B1 + (I —0(q))Ba,
n,(0) = 0(g)n, + (I —0(q)na, (3.10)

does have the same solution as (3.2). Equation (3.9) defines a blended im-
plicit method associated with the block method (3.2), due to the fact that
the discrete problem is obtained as the “blending” of two equivalent forms
of the same block method. We observe that, since the numerical solution
has not been affected, the blended implicit method (3.9) does have the same
accuracy and stability properties of the method in (3.2) .

The key point concerning a blended implicit method is that its structure
naturally induces the choice of a nonlinear splitting for iteratively solving

(3.9). As matter of fact, from (3.8), one easily verifies that the matrix M (q)
in (3.9) is such that:

e M(q) = A1+ 0O(q) = Ay, when ¢ =0;

e M(q)=—q(B24+0(q ")) ~ —qBy, as q — o0.

Consequently, instead of solving (3.9), one may think to solve iteratively

N(q)yi™) = (N(q) — M(q))y) + m,(q).  i=0,1,...,  (3.11)

where

N(q) = A1 — qBQ. (312)
This is because
N(0) = M(0), and N(q) = M(q), when |q| > 1. (3.13)

We shall call (3.11) the blended iteration associated with the blended method
(3.9). The corresponding iteration matrix is then given by
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Z(q) = N(q)~" (N(q) — M(q)) =1 — N(q)~'M(q), (3.14)

and the iteration will converge if and only if the spectral radius p(q) of Z(q)
is smaller than 1. We observe that, from (3.13), one immediately obtains,

Z(0) =0, Z(q) = O, asq— 0. (3.15)

p(0) =0,  p) = lim p(q) = 0. (3.16)

q—0

Moreover, see (2.20), the second property in (3.15) implies that

Pl =0, for all v > 1,

v

so that the iteration (3.9) is particularly well-suited for stiff problems.

It must be stressed that the properties (3.16) of the blended iteration
do not depend on the particular choice of the matrices A; and By used in
(3.4) and (3.6). They are only due to the blended implementation of the
method, namely to the particular structure of the matrices M(q) and N(q)
in (3.9) and (3.12). As a consequence, additional convergence properties of
the iteration may be improved by means of an appropriate choice of the two
matrices A1 and Bs. As an example, a possible criterion to be adopted for
their definition is the minimization of the maximum amplification factor p*
of the iteration in order to possibly obtain an A-convergent (and, then, L-
convergent) iteration. Concerning this point, in the sequel, we shall always
assume the weighting function #(q) to be analytical in C~ and the spectrum
of the matrix pencil (3.12) to be contained in €*, so that the maximum
amplification factor of the blended iteration is given by

£ = i 1
p r;lgacp(lx), (3.17)

where, as usual, i denotes the imaginary unit. Moreover, we will assume
the iteration matrix to be well-defined in a neighbourhood of the origin.

Consequently, from the first equation in (3.16), it follows that

p(q) = p g/, when ¢ = 0, (3.18)

where p is the nonstiff amplification factor defined in (2.18).
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Concerning the two “simple structured” matrices A; and By, we have
considered the following choice, though different ones are possible,

Ay =1+ Ly, By =~I + Lp, (319)

where L4 and Lp are strictly lower triangular matrices, and +y is a positive
parameter. With such assumptions, we have that the linear systems required
by the iteration (3.11) are lower triangular (block lower triangular when
the method is applied to a system of equations). Moreover, in the case of
systems, one only needs to factor one matrix having the same size of the
continuous problem.

Finally, in order to keep low the computational cost, the weight function
0(q) is defined as

0(q) = diag(N(q))™" = (I —qyI)~", (3.20)

so that the properties (3.8) are satisfied, the iteration (3.11) is well-defined
for all ¢ € €™, and, in the case of systems, no additional factorizations are
required, besides the one needed for N (q).

With such assumptions, the only key-point which we need to clarify are
the following ones:

1. the choice of an appropriate basic method (3.2),

2. the choice of corresponding “simple structured” matrices A1 and By
in (3.19) (the remaining matrices B; and A, being defined by (3.5)
and (3.7), respectively).

The first point will be discussed in the next section, whereas the second
one will be addressed in Section 3.3.

3.2 Choice of the component methods

Let now introduce the methods that we shall implement in blended form, ac-
cording to what has been said in the previous section. Even though different
choices are possible, we have considered methods which have been already
introduced in the past years by Watts and Shampine [104]. Such methods
are characterized by the fact that each one of the r equations which define
the method itself corresponds to a linear multistep formula with the same
order of accuracy. The numerical solution is therefore advanced by a block
of r equally accurate new values at a time approximating the solution on a
set of r uniformly distributed mesh-points. In more details, if we assume, for
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simplicity, the following uniform partition for the entire integration interval
[to, T:

T -t
N )

tr =to+ k- h, k=0,...,N=lr, h = (3.21)
then for each n multiple of r the block method provides the following r
approximations to y(t),

Ynti = y(tn+2)7 1= 17 R E

starting from the approximation y, to y(t,). Consequently, for theoretical
purposes, the block procedure may be consider to be a one-step method.

As a consequence, such schemes posses features of both RK methods and
LMF. In particular, with RK methods, they share good stability properties
for high order methods and a stepsize variation strategy typical of one-step
schemes (which is simpler than those for LMF). With LMF, instead, they
share the same simple representation of the local truncation error, which
allows to define efficient strategies for a variable-order implementation of
the methods.

We now discuss how block methods with “good” classical requirements
can be obtained. Even though the methods could be also derived in the
framework of Runge-Kutta methods (by means of the “V-transform” [22,
23, 59]) we prefer to use the same framework originally used in [104] (see
also [21]). Let, therefore, define the following r x (r + 1) matrices,

NORINORSSN0
A=fla] = | | E
Otér) O‘4(17“) ay)
(3.22)
v A B
B=[b|Bl = | | : E
RV

where the coefficients on the ith row of the two matrices define a suitable
r-step LMF. In the following, both the two matrices A and B will be always
assumed to be nonsingular. Then, for each n =0, r, 2r, ..., the new block
of values is obtained as the solution of the following discrete problem:

F(yn) =A@ Iny, —hB® Inf, + (a®y, —hb® f,) =0, (3.23)
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where

Yn+1 fng1
Yn = : S : s fi =ty
Yn+r Jrigr

Here the vector n,, in (2.2) is then given by

nn:_(a®yn_hb®fn)- (324)

The following is a first important result concerning the accuracy of such
methods, [21].

Theorem 3.1 Let the matrices (3.22) satisfy the following set of equations,

AQZ = iBéli—la 1=0,...,p, (325)
where
Oi
1 0!
q_1 =0, q; = ) E( ), 1=20,1,.... (3.26)
: qi
,ri

Then the LMF defining the block method (3.22) have a truncation error
which is at least O(hPT1).

Proof The equations (3.25) are nothing but the usual order p conditions for
LMF, see (1.11), simultaneously imposed for all the r LMF corresponding
0 (3.22). 0

By considering in (3.25) the equations corresponding to i = 0,1, the
above result implies that when all methods in (3.22) are consistent (p > 1)
the first two columns of the augmented matrices A and B are related to the
corresponding square matrices A and B by means of the following relations

a=—Al, b = Aq; — B1, (3.27)

where 1 = qp denotes the vector with all unit entries (see (3.26)). As
a consequence, attention can be driven to the square matrices A and B
alone provided that, as we obviously assume, consistent LMF are used. In
particular, it is an easy matter to verify the following result.
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Corollary 3.1 Let the matrices defined in (3.22) satisfy (3.27) and the fol-
lowing set of equations

Aq; =iBqi_1, i=2,...,p. (3.28)

Then the LMF defining the block method (3.22) have a truncation error
which is at least O(hP*1). D

Let now define, for each j = 1,2,..., the following matrices,
D]-:diag(l,2,...,j), sz(ql---qj)- (329)

Then, the set of equations in (3.28) may be collected into the following one:

AD,Q, 1 =BQ, 1(I, 1+ D, 1). (3.30)

Obviously, in the above equation it must be p < r + 1. In addition, when
p =r + 1, the following result holds true (see also [14]).

Theorem 3.2 Ifp =1 + 1 then the matriz A~'B is uniquely determined.

Proof In fact, when p = r + 1, the matrix @, in (3.30) is, essentially, a
nonsingular Vandermonde matrix. Consequently, one obtains that

AT'B = D,Q, (I + D;) ' Q. (3.31)

whose right-hand side only depends on r. O

As already observed, the nonsingularity of the matrices A and B implies
that methods sharing the same matrix

C=A"'B, (3.32)

provides the same numerical solution and, as a consequence, have the same
accuracy and stability properties. In this sense, in [14] such methods have
been called equivalent methods. Then, from Theorem 3.2, it follows that all
block methods defined by a set of LMF with the highest order p =r 41 are
equivalent.

Let us now look at the stability properties of such equivalent methods.
As already observed in the introduction of the section, block methods are
considered as one-step methods for theoretical purposes. Consequently, as
for RK methods, the stability properties are studied by considering the
stability function of the method. In particular, see (3.23), since the discrete
problem corresponding to the test equation (3.1) is given by
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(A —¢B)y, = (¢gb — a)y,. (3.33)

and the starting point for the subsequent application of the method is the
last entry in y,, the stability function of the method is given by

ola) = el (A= qB) (g —a) = B L

(3.34)
where e, is the last unit vector in IR" while W (q) is obtained from the
matrix I, — gC, whose last column has been substituted by 1+ ¢(q; — C1).
The second equality in (3.34) follows from the nonsingularity of A and B,
the consistency conditions in (3.27), and the Cramer’s rule. The method is
therefore A-stable provided that

Re(q) <0 = l9(q)| < 1.

A necessary requirement for the above property to hold is the function g(q)
to be well-defined in the left-half complex plane. This leads to the following
definition.

Definition 3.1 A block method is said to be pre-stable if the spectrum of
the corresponding matriz pencil is contained in C7.

This fact implies that the result of Theorem 3.2 is useful only to define
pre-stable methods up to r = 8; as matter of fact, by direct inspection one
verifies that the matrix on the right-hand side of (3.31) has eigenvalues with
negative real part when r > 9. Consequently, the corresponding methods
cannot be pre-stable: in fact, the spectrum of the pencil (A — ¢B) coincides
with that of C~! (see (3.32)), since both the two matrices A and B are
assumed to be nonsingular.

In order to obtain alternative criteria for choosing C, we shall relax the
order conditions for the LMF on each row of the block method. In particular,
it will be convenient to impose only the order r conditions: i.e. (see (3.30)
and (3.32))

DyQr—1 = CQr—q (Ir—l + Dr—l) . (3-35)

It remains one more condition to be imposed and it will be used to fix
the spectrum of the matrix C. Concerning this point, the following result
applies.
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Theorem 3.3 The matriz C defined as

C=Q,G'FGQ, ", (3.36)

where Q, is defined according to (3.29), and

! —do
G = ' R _d:l , (3.37)
7! | —d'r71
1s the unique matriz such that:
(i) the characteristic polynomial is given by
d(z) = idizi, d, = 1; (3.38)
i=0

(1i) each row of the consistent block method with matrices

A=1, B =C, (3.39)
corresponds to a LMF with an O(h"+1) truncation error.

Proof We will prove that if the matrix C satisfies the properties (i) and
(3), then it must be necessarily equal to the matrix on the right-hand side
of equation (3.36). As matter of fact, because of the second requirement, we
have already seen that C' must satisfy equation (3.35), which is equivalent
to (see (3.26) and (3.29)),

(g Sy )mca (). (3.40)

Let now denote with d the unique vector such that

Qra = CQT- (3.41)

Then, we can collect the two previous equations into the following one:

Qr< < - +0;H)_1) ) ‘El ) —CQ,. (3.42)

Moreover, see (3.37), we observe that
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( < (Ir—1 +0;1)1 > ‘ d > =G 'FG, (3.43)

F= ( ( 1(:: > ‘ —d ) , = _gaa. (3.44)

The matrix C' is therefore similar to the Frobenius-type matrix F. Tt follows
that the characteristic polynomial of C is given by the polynomial in (3.38)
provided that, see (3.37),

where

d=(dy...d)7",

or, equivalently, F = F so that C must be equal to the matrix on the right-
hand side in (3.36). By using similar arguments, it is easily proved that the
latter matrix always satisfies the properties in (7) and (i7) so that the proof
is complete. O

From the previous theorem it follows that once the desired characteristic
polynomial d(z) (or, equivalently, the desired spectrum) for the matrix C
has been chosen, one can simply use the formula in (3.36) to derive the block
method with the prescribed properties. Let us now discuss how to properly
choose the polynomial d(z) in order to obtain a method with “good” stabil-
ity properties.

We surely will choose it in order to have all the roots contained in C7,
so that the method is pre-stable. This is not enough, however, to define a
“good” method. In fact, from (3.33) and (3.34) for n = 0, one obtains

_ det(W(q) .
yr(Q) - det(Ir . qC)yU ~ € Yo,

so that (see (3.34) and (3.38))

rg o det(W(q) — wlg) _ »(q)
“t~alg) = det(I, —qC) — ¢"d(q7") — plg)’ (3.45)

where (q) = det(—W (q)) is a polynomial of maximum degree r and
r .
M(Q) = Zdiqriza dy = L,
=0

is a polynomial of exact degree r since we assume (I, —qC') to be nonsingular
in the left-half complex plane.
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Remark 3.1 Observe that, because of (3.35), the approzimation in (3.45)
must be at least O(q"t') accurate.

The characteristic polynomial d(g) of the matrix C coincides, therefore,
with the reciprocal and scaled polynomial at the denominator of a rational
approximation to the exponential. One of the most classical ones is the Padé

(v,7),
o? s ‘Pv,r(z)
Mu,r(z) ’

where ¢, ,(z) and p,,(z) are the unique polynomials of degree v and r,
respectively, such that

pur(2) = g (2)e” + O(7H1). (3.46)
The expression of the two polynomials is well-known and is given by

14

v+r—1)uv! i
pur(z) = Z(U(Jrr)!z'!(u)—i)!z

=0
(3.47)
! , w+r=aplrl
fwr(2) = ;(_1) (U(—i- r)li! (7")— i)! “

Moreover, the following properties hold true for such polynomials (see [92]
and the references therein).

Theorem 3.4 For all v,r > 0:
1 pr(2) = @ro(=2);
2. if r > 1, all the zeros of the polynomial i, , lie in the annulus
(r+ )€ < J2] < 74+ v+4/3,
where € =~ 0.278465 is the unique positive root of ze® 1 = 1.0

By considering (3.45) and (3.46), the following choice for the character-
istic polynomial d(q) of the matrix C' seems, therefore, appropriate

qrd(qil) = Nv,r(“])- (3.48)

As matter of fact, we observe, first of all, that from Remark 3.1 and
(3.46) it follows that, if d(g) is defined as in (3.48), the polynomial ¢(q) in
(3.45) is necessarily given by
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v(q) = Pu,r (rq).

As a consequence, the stability function g(¢q) of the method obtained through
the choice (3.48) coincides with the (v,r) Padé approximation to the expo-
nential evaluated at rq. From the Ehle conjecture [50], subsequently proved
in [57] by Hairer, Wanner and Ngrsett, it is known that methods with such
stability function are A-stable, for each r > 3, iff v € {r —2,r —1,7}. More-
over, such methods are also L-stable only if v < r. In the present case, we
look for L-stable methods and, consequently, we need to choose appropriate
values for the couples (v,7), v € {r — 2,7 — 1}. In order to make the proper
choice, we observe that, for the test equation, we have

r\rq
Yr = #ua(ra) Yo = € %yp.
twr (Tq)

We know that such an approximation is exact at ¢ = 0 and as ¢ — o0
(due to the L-stability of the methods). In addition to this, we also require,
for p < 0 (see (3.1)), the discrete solution to have the same sign as the
continuous one (which is the sign of yg), whatever the stepsize h used. This
restrict the range of choices for the couple (v,r) to the following ones:

e (r—2,7) when r is even,
e (r—1,7r) when r is odd,

since it is known that only for such values, when v € {r —2,r —1}, the Padé
approximation is analytic in C~ with no real and negative zeros.

Let now discuss the order of accuracy of the corresponding block meth-
ods. For this purpose, let us denote by

y(t1) f(t1,y(tn))

<>
Il
">
Il

y(tr) F (b y(t)

where y(t) is the solution of the IVP (2.1). From (3.23) one then obtains

AR L,y —hBRI,f+a®y,—hb® fo =, (3.49)

where T is the vector with the truncation errors of the method. By assuming
that y(¢) is sufficiently smooth, the entries of the latter vector are given by
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Dt . [~ . ; G
W= S (S ) -
k=0

Jj>r

= > yUt)hiv, i=1,..7 (3.50)
j>r

because of the order r conditions (3.35). Consequently, by subtracting (3.23)
from (3.49), we obtain

ARIn(y—y)—hBRI,(f—f)=r.

By introducing the vector e = y — y of the local error, one then concludes
that the latter satisfies the equation

<A®Im —hB® I, j) e=r, (3.51)
where
Ji
J = ,
Jr
(3.52)
1
B = [ ttis(e) + (L= s)i)ds = o+ O(b),
0
J(t,y) = % (t,y) and Jy = J(to,yo). Like any one-step method, the order

of accuracy is defined as follows.

Definition 3.2 The block method corresponding to (3.51) has order p pro-
vided that e, = O(hPT1), where e, is the last block entry of the vector e.

Obviously, from (3.50) and (3.51), we have that the order of the method
is p > r. In general, the relations between the order conditions (3.50) and
the global order of the method may be very entangled, as the Butcher theory
for Runge-Kutta methods shows. Nevertheless, in case we look for values of
p only slightly greater than r, the following result may be useful.

Theorem 3.5 Consider the following possible cases for the method corre-
sponding to (3.50)-(3.51)

(0) e A v, 1 #0;
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(1) e’A'v,4,1 =0 and (efA7'v, ;2 #0 or el CA v, 1 #0);
(2) eTTA_1VT+1 = eTTA_1VT+2 = eTTCA_1VT+1 == 0,
where, see (3.50),

Vj1
vj = : ; Jj > (3.53)
Vjr
Then the global order of the method is exactly p = r + i in cases i = 0, 1;
and p > r+ 2 in case 2.

Proof 1In fact, from (3.32), and (3.50)-(3.52) one obtains

e = (Leol,-hCal, j)fl (A" @ILy) 7
= WA v ) @ Lny" ) (t) +
h't? ((A_1Vr+2) ® Iy (to)+
C® T I (A1) @ Iy (1)) + O )
— hr-l—l(A—lvH_l) ® Im y(r+1)(t0) +
B2 (A7 1rs2) @ Ty (t0) + (CA'vrst) @ Joy " i(to) ) +
O(h™*3), (3.54)

from which, in view of Definition 3.2, the thesis easily follows. O

By direct inspection, one verifies that the methods obtained with the
choice in (3.48) satisfy the hypothesis (1), in the previous Theorem, when
r is odd, and the hypothesis (2), when r is even. In addition, in the latter
case, some computations allows to prove that the last block entry in the local
error is exactly O(h"*3) accurate. The order of accuracy of the methods here
considered is, therefore, given by

p=r+1, when r is odd,

p=r+2, when r is even,

All the previous considerations, lead us to choose as basic methods for
the blended implementation the ones listed in Table 3.1. We remark that
the blocksize r of each method has been always chosen equal to the order
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Table 3.1: Basic block methods

Padé | (2,3) | (2,4) | (4,6) | (6,8) | (8,10) | (10,12)
r 3 4 6 8 10 12
Order 4 6 8 10 12 14

of the previous method in that list. This features, in fact, will be used to
derive an efficient variable-order implementation of the methods themselves
(see the next chapter). In Figure 3.1 the boundaries of the absolute stability
regions of such methods have been plotted.

3.3 Choice of the splitting matrices

In this section we shall study in more detail particular choices of appropriate
matrices A; and Bs, as defined in (3.19). As explained in Section 3.1, this
uniquely defines the whole blended implementation of the underlying block
method. The remaining matrices By and A, are, in fact, defined according to
(3.5) and (3.7), respectively, and the weight function 6 is defined according
to (3.12) and (3.20).

To begin with, we derive from (3.9), (3.12) and (3.14) the following expres-
sion for the amplification matrix of the blended iteration:

Z(@) = N(g9) " (N(g) — M(q))
= No) ' ((T=0(0) (A1 = A>) +q 0(a)(B1 - By)). (3.56)

Let now consider the simpler case where (see (3.19)),

Li=Lg=0, (3.57)

since in such a case a complete spectral analysis can be carried out. In fact,
in such a case, one obtains that

Ay=1 = B =¢C, Bo=+nI = Ay=~C"". (3.58)
This, in turn, allows us to easily derive the following result.

Theorem 3.6 Assume that for the blended method (3.9) the previous equal-
ities (3.57) hold true. Then, the eigenvalues of the amplification matriz
(8.56)-(3.58) are given by
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-4 i I I I I I
6] 1 2 3 4 5 6

Re(a)

Figure 3.1: Boundaries of the Absolute stability regions of the block methods
in Table 3.1
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Y
H, X € a(0). (3.59)

Proof Since the equalities (3.57) are satisfied, then also (3.58) do. Conse-
quently, by taking into account (3.12) and (3.20), from (3.56) one obtains

Z(q) = (1—19) 1( (1—~q)~'(vO"' = )+q(1—7q)_1(0—71))
= q(1—7vq) 2 (C—29I+~°C™?)
= q(1 —~q) 2C~ 1 (C —~I)*.

from which the thesis follows. 0O

When (3.57) holds true, the above result allows the following easy char-
acterization of the spectral radius p(q) of the amplification matrix Z(q):

gA =% | _ ‘ q
AL =7q)*|  [(1—79)*
Consequently, a simple expression can be obtained for the two parameters

p* and p defined in (3.17) and (3.18), respectively. In fact, by expanding
(3.60) at ¢ = 0, one readily obtains that

A=7?]

p(g) = max A

Xea(C)

max

3.60
Xeo(C) ( )

- A=
= max . 3.61
Py Aeo(C) p\‘ ( )
Similarly, for ¢ = iz, one has that p(g) in (3.60) is given by
x
——D >0
(1 +2292)"" =
which is strictly monotone increasing in [0,7~!), and decreasing in (y~!, 00).
As a consequence, one obtains that, at z =y~ 1,
«_ Py
= —. 3.62
'O’Y 2,), ( )

In (3.61) and (3.62) the subscript v has been used to state that the
value of such parameters actually depends on the diagonal entry v in Bs.
The above relations allow the derivation of simple criteria for choosing the
parameter «: indeed one may think to choose it in order to minimize either
(3.61), or (3.62), or a combination of the two. Concerning the minimization
of (3.61) and (3.62), a corresponding result can be derived. In order to state
it, let use set
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o(C)={Nj=w; e, j=1,...7r), (3.63)

and sort the eigenvalues by decreasing arguments as follows (we recall that
a(C) c CY),

g><12---zgr>—g. (3.64)

Since the matrix is real, we shall only consider the first £ = [r/2] eigenvalues,
in the sequel. Let now assume that the moduli of such eigenvalues are strictly
increasing, that is,

0<pr <+ < gy (3.65)

Consequently, the following preliminary result holds true.

Lemma 3.1 Assume that (3.57) hold true and the eigenvalues of the matriz
C satisfy (3.64)-(3.65). Then, for all values of v greater than or equal to

. @1p;j(cos (1 — cos ()
= max U+ U2+ g0, U, = . (3.66
R O AR ! 0j — 1 (3.66)

one has that

M = A =P
M 2 e 3.67
A1l jeflntt Al (3.67)

Proof Indeed, in order for (3.67) to be satisfied, for all j > 1 one must have
C_~2 A2
A = < A1 — _
Al 1]

By multiplying both sides by |A1};[, and taking into account (3.65), one
then obtains the following second order inequality,

V2 — 29T, — 1, > 0,

which, considering that, because of (3.64), ¥; < 0 and that the discriminant
of the equation is positive, is satisfied for all

SR TR VA
The previous lemma allows us to state the desired results.

Theorem 3.7 Assume the hypotheses of Lemma 3.1 to be satisfied and,
moreover, let 4 be defined according to (3.66). Then:
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1. the minimum value of p* is obtained at v = 1, and it is given by

1711>i51pf‘y =1—cos(y, (3.68)
provided that
01 2> ; (3.69)
2. The minimum value of p is obtained at v = 1 cos (1, and it is given
by
R . 9
= 3.70
min py = @1 sin” (1, (3.70)
provided that
p1c08(1 > 7. (3.71)

Proof Let us consider the first point. By taking into account (3.61) and
(3.62), we have to solve the problem

alG A2
min max £ =W
>0 je{l,...,.4} 2vp;

If such a minimum would be obtained at a value of v > 4 (see (3.66)) then,
from Lemma 3.1, the previous problem would reduce to the following simpler
one,

2 2
-2 1
i PLTY — 2017008y :min_<g+l_2m<1> — ming* (7).
>0 2v¢p1 >0 2 \ vy p1 >0

Consequently, by considering that the only stationary point of g* is given
* 2 %

by %((pl) = 0 and, moreover, &Tgy(gol) > 0, from (3.69), one then obtains

that at v = ¢,

P, =9 (1) =1 —cos (.

Similarly, for the second point we obtain that

. \on eiCj —’Y|2 . QO%—i-’yQ — 2(p17ycos(q
min max ——— " = min
>0 je{l,...0} ©j >0 01

2
. Y .~
= L2 =
min <‘;01 + o T Zycos C1> ryn;glg(v),
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provided that the minimum is obtained at a value of v > 4. Indeed, by
considering that the only stationary point of g is given by g—f;(gol cos(y) =0
and, moreover, %((pl cos(y) > 0, from (3.71), one then obtains that, at
Y = ¢1co8 (1,

ﬁnpl cos(1 — §(<,01 COo8 Cl) =% sin’ ¢ O

Remark 3.2 We observe that the above relation (3.66) and (3.69) can be
also written as

ﬁ—l—ﬂ<2(1—|—cos§j—cos§’1), j=2,...,L (3.72)
Y1 Py
By taking into account (3.64)-(3.65), the previous inequalities are satisfied
when all the eigenvalues of the matriz C are contained in the small annulus
with internal and external radii given, respectively, by:

01 = 1, 02 = ¢1(1 +2(cos (2 — cos(1)). (3.73)

A similar conclusion can be obtained from (3.66) and (3.71),

Pi 4 P g2 ¢1 < 1+ cos? ¢y + 2cos (1 (cos ¢ — cos (), (3.74)
1 Py

j=2,....¢,
which, however, is more restrictive than (3.72).

It turns out that both results in Theorem 3.7 apply to the methods listed
in Table 3.1 (see Table 3.2). Moreover, according to what was stated in Re-
mark 3.2, the eigenvalues of the matrix C' are contained in the suitably small
annulus with internal and external radii defined in (3.73) (see Figure 3.2).

Let now consider in more details the convergence properties of the blended
iteration when ¢ — oo. We have already remarked that the stiff amplifica-
tion factor p(®) for the blended iteration (3.11) is “automatically” zero-
valued because of the second property in (3.15). In addition to this, the
previous analysis allows to measure the rate at which p(q) decays to 0 as
g — oo. As matter of fact, when [¢| > 1 and v > 4, from (3.60)-(3.61) and
(3.67) one easily obtains
> 5(c0 = *
plq) = 2/) = Q, where 5(%) = % _ 2 . (3.75)

vlal  ldl Yo

As a consequence, the previously defined parameter ﬁ(oo) is a further ampli-
fication factor describing the convergence properties of the blended iteration
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Table 3.2: Values of the parameters ¥, 1 and @1 cos {1 corresponding to the
methods in Table 3.1

Order | r Padé v w1 | w1008 (1
41 3 (2,3) || .1233 | .7387 A877
6 4] (24) | .1517 | .8482 3994
8| 6 (4,6) || .1415 | .7285 .2696
10| 8| (6,8) | .1376 | .6745 2101
12 |10 | (8,10) || .1356 | .6433 1752
14 | 12 | (10,12) | .1345 | .6227 1519
! 1
0.5 + e
L+
0 D+ 0
4
-0.5 L +
-1 ‘
-1 ‘ » o Lo
02 04 06 08 1 12 0.5 1 15
1 1
osf  Tox osf Tty
o+ 4
0 R 0 o
05 L 05 ooyt
-1 L al
02 04 06 08 1 12 14 02 04 06 08 1 12
1 1 _
osf T + osf toot Lt +
4 4
Ty .
0 R 0 F
+ 4 +
1 o ‘ ‘ 1 : ‘ ) ‘ ‘ ‘
02 04 06 08 1 02 04 06 08 1

Figure 3.2: Spectrum of the matrix C' for the block methods in Table 3.1
and corresponding annuli according to (3.73).
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(evidently, the smaller ﬁ(oo), the better the L-convergence property of the
iteration). In Table 3.3 we list the obtained values for the amplification
parameters p, p* and p(°) of the iteration corresponding to the two val-
ues of v considered in Theorem 3.7. As one can see, when 7 is defined in
order to minimize the nonstiff amplification factor, the resulting iteration
turns out to be not A-convergent for methods with blocksize greater than 4.
Moreover, from (3.61), (3.62) and (3.75) one can easily derive that the value
of v which minimize the maximum amplification factor is the same value
which minimize the geometric mean of g and p(°). Tt represents, therefore,
a “good compromise” with the requirement of a fast convergent iteration
both when ¢ ~ 0 and |g| > 1. Finally, for completeness, in Table 3.4, the
averaged amplification factors (with respect to the infinity matrix norm, see
(2.20)) have been also listed.

When the blended implementation does not satisfy (3.58), then the above
analysis cannot be applied, since the involved matrices no more commute.
In such a case, one must resort to computational techniques in order to
minimize either one of the two parameters (3.17) and (3.18). We observe
that, from (3.20) and (3.56), one obtains

Z(q) = (A1 —qBs)™" (7(1(1 —vq) " (A2 — A1) + q(1 — yq) " (B1 — B2)>

= q(1=70) 7" (A1 = gB2)7' (B = By + (4 — A1),
so that:

e when ¢ = 0,

2(q) = A7 (B = Bo +9(4s — 41)) = R, (3.76)
e when |g| > 1,
2@)~ B, (B~ Byt 1(Ay — 4)) = TR™. (377)
Y4 q

It follows that the amplification factors p and [)(OO) are given, respectively,
by the spectral radius of the above matrices R and R(*). Concerning al-
ternative choices for the matrices A; and By, we have considered the case
where

Ay L ,  Ba=nol (3.78)
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Table 3.3: Asymptotic amplification factors for the methods satisfying (3.58)
with the choices v = ¢ and v = 1 cos {1 respectively.

‘ Order ‘
4

T3] ]
(2,3) 7387 | .3398 | 5021 | .9201

[ Padé] ] o

r
3
6| 4 (2,4) || .8482 | .5291 | .8975 | 1.2476
8| 6 (4,6) || .7285 | .6299 | .9177 | 1.7295
10| 8 (6,8) || .6745 | .6885 | .9288 | 2.0413
12 | 10 | (8,10) || .6433 | .7276 | .9361 | 2.2621
14 | 12 | (10,12) || .6227 | .7560 | .9415 | 2.4282
41 3 (2,3) || 4877 | .4273 | 4168 | 1.7524
6| 4 (2,4) || .3994 | .8262 | .6601 | 4.1372
81 6 (4,6) || .2696 | 1.1660 | .6287 | 8.6504
10| 8 (6,8) || .2101 | 1.4492 | .6091 | 13.7918
12 | 10 | (8,10) || .1752 | 1.6993 | .5956 | 19.3942
14 | 12 | (10,12) || .1519 | 1.9272 | .5856 | 25.3685

Table 3.4: Averaged amplification factors for the blended iteration with
diagonal splitting (v = ¢1).

Order | r Padé o1 05 P 2%
4| 3 (2,3) 1.7311 5820 | .4693 | .4066

6| 4 (2,4) 2.7844 | 1.0301 | .7895 | .6608

8| 6 (4,6) 7.2986 | 1.3512 | .9614 | .7949

10| 8 (6,8) | 18.9785 | 2.2408 | 1.4146 | 1.0123

12 | 10 | (8,10) || 54.1473 | 4.8439 | 1.8673 | 1.3061

14 | 12 | (10,12) || 167.4919 | 8.9677 | 2.5791 | 1.4882
Order | r Padé o1 03 05 09
4| 3 (2,3) 2.5575 8598 | .6933 | .6007

6| 4 (2,4) 4.7233 | 1.7473 | 1.3392 | 1.1209

8| 6 (4,6) | 10.6335 | 1.9686 | 1.4007 | 1.1582

10| 8 (6,8) || 25.6036 | 3.0230 | 1.9085 | 1.3657

12 | 10 | (8,10) || 69.6657 | 6.2321 | 2.4024 | 1.6805

14 | 12 | (10,12) || 208.5873 | 11.1680 | 3.2119 | 1.8533
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Table 3.5: Asymptotic and averaged amplification factors for the methods
satisfying (3.78) with minimized maximum amplification factor p*.

Order | r Padé ¥ p* 0 p(>)
41 3 (2,3) 6884 | .2686 | .3366 | .6248

6| 4 (2,4) .8351 4045 4513 .6220

81 6 (4,6) 7677 | 5235 | 4747 | .8598

10| 8 (6,8) 6151 | .5468 | .6032 | 2.0516

12 | 10 | (8,10) 6046 | .6482 | .6884 | 3.6684

14 | 12 | (10,12) .0819 7417 7462 | 5.7378
Order | r Padé o1 05 P 05
41 3 (2,3) 9685 | 4047 | .3462 | .3086

6| 4 (2,4) 2.2948 | .6252 | .5285 | .4698

81 6 (4,6) 7.3490 | .8836 | .7174 | .6237

10| 8 (6,8) 16.2617 | 1.5806 | 1.1758 | .8672

12 | 10 | (8,10) 52.4037 | 1.9002 | 1.4913 | 1.1513

14 | 12 | (10,12) || 167.8829 | 3.8893 | 1.9866 | 1.3105
Order | r Padé o1 03 05 P9
41 3 (2,3) 1.4230 | .4912 | .4089 | .3799

6| 4 (2,4) 3.0605 | .6621 | .5761 | .5185

81 6 (4,6) 9.5122 | .9024 | .6768 | .6270

10| 8 (6,8) 18.2097 | 1.1149 | .8629 | .7251

12 | 10 | (8,10) 63.9458 | 1.9968 | 1.3118 | .9862

14 | 12 | (10,12) || 205.1073 | 4.1068 | 1.7443 | 1.1984

In Table 3.5 and in Table 3.6 we list the obtained results when choosing v in
order to minimize p* and +/p||R||2, respectively. The infinity matrix norm
has been used for the computation of the averaged amplification factors.
The second criteria, for choosing v, has been adopted in order to “improve”
the convergence properties of the iteration when g ~ 0 and, at the same
time, to obtain increasing values for p when the order of the method in-
crease. This property, in fact, turns out to be useful for an efficient variable
order implementation of the methods. As told before, in such a case the
parameters have been numerically computed. We observe that the choice
of minimizing \/p||R||2 makes the method corresponding to r = 12 not A-
convergent (though A(a)-convergent with a = 7/2).

Hereafter, we shall refer to the following three blended schemes:

1. A; and By as in (3.58) and +y chosen in order to minimize p*;

2. Ay and By as in (3.78) and 7y chosen in order to minimize p*;
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Table 3.6: Asymptotic and averaged amplification factors for the methods
satisfying (3.78) with minimized \/p||R||2.

Order | r Padé y p* 0 5>
41 3 (2,3) 5802 | .3020 | .2692 | .8638

6| 4 (2,4) 5960 | 5441 | .3833 | 1.2018

8| 6| (46) | .5165| .6719 | .4310 | 1.8221

10| 8 (6,8) 4472 | 7860 | .4389 | 2.1402

121 10 (8,10) 4088 9112 4408 | 2.6821

14 | 12 | (10,12) .3866 | 1.0010 | .4583 | 4.1523
Order | r Padé o1 03 P 05
41 3 (2,3) 9034 | 4194 | .3683 | .3370

6| 4 (2,4) 1.4129 | .8798 | .7153 | .6336

81 6 (4,6) 4.1309 | 1.1826 | .9404 | .8096

10| 8 (6,8) 8.8690 | 2.3211 | 1.5682 | 1.1289

12 | 10 | (8,10) || 24.7268 | 3.5040 | 2.3807 | 1.4794

14 | 12 | (10,12) || 77.7625 | 5.4215 | 3.5041 | 1.8642
Order T Padé ,51 ﬁg ﬁ5 ﬁg
41 3 (2,3) 1.0846 | .4445 | .3679 | .3177

6 4 (2,4) 1.2992 .6259 .b871 4831

8| 6 (4,6) 2.8751 | .9453 | .6415 | .5428

10| 8 (6,8) 5.8632 | 2.2464 | .9509 | .6319

12 | 10 | (8,10) || 14.7973 | 3.9311 | 1.9095 | .7842

14 | 12 | (10,12) || 42.8203 | 6.6707 | 3.3158 | 1.0183

3. Ay and Bs as in (3.78) and +y chosen in order to minimize /p||R||2,

as the type 1, 2 and 3 schemes, respectively. A comparative analysis of
Table 3.3 and Table 3.4 with Table 3.5 and Table 3.6 puts into evidence
the type 2 schemes as the ones with the best features from the point of
view of the amplification factors, with the only exception of the factors
p(>°) corresponding to the last two higher order methods. On the other
hand, the type 1 schemes allows to carry out a complete spectral analysis of
the amplification matrix. Moreover, the diagonal splittings characterizing
such schemes make them very appealing for an implementation on parallel
computers.

3.4 Numerical experiments

In order to compare the performances of the proposed blended schemes
on some reference stiff problems taken from the CWI testset [79] for ODE
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solvers, a Matlab code had been realized. In particular, the code imple-
mented variable-stepsize and variable-order strategies for the methods in
Table 3.1 (we do not discuss here the details of such implementation since
they will be fully described in the next chapter).

We here report the results obtained on the following well-known test
problems:

Van der Pol, of size m = 2, stiff parameter p = 1000, and [tg,T] =
[0,1000];

Robertson, of size m = 3, and [to, T] = [0, 4 - 10%];

e Pollution, of size m = 20, and [tg, T] = [0, 60];

Ring Modulator, of size m = 15, parameter Cs; = 10~°, and [tg, T] =
[0,1073];

In Tables 3.7, 3.8, 3.9, and 3.10, some statistics concerning the integra-
tion of the previous four problems with the type 1, 2, 3 schemes previously
described have been reported. In such tables, for each run, we list: the
values of the input tolerances atol and rtol for, respectively, the absolute
and the relative error of the numerical solution, and the initial stepsize hyg.
Moreover, in such tables we count as 1 step one single application of the
block methods. Finally, the precision of the numerical solution is measured
with the number of significant correct digits, defined as

sed = — 10g10 H(y - ytrue)-/ytrueHooa (3-79)

where y denotes the numerical solution at ¢ = T', while y¢,4e is a known ref-
erence solution. The operator ./ used in (3.79) denotes the componentwise
ratio.

In addition, in Figures 3.3, 3.4, 3.5, and 3.6, the corresponding Work-
Precision Diagrams have been plotted with the work measured either in
terms of function evaluations or of solved linear systems. The input toler-
ances, used for the diagrams, were:

atol = rtol = 10-%+%) g =o0,...,10,

and the initial stepsize was: hg = 10~° for the Van der Pol, the Robertson,
and the Pollution problems, and hy = 10~2 for the Ring Modulator problem.

The previous results show that, in spite of the different values of the
amplification factors of the corresponding iteration, the three schemes are
able to provide comparable results for the considered test problems.
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Table 3.7: Results for the Van der Pol problem.

Type 1 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys

10°% J10°% | 3.98 113 102 | 1583 3178
10°6 | 10°% || 6.50 | 112 109 | 2166 4340
1078 11078 || 9.69 178 177 | 3967 7942
10710 1076 || 11.05 | 160 158 | 5405 | 10814

Type 2 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys

107* [ 1076 | 3.81 86 75 | 1383 2770
1076 | 1076 6.53 112 110 | 2393 4794
108 [ 1076 | 9.27 | 166 166 | 3750 7508
10719 | 1076 | 10.92 140 138 | 5271 | 10554

Type 3 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys

10=* [ 107 || 4.05 81 71 | 1350 2700
1076 | 1076 6.12 111 111 | 2326 4668
108 [ 1076 | 9.06 | 146 145 | 3710 7420
10710 { 1076 | 11.91 140 138 | 5389 | 10778

Table 3.8: Results for the Robertson problem.

Type 1 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys
100 [10°%] 4.06 54 54 | 723 | 1446
1076 | 1076 | 5.67 99 99 | 1365 | 2730
1078 [ 1076 | 8.01 86 86 | 2192 | 4384

10710 | 10-6 9.80 130 130 | 3624 7248

Type 2 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys
100°F [10°%] 3.91 55 55 | 690 [ 1380
1076 | 1076 | 596 | 106 106 | 1321 | 2642
1078 | 1076 | 8.30 81 81| 2103 | 4206

10~10 [ 1076 || 10.10 110 110 | 3386 6772

Type 3 scheme

atol=rtol hg scd | steps | accept | f-eval | lin-sys
10~ [107% ] 3.37 55 55 1 690 | 1380
1076 {1076 | 5.69 | 108 108 | 1346 | 2692
1078 [ 1076 | 8.04 81 81 | 2124 | 4248

10719 1 1076 || 10.48 106 106 | 3406 6812
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Table 3.9: Results for the Pollution problem.

Type 1 scheme
atol=rtol hg scd | steps | accept | f-eval | lin-sys
100°* [10°%] 4.08 17 17| 198 396
1076 [ 1076 | 5.99 31 31 381 762
1078 | 1076 | 7.96 48 48 767 | 1534
10710 | 1076 || 9.31 49 49 | 1116 | 2232
Type 2 scheme
atol=rtol hg scd | steps | accept | f-eval | lin-sys
107 [ 107 | 4.49 17 17| 189 378
1076 | 1076 | 5.36 30 30 | 354 708
1078 [ 1076 | 8.24 48 48 724 | 1448
10710 | 1076 || 10.16 49 49 | 1100 | 2200
Type 3 scheme
atol=rtol hg scd | steps | accept | f-eval | lin-sys
107 [107% | 4.64 17 17| 192 384
1076 | 1076 | 5.63 24 24 351 702
1078 [ 1076 | 7.62 31 31| 681 1362
10710 ] 1076 || 10.17 49 49 | 1083 | 2166

Table 3.10: Results for the Ring Modulator problem.

Type 1 scheme
atol=rtol hg scd | steps | accept | f-eval | lin-sys
10°% 1078 3.09 | 1366 | 1341 | 25982 | 52028
1076 | 1078 || 5.01 | 1831 | 1765 | 43176 | 86500
1078 | 107® || 6.65 | 2068 | 1982 | 65376 | 131004
10710 | 1078 || 9.51 | 2581 | 2506 | 96084 | 192376
Type 2 scheme
atol=rtol hg scd | steps | accept | f-eval | lin-sys
100% 108 254 | 1359 | 1325 | 26309 | 52754
1076 | 1078 || 4.77 | 1580 | 1500 | 41217 | 82626
1078 | 107% || 6.98 | 2008 | 1925 | 64140 | 128612
10710 | 1078 || 9.40 | 2295 | 2199 | 92015 | 184334
Type 3 scheme
atol=rtol ho || scd | steps | accept | f-eval | lin-sys
107 [ 1078 || 2.71 | 1413 | 1398 | 23376 | 46760
1076 | 1078 || 4.93 | 1590 | 1518 | 40391 | 80842
1078 | 1078 || 7.57 | 2198 | 2126 | 65124 | 130388
10710 | 1078 || 8.49 | 2937 | 2845 | 97731 | 195626
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Figure 3.3: Work-Precision Diagrams for the Van der Pol problem.
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Chapter 4

The code BiM

Computational codes represent an outstanding technological aspect of the
Mathematical Sciences. Moreover, these codes constitute basic tools for
problem solving in applied fields. The construction of such codes requires,
in turn, the systematic solution of a number of related sub-problems, which
constitute the intermediate steps to reach the desired goal. This aspect of
Numerical Mathematics is usually underestimated and considered to be only
of secondary importance. On the contrary, it is a source of new trends of
investigation and a necessary building block to make Mathematics usable
from people involved in solving real-life problems.

With this premise, and in light of the numerical results provided by the
Matlab prototype mentioned in Section 3.4, we decided to implement in the
code BiM the blended implicit methods with splitting matrices given by

Al :IT‘a B? :fyITa (41)

i.e., the type 1 schemes introduced in the previous chapter. As we are going
to discuss in full details in the present chapter, the diagonal structure of the
corresponding nonlinear splittings has allowed to construct a computational
code for which almost all of the implementation strategies are supported
by a linear analysis of convergence of the iteration. In addition to this, the
perfect degree of parallelism of such splittings, for what concern the function
evaluations and the system solvings, makes these schemes very appealing for
an implementation on parallel computers.

For later reference, we recall that when the parameter 7 is selected in
order to minimize the maximum amplification factor of the iteration, the
following results apply (see Section 3.3):

v =M1 = min |\, p*=1—cos(y, p=2vp". (4.2)
Xea(C)
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Moreover, for sake of brevity, hereafter the following notation will be used for
the current block of integration, since the reported analysis equally applies
to each application of the block method:

e (t9,%0) for the initial point of the block,
e {1,...,t, for the internal abscissae,
e the vectors
(7 S
y=1{ |, f=] :
Yr fr

for the current numerical solution.

The organization of this chapter is the following: in Section 4.1 we dis-
cuss the nonlinear blended iteration applied to problem (1.2); Section 4.2
concerns with the local error estimate used in the code, on which both the
variation of the stepsize and of the order of the method rely. The details
of the latter are then discussed in Section 4.3. The problem of the even-
tual re-evaluation of the Jacobian and/or of the factorization involved in the
nonlinear splitting is addressed in Section 4.4.

4.1 The nonlinear iteration

We start considering in full detail the nonlinear iteration generated by the
blended implicit methods with splitting matrices as in (4.1) applied to prob-
lem (2.1). In such a case, the blended iteration (3.11) becomes

AyD = =0 (0((I=1C") @ Ly = h(C = A1) @ [, V)
4y (C—l ® Imy(i) —hI® Imf(i)) - "7) ; (4.3)
yOt) = y@O L Ay@D i =0,1,.. .,
where

: ‘ A PR S (CR7
e Y
the vector n only depends on the initial condition, and, if Jy denotes the
Jacobian of f at (g, o),

=Tx0 !, Q= (I, — hyJy). (4.4)

Consequently, if v iterations are performed to obtain convergence, the
overall computational cost is approximately given by:
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e the evaluation of the Jacobian matrix Jy,
e the factorization of the m x m matrix Q in (4.4),
e rv function evaluations and

e 2rv system solvings with the factors of the matrix €.

Let us now briefly sketch the choice of the starting vector y(®) and the
stopping criterion for the iteration (4.3). Concerning the first point, the
adopted strategy is similar to that used in most of the available codes:
the default profile is obtained by using the interpolating polynomial over
the previous block of points; alternatively, we use a constant initial vector
(namely, the starting point repeated r times) in either one of the following
cases:

- when we integrate over the very first block;
- after a failure of the iteration;

- when the solution is very slowing varying. This last condition is rec-
ognized when, on the last block (whose size is r, if the order has not
been changed), the following test is true:

Nyrj — oy

< min{1072,10%+tol,} and < 0.5,
1+ |y0].| { ]} Hfr“oo

(4.5)

where tol; = rtol (the prescribed relative tolerance) if |yg;| > 107",
tol; = atol (the prescribed absolute tolerance) if |yg;| < 10! and,
in general, y4; is the jth entry of y,.

Let us now analyze the stopping criterion for the iteration (4.3). Let
us consider the vector Ay, as defined in that equation, and introduce the
norm

(1) (7) 1 — Ayyj 2
Ay = Ay | = — — 4.6
18771= max 18yl = max, mZ(Hly) (+6)

where ratol = :::i is the ratio between the specified relative (rtol) and
absolute (atol) tolerances, and yq is the starting point for the current block.
Then, the iteration ends as soon as the following condition is satisfied,

|AY?|| < max {c, ur:ur;d} * atol, (4.7
rto

where uround is the machine precision (on input, rtol > uround) and the
parameter ¢ = (0.1. Moreover, in order to make more restrictive the stopping
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Table 4.1: Values of various parameters for the methods implemented in the
code BiM.

pl r Padé y ou 0 ) | maxit | faterr
41 3 (2,3) | .7387 | .3398 | .5021 | 0.9201 10 7
6 4 (2,4) | .8482 | .5291 | .8975 | 1.2476 12 6
8| 6 (4,6) | .7285 | .6299 | .9177 | 1.7295 14 5
10| 8 (6,8) | .6745 | .6885 | .9288 | 2.0413 16 4
121 10 (8,10) | .6433 | .7276 | .9361 | 2.2621 18 3
14 | 12 | (10,12) | .6227 | .7560 | .9415 | 2.4282 20 -

criterion when the solution has small entries and/or is slowly varying, the
value of the parameter ¢ may be decreased as follows:

- when  |lyoll—oc = lyos] < 1072, |[fos] < 1074, and || folle <
1073, then c¢=5-1073;

- when (4.5) holds true, then ¢ = min{c, 5 - 1072}.

The iteration (4.3) fails if the condition (4.7) is not satisfied within maxit
iterations, where this parameter depends on the method currently used,
according to Table 4.1. The iteration also fails if i > 2 and p(¥ > 0.99,
where p(¥) is the estimate of the spectral radius of the iteration matrix at
the ith iterate. Such an estimate is obtained, after at least two iterations,
as follows:

A 4 A
S 18y) pmzw i T
1Ay IAyt=D)”

In case of failure of the iteration (4.3) the order of the method is de-
creased (if r > 3) and the stepsize is halved.

4.2 The local error estimate

The algorithm used in the code BiM for the estimate of the local error is
based on deferred correction. We observe that the latter is a useful frame-
work for error estimation when solving ODEs [39, 41, 77, 78, 87, 88, 98, 99,
101, 102, 105]. Its main use is to provide a tool for the iterative improve-
ment of the numerical solution. This approach has been successfully used
in numerical codes for BVPs (see, for example, [41, 77]), where it is used
to obtain an approximation of the global error. Nevertheless, when solving
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IVPs, such an approach may be also used to estimate local errors, in con-
nection with mesh-selection (see, e.g., [13, 20]). This is exactly the use of
deferred correction which has been considered in the code BiM.

We remark, once more, that, since equivalent methods provide the same
numerical solution, they do have the same corresponding local error. We can,
therefore, assume, without loss of generality, the following normalization for
the matrix A and consequently, from consistency (see (3.27)), for the vector
a in (3.22),

A=1, a=-1=—(1...1)". (4.9)

Conversely, one easily realizes that the vector 7 with the truncation
errors (see (3.49)) depends on the particular form of the discrete problem.
As a matter of fact, from the definition given in (3.49), it is not difficult
to prove that if the couples of matrices (A1, B1) and (As, Bs) define two
equivalent methods, then the following equality must hold

(AT' @ Iy) 11 = (47" @ Iy) 7o,

where 71 and 79 are the vectors with the truncation errors of the two meth-
ods, respectively. In the sequel, we will denote with 7 the vector correspond-
ing to the block method with the normalization in (4.9), i.e. the method
written in the first equivalent form (see (3.58)) in the blended implementa-
tion. The vector corresponding to the second equivalent form is, therefore,
given by

yCl@I,T. (4.10)

Moreover, as discussed in Section 3.2, the basic block method (3.23) is
defined in order to have the equations on each row with an O(h"*!) local
truncation error. Therefore, provided the local continuous solution y(t) is
suitably regular, 7 admits the expansion (see (3.50))

7 =vrp1 @K YU (8) + vy @ K2y (1) + ... (4.11)

Consequently, (see, for example, [59, pag. 123]) a first order approxima-
tion to the local error is given by (see (4.4))

e=0r. (4.12)

It follows that we can obtain an efficient estimate of the local error once
an estimate of the local truncation error 7 is available. For this purpose, let
us recall that it is possible to uniquely define two r x (r + 1) matrices [a | A]
and [b | B,
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1|1
alA] = : :
—1 1
(4.13)
AT S
b|B] = : :

such that the coefficients on each row of the two matrices define an r-step
LMF with an O(h"*?) truncation error (see Theorem 3.2). Deferred cor-
rection is then implemented by plugging in the numerical solution in the
discrete problem defined by the block method (4.13), thus obtaining (see,
for example, [13, 20])

L @I,y —hBQIf—1®y,—hb® fo ~ —7. (4.14)

The leading term in the arithmetic complexity for the local error estimate
is therefore given by the solution of the r linear systems with the factors of
Q required in (4.12) (see also (4.4)). Moreover, the estimate of T requires to
include the matrix B in the data structure of the code. We are now going to
prove that, because of the properties of the methods used in the code BiM,
deferred correction allows a noticeable short cut in its actual implementation.
This result will be proved in the more general case of block implicit methods

with internal abscissae:

to+cih, ..., to+ch,
where 0 < ¢; < ... < ¢ (in particular, for the methods implemented in
the code BiM, one has ¢; = i, i = 1,...,r). From the analysis reported in

Section 3.2, it can be seen that the matrix D, in (3.29) and the vectors q;
in (3.26) generalize to

D, =diag(cy ... ¢ ), qi:Dil.
The order conditions (3.27) and (3.28), with p = r, then become:

D,1—-b—-B1 = 0, (4.15)
Di1—iBD:'1 = o0, i=2,...,r. (4.16)

We observe that, from (4.15), the vector b turns out to be uniquely deter-
mined, provided all LMF are consistent, by the choice of the matrix B. The
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latter turns out to be uniquely determined by the order conditions (4.16)
and by fixing its spectrum (see Section 3.2). Moreover, for i = r + 1, (4.16)
becomes

Wr41,1
DIl —(r+1)BDIl =w, ; = : , (4.17)
Wy 41,7

where

w1 = (r+1)! vy (4.18)

The vector v,1; contains the leading coefficients of the truncation errors of
the LMF corresponding to each equation of the block method (see (3.50)
and (3.53) for the particular case ¢; = 4,4 = 1,...,r). Then, from (4.16)
and (4.17), it is not difficult to obtain

D?V — BD,VG = w, el (4.19)
where
1 ¢ ... 7!
G =diag(2...7+1), V=] 1t : : . (4.20)
1 Cl Cr—l

Since the abscissae {c;} are supposed to be distinct, the Vandermonde ma-
trix V in (4.20) turns out to be nonsingular. Consequently, one immediately
obtains

B = (D}V —w,1e])G~'V™ID (4.21)

Now, in order to apply deferred correction, we need an additional couple
of matrices in the form (4.13), whose rows define r-step LMF of order (at
least) r + 1, defined over the same set of abscissae {¢;}. The corresponding
order conditions are, therefore, given by:

D,1-b—-Bl1 = 0, (4.22)
Di1-iBD"'1 = o, i=2,...,r+1. (4.23)

Similarly to what seen in (4.15), now (4.22) uniquely defines the vector b,
once B is fixed. For the latter matrix, from (4.23) one readily obtains that

B=DVG 'v-'D, !, (4.24)
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that is, the matrix is uniquely determined by the order conditions. The lat-
ter equation generalizes the result of Theorem 3.2, concerning the particular
case ¢; =1, 1 =1,...,m

Let us now report some results concerning the factorization of a Van-
dermonde matrix (actually, its transpose as it is the matrix V'), to be used
later. Though some of them are partially known (see, for example, [1]), such

results are here cast in the most general and appropriate form for subsequent
reference. For this purpose, we need to introduce the following notations:

° wj(z) = fc;ll(x —ck), j = 1,...,r, is the jth Newton polynomial
defined by the considered abscissae;

e z/[c1,...,¢) is the divided difference of the function z7 over the ab-
scissae ¢q,...,C;.

The following basic properties are also recalled, for sake of completeness:
P1l: wj(c;) =0, if i < j;

P2: 277 ey, ...,¢) =0, forj <i; 277 Vep, ... ¢5] = 1.

An easy consequence of the above properties is the following result.

Lemma 4.1 The matrices

L= (’U)] (Ci))i,jzl,,_,r 3 U= (wjil[cla cee ’Ci])i,jzl,...,r s (425)

are lower and unit upper triangular, respectively.
Then, the following result follows.

Lemma 4.2 Let V,L,U be defined according to (4.20) and (4.25). Then,

V =LU. (4.26)
Proof In fact, for alli,7 =1,...,r, one has:
r . .
el LUe; = Zwk(ci)asjfl[cl, NS cgfl,
k=1

where the last equality is due to the fact that the corresponding left-hand
side is the interpolating polynomial of the function z7~!, over the abscissae
ci,...,cr, evaluated at ¢;. O
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Lemma 4.3 The inverse of the matriz L in (4.25) is given by
0, if J >4,

-1 _ ) — 1
L7 =)= , i j<i
Hk:l,k;éj(cj —c)

Proof By considering that
i = (wile)) i=1,...,r

and that both L and L~! are lower triangular, it is then sufficient to prove
that
T -1 _ L
e; L™ Lej =0, for > 7.

In such a case, by taking into account P1, one obtains:
i

T 1 wj(cy)
e L Lej: - :’wj[cl,...,ci]:o,
' ; H?c:l,k;éy(cl’ - Ck)

where the last equality follows from the fact that, for j < ¢, the polynomial
w; has degree less than or equal to s — 2. D

From Lemma 4.3, the following result follows.

Corollary 4.1 Let g(t) be a given function and let g; = g(to + c;h), i =
1...,r. Then,

g1 hog[tg + c1h]
L! : = ;
gr A" Yglto + cih, ..., to + ¢, h]
Proof From Lemma 4.3, for all 1 = 1,...,r, one obtains that
[} i

eZT ! : _ Z v

gr v=1 H;czl,k;éu(cl’ — ck)
: g
— hi—l . v
,; H;g:l,k;éu(cll - Ck)h
= hiflg[to+Clh,...,t0+cih]. 0

Now, we are going to prove the result which will allow us to signifi-
cantly simplify the procedure for the local error estimate, thus providing
the “short cut” previously mentioned. Moreover, such result clearly quan-
tifies the approximation to the truncation error provided by the left-hand
side of equation (4.14).
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Theorem 4.1 Let ¢ =0 and g(t) be any function such that

g(to + Cih) = f(tg + ¢;h, yi), 1=0,...,7. (4.27)

Then, (see (4.18)),

I, @I,y —hBQI,f—1®yy—hb® fo =
hr+1

= _T_i_1Wr+1®9[t0+Coh,---,to+crh]. (4.28)

Remark 4.1 By considering that the discrete solution is an O(h™1) ap-
prozimation to the (local) solution at the grid points, and recalling that (see
(2.1)) v = f(t,y), one easily realizes that, under suitable smoothness as-
sumptions for f,

1
g[to + COha s 7t0 + CT'h] = Fy(r+1) (tﬂ) + O(h)

From (4.18), it then follows that (4.28) provides a first order approzimation
to the leading term at the right-hand side of equation (4.11).

Proof The numerical solution satisfies the discrete problem

L, I,y—hBRI,f —1®y,—hb® fo=0. (4.29)
Therefore, by subtracting (4.29) from the left-hand side of (4.28), and by
setting
Jo
f ) .
Jr

where f; = f(to + ¢ih,y;) = g(to + ¢;h), i =0,...,r, from (4.15)—(4.24) we
obtain:

I, I,y —hBQI,f—1Qy;—hb® fo =
= h([b|B] - [b| B]) ® I,,f
= h(B-B)[-1|1]® I,f
= —hwyel GYWOID 1| 1) ® I,f

h _ _ ~
= —lemefv 'DI-1|L]@I,f = ().

From (4.25)-(4.26), property P2, Corollary 4.1, and considering that ¢ = 0,
one then obtains:
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h ~
() = —gwrnel UL D 1 B @ I
h — — ~
=~ gWrne] LD =1 L] @ Inf
r -1 1
h C1 c1 :
- | e
r+1
-1 1
L ¢, cr
_ )
B2 (ci—co)h  (c1—co)h )
= - Wr+1ez—' Lil ® Imf
r+1 B 1
L (¢cr—co)h (cr—co)h
B2 glto + coh, to + c1h]
= e Lo :
glto + coh, to + ¢, h]
hr+1
=~V ®glto+coh,... to+crh]. D

Since the vector w,; is known, see (4.18) and (3.50)-(3.53), from the
previous theorem it follows that we can directly compute the divided differ-
ence at the right-hand side of equation (4.28), in order to obtain the estimate
of 7 via deferred correction. This implies that the matrix B is no longer
required. In particular, when ¢; = 4, i« = 0,...,r, as it happens for the
methods implemented in the code BiM, one obtains (see (4.18) and (4.27))

hT-H
r+1

Wri1 ® glto + coh, ... to + ¢ph] = v ® (RA" fo), (4.30)

where, here, A represents the (componentwise) difference operator. More-
over, see (4.4), the first order approximation (4.12) to the local error reduces
to

e=07=—v,11® (RQ A" fp), (4.31)

so that it can be obtained at the cost of only one linear system solving
with the factors of 2. From the previous analysis, it follows that each block
entry of the vector e is O(h"*!), provided that the corresponding entry of
the vector v,;; is nonzero. Nevertheless, from Theorem 3.5 and (3.55),
we observe that, since the last entry in v,4; is 0, the last block entry in
(4.31), say e, is 0 as well, whereas we need an O(hP*!) approximation, if
p is the order of the method. In order to obtain a corresponding suitable
approximation also for e,, we then consider the last block entry of the vector
(see (4.4), (4.10)-(4.11))
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0(I —0)°(vC~'v,11 @ hAT fo), (4.32)

where s = 1, when r = 3, and s = 2, otherwise. This entry turns out to be
the one of largest norm and this feature will be useful for what we shall see
in Section 4.3.1, when speaking about the handling of the “order reduction”
phenomenon for stiff problems.

4.3 Stepsize and Order Variation

In this section we describe the strategies for the variation of both the step-
size of integration A and the order p of the method. Both strategies rely on
the estimate of the local error previously discussed.

First of all, the norm used to measure the error is the same norm defined
in (4.6). As a consequence, on one hand, from (4.4), (4.12), (4.31), and (4.32)
one obtains that

lell = max {or (216 (fo)]. e} = O(R7*), (4.33)

where v"_ = ||[Vy41]l0e and 60 (fo) = RA” fo. On the other hand, the quan-
tity

1 & Erj i
lex] m]z:; <1+rat01y0j> . -

already computed to obtain (4.33), provides an estimate for ||ep||, namely
the error corresponding to the use of the next higher-order method. This
feature will be conveniently exploited when we shall speak about the order
variation strategy. Before that, let us consider the problem of the stepsize
variation in detail. If rtol and atol are the prescribed relative and absolute
tolerances, the current solution is accepted provided that (see (4.33))

le| < atol. (4.35)

The new stepsize, to be used by the same method, is then obtained
through extrapolation:

1
tol 1
hnew = h <sftyerr * ﬁ) , (4.36)
e
where sftyerr = o if (4.35) holds true and sftyerr = ;5 otherwise.

Similarly, if » < 12 the stepsize to be used by the next higher-order method
would be
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1
tol \ p+1
hap = h <sftyup * &> " (4.37)
lewp
where the approximation ||e,p|| = |e,| is used (see (4.34)) and, moreover, we

have set sftyup = sftyerr/2. We shall use such an estimate for the stepsize
of the higher order method when discussing the order variation strategy.
Moreover, by denoting with hnew the selected stepsize for the subsequent
integration step and with 7.y the blocksize of the corresponding method to
be used, we set

ey < min{max{hnew,0.12 % h},10 % b, Amax, (T — t0) /Tnew }-

where, by default, hmayx = (T — £)/8 being g the initial time of the IVP. In
addition to this, if 0.1 * h < £y * uround (the machine precision), then the
execution ends because the selected stepsize is too small. Finally, we also
use the following heuristics: if nfail consecutive failures have occurred (ei-
ther for the convergence of the iteration or for the accuracy) before the last
successful step, then the stepsize is increased only after at least nfail + 1
consecutive successful steps occur.

Let us now consider the problem of the order variation. The aim is that
of reducing the global computational cost for getting a discrete solution with
a prescribed accuracy. For this purpose, we normalize the cost with respect
to the width of the covered interval. By neglecting, for sake of simplicity,
Jacobian and function evaluations, whose cost in general is strongly problem
dependent, we then introduce the following specific cost per step function for
the method with blocksize r:

Cact + Cit + Cerr

rh ’

Ctot(ya T,m,h) == (438)

where cp,e is the cost for the factorization of the matrix Q in (4.4), ¢ is
the number of flops required by v iterations in (4.3), and ce, is the cost for
computing the estimate (4.33) of the local error. In particular, in case of a
full m x m Jacobian,

N

4m?, if r =3,

3 _ 2
Clact & — M ¢t = cit(r.v,m) = drvm Corr & )
ac oM ie(r, v, m) rooer 6m?, otherwise.

w

Corresponding formulae are used in case of a banded Jacobian.

Therefore, the next higher-order method, with blocksize r., (see the
second column in Table 4.1), requiring v, iterations for satisfying the same
stopping criterion, and using a stepsize hy, for getting the same accuracy,
would be preferable in the subsequent step provided that
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Ctot (Vupa Tup, M, hup) < Ctot (VneWa r,m, hnew)a (439)

where hpew and vpew are the stepsize and the number of expected iterations
for the current-order method. Therefore, the problem is easily solved, once
we have an estimate for the above quantities. We have already seen how
to get estimates for hnew and hyp (see (4.36) and (4.37), respectively). It
remains to obtain estimates for vyew and v,,. We observe that, if the same
stopping criterion has to be satisfied, then the following equalities should
approximately hold,

P” = (Pnew)”™ ™ = (pup)"™.

In the above equation, p is the spectral radius of the current iteration matrix
(estimated by (4.8)), v is the (known) number of iterations carried out to
satisfy the convergence criterion (4.7), and pnew, pup are the spectral radii
of the iteration matrices of the current-order method, by using the new
stepsize hpew, and of the next higher-order method, respectively. By taking
into account that the stiff amplification factor of both methods is 0, and
considering (3.18), we then obtain the following estimates,

log p log p
Vnew = V———————, Vap = V — , (4.40)
‘ log p(hnew/h) o log p(pup/p) (hup /)

where p and py;, are the nonstiff amplification factors of the current and the
next higher-order methods, respectively (see Table 4.1). Finally, in order to
prevent erratic behaviour in some pathological cases, the previous strategy
is applied provided that all the following three conditions are satisfied:

1. 0.8h < hpew < 1.25h;

2. at least max{2,nfail} successful consecutive steps have been carried
out with the current-order method, when the previous nfail steps
failed to satisfy the accuracy requirement (4.35);

3. the (estimated) spectral radius of the current iteration, say p, is “suit-
ably small”. The latter condition is assumed to be fulfilled, provided
that p < pp, where the parameter p, is defined so that all methods do
have a prescribed absolute cost to obtain convergence. In more detail,
by setting

ps = 10"2|log,, min{10~!, atol, rtol}|, (4.41)

we require that, for all allowed orders p, the quantity cii(rp, v, m)
(see Table 4.1 and (4.38)) is constant, for the same stopping criterion,
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where r, and v, are the blocksize and the number of iterations required
by the pth order method, p = 4,6,8,10,12,14. This leads to the
equalities,

ToUp =Tp alp o, pr=pry, p=6,810,12,14,

which provide the following recursion with starting value given by
(4.41):

Tp
pp = (pp—2)"P=2,  p=6,8,10,12,14. (4.42)

We observe that the sequence {p,} is a decreasing one.

Actually, the last condition is relaxed when v < 3 and both the con-
ditions of stepsize stagnation and convergence stagnation, as described in
Section 4.3.1 below, are verified.

So far, we have dealt with the strategy for increasing the order of the
method to be used at the subsequent step of numerical integration. However,
it may be convenient to decrease the order of the method as well. Obviously,
the criterion based on the minimization of the specific cost per step (4.38)
could be, in principle, also used to decrease the order of the method, pro-
vided that an estimate for hj.y, namely the stepsize to be used by the next
lower-order formula, is available. Its computation, based on a procedure
similar to that required for evaluating hpew, would require an additional
linear system with the matrix € to be solved. Nevertheless, we decided not
to systematically resort to such a criterion for decreasing the order, because
there is numerical evidence that it is seldom effective. Instead, we chose to
lower the order p to p — 2 (when r > 3, see Table 4.1), in either one of the
following two situations:

e a failure of the nonlinear iteration (4.3) occurs (in such a case, hpew =
h/2, as we have already said at the end of Section 4.1);

e all the following four conditions hold true:

1. in the last step the current-order method has been successful;
2. the nonlinear iteration (4.3) has required more than 3 iterations;

3. the (estimated) spectral radius of the iteration matrix, p, satisfies
p > pp, where p, is again defined according to (4.42), but with
the initial condition, in place of (4.41),

ps = 0.5; (4.43)
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Figure 4.1: Variable versus fixed order implementation.

4. if condition (4.45) below is satisfied, then hioy > hpew-

In this case, the new stepsize is set equal to:

{ Plow if (4.45) and hiow > hnew hold true,

min{hiow, Anew } » otherwise.

In order to put into evidence the effectiveness of the above order varia-
tion strategy, in Figure 4.1 the results obtained for the Robertson problem
(already introduced in Section 3.4) have been reported. In the figure we
plot the elapsed time (in seconds) for the solution of the problem versus the
number of significant correct digits (see (3.79)). As one can see, the plot of
the variable order method is almost always below those of the fixed order
ones, thus confirming the effectiveness of the order variation strategy.

4.3.1 Order reduction recovery

A particular handling is required in order to get rid of the so called order
reduction phenomenon (see, for example, [59, chapter IV.15]). Such a phe-
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nomenon occurs when, in the test equation (3.1), h — 0 but ¢ = hpu is large.
In such a case, in fact, the expansion (4.11) of the truncation error becomes

1 2
T=¢""vipiyo+d P vipoyo + ...,

and the local error is given by (I — gC)~'7. However, the latter expression
admits different expansions, depending on the “size” of ¢. In particular,

e when |g| is small, then

(I— qo)flT = q7er1 Vr+1 Yo + qr+2 (Vigo +Cveg1)yo + ...,

and the principal term of each entry behaves like ¢" !, with the ex-
ception of the last one, which depends on higher order terms;

e when |g| is large, then

(I—q¢C) 'r~—¢"C 'vopr o+ .... (4.44)

In such a case, the principal term of each entry behaves like ¢", in-
cluding the last one.

The conclusions in the latter case make evident the fact that |e,| (see
(4.34)) is no more an estimate for |le,p||. On the other hand, when ¢ is large,
it happens that, see (4.33)-(4.34),

lell = [ex], (4.45)

i.e., the norm of the last (block) entry of the vector defined in (4.32). More-
over, the latter vector turns out to be an approximation to the principal
term of the expansion (4.44). In conclusion, when the order reduction phe-
nomenon occurs, the strategy for the order variation previously described,
which relies on the higher order accuracy of the last entry of the local er-
ror, may fail. Indeed, this actually happens for the well-known Prothero-
Robinson problem (see [89]). In such a case, also the stepsizes stagnate. In
the code BiM, the order reduction phenomenon is recognized when (4.45)
holds true or all the following conditions are satisfied:

order stagnation: the order of the method has not been increased by the
above mentioned strategy;

error stagnation: |e,| faterr > ||e||, where the parameter faterr is cho-
sen according to Table 4.1. When such a condition holds true, this
means that the last entry of the local error is “not too small”, with
respect to the remaining ones. This is, indeed, usually the case, when
it correctly estimates the error for the next higher-order method. The
parameter faterr is, at the moment, chosen in a heuristic way;
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stepsize stagnation: the ratio between the new stepsize, hpew, and the
current one, h, belongs to the interval [0.95,1.05];

convergence stagnation: the ratio between the current estimated spec-
tral radius, p (see (4.8)), and the one of the previous iteration, poiq,
belongs to the interval [0.95,1.05].

Once the error reduction phenomenon is recognized, it is possible to get
rid of it, as explained in the sequel. The basic idea is to obtain an estimate
for ||eypl| in a form similar to (4.33):

lewp|l &~ vee™ [Q7" 510 (f)]. (4.46)

Indeed, the quantity voe® is known. Concerning the second term, §("we)(f)

can be approximated by suitable first (in the case r = 3) or second (in
the case r > 3) differences of 6(")(f), since this function has already been
computed at the previous blocks. Once the estimate (4.46) is available, the
usual formula (4.37) can then be used, in order to predict hyyp.

An additional question needs to be considered, at this point, by observing
that, when ¢ is not small, then (3.18) is not valid. The latter approximated
equality, in turn, was used in order to predict ppew and py, from the knowl-
edge of p, h, hnew, hup (see (4.40)). However, when ¢ is large we know that,
see (3.75),
5>

lal
where the values of the parameter [)(OO) are listed in Table 4.1. The previous

result allows us to derive the following estimates for vy,ey and vy, alternative
to (4.40):

plq) =

log p log p
Unew = Vi————, Vyp = V , (4.47)
‘ log p(h/hnew) P g p(y) /) (/)

where 5(°°) is the parameter of the current-order method, and ﬁfﬁ’;’) is that
of the next higher-order one.

Remark 4.2 [t must be stressed that in the estimates (4.47), the ratios
h/hnew and h/hyy, are ezactly reversed, with respect to those used in (4.40).
This is due to the use of the approximation (3.75) in place of (3.18).

The estimates (4.47) are then used in the check (4.39), in order to decide
whether to increase the order of the method to be used in the subsequent
step, when the order reduction phenomenon is diagnosed. Finally, we men-
tion that, for robustness, when (4.45) holds true, the order is not increased
when the following two conditions are both fulfilled:
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o hyp > h;

e the estimated spectral radius for the higher order method,

Pup = p—ﬁg%o) h
up /3(00) hup’

(4.48)

is larger than the corresponding maximum allowed value, as defined
by (4.42)-(4.43).

Indeed, the first condition ensures that the approximation (4.48), derived
from (3.75), is appropriate also for the next higher-order method.

4.4 Jacobian evaluation and LU factorization

In Section 4.1 we have already observed that the overall computational cost
for the solution of the discrete problem generated by a blended implicit
method approximately amounts to:

e the evaluation of .Jy, the Jacobian matrix at (¢g,yo),
e the factorization of the m x m matrix  (see (4.4)),
e rv function evaluations,

e 2rv system solvings with the factors of the matrix €2,

if v iterations are required to obtain convergence. Obviously, the relative
computational cost of the first two entries, with respect to the overall com-
putational cost, depends on the continuous problem and on v. In partic-
ular, their relative cost increases when v decreases. Therefore, when the
blended iteration (4.3) converges rapidly, the overall computational cost of
the iteration can be reduced significantly by means of one of the following
approximations:

J(] ~ Jold, and/or Q= Qolda (4.49)

where Jyq and €gq are the analogues of Jy and €2 at the previous block of
points. Tt is clear that (see (4.4)) in both cases a perturbation is introduced
in the matrix 6 and, therefore, the spectral radius of the corresponding
iteration matrix turns out to be affected. In the following two sections, we
shall study this aspect by means of a linear analysis, which relies on the
particular structure of the discrete problem.
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4.4.1 The blended iteration with approximate Jacobian

Let us consider the application of the method, corresponding to the blended
iteration (4.3), to the test problem:

y =ut)y,  ylto) =yo €R,  Re(u(t)) <0,

and let us denote with u the value of j(¢) at the initial point of the current
sub-interval of integration. Then, we can write

1= pola(l +9), (4.50)

where pio1q is the corresponding value of p at the previous block of points
and § € C is a suitable parameter. The approximate blended iteration,
corresponding to the use of the previous Jacobian, is therefore given by

y =y =010 ((1 =70 1y D = h(C - yD)ED)
+y(C7ly D D) —h], i=01,..,  (@51)
where
6=01—-~4)" ', q = hpowas (4.52)

and (see 3.10),

f1=0(n; —ny) + 0y

We shall consider the additional first order approximation f() ~ uy@ so
that the iteration (4.51) can be rewritten as

y(i“) = y(i) .y [(é (I—*)/C’*1 — q(C—*yI)) + v (C’f1 - qI)) y(i) - "ﬂ
= ¥ =0[(6(1=~C7" =41 +0)(C = D))

+7@T‘—ﬂ1+&ﬂ)ﬂ“—ﬁy i=0,1,..., (4.53)

where (see (4.50) and (4.52)) g = hpu = (1 + 0). The spectral radius of the
corresponding iteration matrix depends, therefore, on both ¢ and §: let it
be p(q,d). The following result holds true.

Theorem 4.2 If |§| < 6 with § sufficiently small, then the spectral radius
p(q,d) of the amplification matriz, say Z(qG,d), of the iteration (4.53) is such
that

1. when ¢ =0
p(4,0) = |q| p(é), (4.54)
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where
‘W + 0, when Im(d) >0,
=1 (455)
‘% + 8], when Im(d) <0,

and, see (3.63)-(3.65), \1 is the eigenvalue of C' with minimum mod-
ulus and positive imaginary part;

2. when § — o<
p(8) = Tim p(d,0) = 9] (4.56)

Proof The amplification matrix corresponding to (4.53) is given by (see
(4.52))

7(G,6) = I— 6 (1 — O™ = (1 +8)(C — 4I) + 461 (C™ = (1 + 5)1))

= ﬁcfl ((C = I)* +6C(C —~*4I)) . (4.57)

Therefore, since |§| is assumed to be bounded, when § =~ 0 one has

2(4.0) ~ 40 ((C — 1) + 8C?).
so that

o n R A —7)? o
5(d,6) ~ |l max | A= L5\ = 14l 5(0).

Aea(C) A

We observe that, when p = pugqg or, equivalently, see (4.50), when 6 = 0,
p(0) coincides with the nonstiff amplification factor corresponding to the
“exact” blended iteration (see (3.61)), i.e.

#(0) = 5. (4.58)

From the result in Lemma 3.1, it then follows that, for all 6 € € with |d]
suitably small, 5(§) is obtained in correspondence of Ay or of the complex
conjugate ;. In particular, by considering that v = [A;| and Im(\;) > 0,
one verifies that

& Im(§) > 0.

=
Al 1

_ A2 Y. _ ~)2 B
77)4_5)\1 > M.l_(;)\l

This completes the first part of the proof. On the other hand, when || — oo,
from (4.57) and the hypothesis on |d| one obtains

Z(G,0) » =01,
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from which (4.56) easily follows. O

The previous theorem immediately implies that the blended iteration is no
more L-convergent. Nevertheless, one is still able, by estimating ||, to
control the convergence properties of such iteration when |G| > 1. On the
other hand, when ¢ ~ 0 the following result holds true.

Theorem 4.3 If ¢ = 0, a > 0 is a suitably small fized parameter, and

p(0)a
S T a0 (459)

then

p(4,6) < plg)(1 + )

where p(q) is the spectral radius of the iteration matriz with exact Jacobian.
Proof We observe that, since |d| is bounded,

Gg~0 = ¢g=q¢(1+9) =0
and, therefore, see (3.18) and (4.58)Sk81,Sk86,,

p(a) = p(0)[q| = p(0)|g[[1 + 4].

Moreover, when « is suitably small the term on the right-hand side of (4.59)
is sufficiently small so that the first result of Theorem 4.2 applies. From
(3.61), (4.50), (4.54)-(4.59), and by recalling that v = |A;], it then follows
that

p(q;0) = 14| p(9) 141(A(0) + [0]7) < 4] p(0) (1 = [0])(1 + )

< <
< gl[1+41p(0) (1 + ) = p(g)(1 + ). O

An immediate consequence of the previous two theorems is that an es-
timate of |§| is needed in order to control the perturbation on the spec-
tral radius of the iteration matrix. From (4.50) we obtain 0 = (u —
Pold)/pold- Consequently, estimates of | — pog| and of |peq| are needed.
In general, when we are solving problem (1.2), we will need to estimate
d = ||Jo — Jodll/l|Jowall. By considering a suitable vector x such that
|x||sc = 1, we then evaluate the vector g = f(t9,y0 + s x) — fo, with s >0
a suitably small parameter, thus obtaining the following estimates:

1 1
1Jolloc = ~ligllocs [1Jo = Jotdlloo = ~llg = gotalloo-
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We observe that, for the linear autonomous equation 3’ = Jy, one obtains
llg — goidllsc = 0, so that the re-evaluation of the Jacobian is not needed, in
this case, as one would expect.

Concerning the choice of the parameter « (see (4.59)) made in the code
BiM, if p is the order of the method with blocksize r, (see Table 4.1) then
the corresponding parameter, say «;, is chosen as follows:

p

as=5-10"2, ay = (ap_o)»2,  p=6,8,10,12,14.

The previous criterion is applied only when, at the previous block of
points, (4.45) does not hold true and the blended iteration has been suf-
ficiently “fast” convergent. In particular, by denoting with pgq and vqq
the spectral radius of the iteration matrix and the number iterations at the
previous block of points, respectively, in the code BiM a fast convergence is
assumed when

Pold < 5-1072 or Vold < 4. (4.60)
On the other hand, when (4.45) is satisfied, we assume |¢| > 1 and the
Jacobian is not re-evaluated provided that (4.60) holds true and
6] < 5(%)
where the value of 6(>) depends on the order of the method, as specified in

Table 4.2.

The previous analysis, requiring an additional function evaluation to get
the estimate of §, is actually applied provided that m > 5 (i.e., the size of
the continuous problem is not very small). Moreover, an additional classical
control, used in many codes to decide whether the Jacobian should be not
evaluated, is also used in the code BiM. In more detail, the Jacobian is not
evaluated when the blended iteration for the previous block of points turns
out to be “very fast” convergent. This is recognized when the following
condition is satisfied:

poid < p’ or Vold < 3,

where p’ depends on the order of the method, according to the values listed
in Table 4.2.

4.4.2 The blended iteration with approximate factorization

We now study the case where the following approximation is considered

O~ Qolda (461)
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Table 4.2: Parameters of the methods used in the code BiM.

p r S(oo) pJ 71 To Jmin | gmax
41 315-1072 | 5-1073 | -1.4487 | 2.3593 | 0.90 | 1.10
6| 44-1072|4-1073 | -1.4983 | 3.1163 | 0.91 | 1.09
8| 6[3-1072|3-1072 |-1.4662 | 3.5197 | 0.92 | 1.08
10 812-1072|2-1073 | -1.4290 | 3.7538 | 0.93 | 1.07
1210 1-1072 | 1-1073 | -1.3964 | 3.9104 | 0.94 | 1.06
14 [1219-1073 | 9-10"* | -1.3689 | 4.0240 | 0.95 | 1.05

(see (4.3)-(4.4)), in order not to evaluate the new factorization. First of all,
it must be stressed that the previous approximation is allowed only when
the Jacobian has not been evaluated since, otherwise, such evaluation would
result to be useless. Consequently, we assume that only the stepsize has
changed, from the previous iteration. We shall, therefore, resort to a linear
analysis of convergence, by applying the method to the test problem (3.1).
In such a case, the blended iteration (4.3), with the approximation (4.61),
becomes

y = yD 054 [(Bora (I —~C" = q(C —AT))
+y (¢ = aD)) ¥y — ]
= ¥ — 0514 [(Bo1a (I = ¥C " = gora d (C — 1))
+y (O = gouadl)) y® — 7’7} L i=0,1,..., (4.62)

where hgyq is the stepsize used for the previous block of points, g1 = hold s,

_ h
Oota = (1 —Yqo1a) ™' I, qg=hu= <

- ) dold = d qold, (4.63)
old

and (see 3.10),
N = boia(n1 —m2) +my.

Therefore, the spectral radius, say p(qoq,d), of the corresponding iteration
matrix will now depend on both g4 and d. The following theorem holds
true.

Theorem 4.4 If |d — 1| is sufficiently small, then the spectral radius of the
iteration matriz of (4.62) is such that

1. when gqq =~ 0,
p(gold, d) = |qoia| p(d —1), (4.64)
where p(-) is defined according to (4.55);
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2. when qoq — 00,

PN d) = Tim p(gowa,d) = |d —1]. (4.65)
Gold —00
Proof We observe that the iteration (4.62) formally coincides with the it-
eration (4.52)-(4.53) with the substitutions § < go1q and § < d — 1. Conse-
quently, from Theorem 4.2, one immediately obtains p(qoq, d) = p(qoid, d —
1), and, hence, the thesis follows. O

From the previous theorem, one immediately obtains that d € (0,2) is a
necessary requirement for a satisfactory behaviour of the iteration for stiff
problems. More precisely, when (4.45) holds true, so that we may assume
\qola| > 1, re-factorization is avoided provided that, see Table 4.2,

d—1] <50,

Let now suppose goiq =~ 0. The following analysis is devoted to pro-
vide an estimate of the number, say 7, of iterations in (4.62), depending on
the number of iterations v that would have been required without the ap-
proximation (4.61). The latter number can be estimated from the iteration
parameters as discussed in Section 4.3 (see (4.40)). In order to derive the
criterion used in the code BiM, we shall look for values of d (see (4.63)) such
that

v < P, B =1+m(6rv) !, (4.66)

where 7 is the blocksize of the blended implicit method and m is the size
of the continuous problem. Indeed, for such value of the parameter 3, one
verifies that the cost of the linear algebra involved in the blended iteration
with the approximation (4.61) is less than or equal to the cost of the exact
iteration plus the cost to factor € (evidently, for sake of simplicity, the cost
of function and Jacobian evaluations has been neglected). Moreover, we
observe that if the stepsize has not been changed, i.e. h = hgq, than, see
(4.63), d = 1 and ¢ = goq- In this case, from Theorem 4.4 and (4.58), one
immediately obtains

plg,1) = plq),
where p(q) is the spectral radius of the “exact” blended iteration. By as-
suming that the same stopping criterion has to be satisfied, we then obtain
ﬁ(qolda d)D = ﬁ(qa 1)V and, thereforea
log p(q,1)
log p(ota; d)

Consequently, the inequality in (4.66) can be written as

ﬁ(qolda d)ﬁ
el <1. (4.67)

V=
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We observe that (see (4.63)), since d is bounded, then go4 =~ 0 implies ¢ =~ 0
as well. Therefore (see (4.55)), by setting poq the spectral radius of the
iteration matrix at the previous integration step, one obtains,

Hoand) ~ |qoalpld— 1) ("‘ﬂd) A1),

p(0)
(4.68)
plg,;1) =~ |a|p(0) = poa d.
From (4.67)-(4.68), it follows then that d must satisfy
5(d —1)° 50) "
% < Pold (p( )> : (4.69)
Pold

Moreover, since d — 1 is real, from (4.55) one obtains that (see (4.2))

(M — )2

N = y(d?® + 2z1d + 12) 2, (4.70)
1

pld—1) = +(d— 1)\

where

x1=2p"(p" = 1) -1, z9 = 1+ 4p*.

The values of 1 and 5 for the methods implemented in the code BiM are
listed in Table 4.2. From (4.69) and (4.70), it follows that the stepsize ratio
d must satisfy

8
42 + 2z1d + 72)® 5(0) \°
( :j 2) < Pold <7p; 1)d> - (4.71)
0

Only one of the following two cases may then occur:

1. d>1;
2. d<1.

In the first case, i.e. when the stepsize has been increased, from Ta-
ble 4.2 it is possible to verify that the inequality (4.71) is satisfied for § =1
and d € [1,2). Clearly, from (4.66) one obtains that this will hold true for
all 3 > 1. Consequently, (see (4.63)) in the code BiM we don’t re-factorize,
when the stepsize has been increased, unless d > d™?* (see Table 4.2), where
the last inequality is aimed to guarantee fast convergence for stiff problems
and the first result in Theorem 4.4 to hold true.

In the second case, i.e. when the stepsize has been decreased, we can
assume 1 > d > d™™", for a fixed d™" > 0 (see Table 4.2, for the values used
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in the code BiM). In such a case, one derives that a sufficient condition for
(4.71) to be satisfied is given by

d? + 2z1d 4 23 <0, (4.72)
where

T3 = 29 — (™™ pota) ? (5(0)/ (Ypo1a))?

Consequently, in the code BiM, re-factorization is avoided, when the stepsize
is reduced, unless (4.72) turns out to be not satisfied or d < d™". We
observe that, because of (4.65), we have required |[d™" — 1| = |d™** — 1|.
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Chapter 5

Numerical Experiments

During the development of the code BiM several numerical experiments on
difficult stiff test problems, taken from the CWTI testset [79] (now available
at the University of Bari [73]) and from the Geneva testset [62], have been
performed and, in the following sections, the most significant results are
reported. In addition, in order to put into evidence the effectiveness of the
proposed approach, such results are compared with those provided by some
of the most efficient codes currently available for the numerical solution of
stiff IVPs for ODEs:

e DASSL (June 1991) implementing Backward Differentiation Formulae
of orders from 1 through 5 (L. R. Petzold, [11]);

e GAM (November 1999) based on the Generalized Adams Methods of
orders 3, 5, 7, 9 (F.Iavernaro and F. Mazzia, [71]);

e MEBDFDAE (November 1998) based on the Modified Extended Back-
ward Differentiation Formulae of orders ranging from 1 to 7 (J. Cash,
[40]);

e RADAU5S (January 2002) implementing the Radau ITa implicit Runge-
Kutta method of order 5 (E. Hairer and G. Wanner, [59]);

e RADAU (January 2002) which is a variable-order version of RADAU5S im-
plementing the Radau ITa implicit Runge-Kutta methods of orders 5, 9
and 13 (E. Hairer and G. Wanner, [59]);

All executions have been carried out on a dedicated AMD Duron 1.3GHz
computer, under Linux, and by using, for each code, the same compiler
option —03 for optimization. Numerical experiments have been performed
by using different values for the input parameters consisting of: the stepsize
ho to be used for the first step (not needed for DASSL) and the prescribed
absolute (atol) and relative (rtol) tolerances for the numerical solution.
In the following sections, for each problem, we report:

93



94

CHAPTER 5. NUMERICAL EXPERIMENTS

e a brief introduction describing the origin of the problem and the corre-

sponding mathematical formulation. The reader interested in further
details may find them in the cited references;

the run characteristics of some tests performed with the problem.
They consist of the following statistics describing the numerical in-
tegration: steps, providing the total number of steps needed by the
solver (including the rejected steps due to error test failures and/or
convergence test failures); accept, giving the number of accepted steps;
f-eval and j-eval representing, respectively, the total number of func-
tion and jacobian evaluations, and LU-dec for the total number of L.U-
decompositions (not available for DASSL). Concerning the latter one,
we remark that the values reported in correspondence of the codes
BiM, GAM and MEBDFDAE refers to the factorizations of matrices with
the same dimension m of the continuous problem. The RADAU and
RADAU5S codes, instead, count (at most) 1 factorization per step. We
recall that such codes require, at each step, the factorization of 1 real
m X m matrix and (r — 1)/2 m X m complex ones, where r is the
blocksize of the method (see Section 2.2.1 and [60]). A comparison
based on the number of LU-decomposition must, therefore, take care
of this fact.

In addition, for each run, we report the elapsed time (in seconds)
needed for the integration and the precision of the numerical solution
y with respect to a reference one, say ¥irye, at the end of the integration
interval. The latter is measured both in terms of the significant cor-
rect digits (scd), already defined in Section 3.4, and of the mixed-error
significant correct digits (mescd), defined as

mescd = —logyg (|[(¥ — Yirue)-/(@rt0L + [Yirue|) [loo) »

— atol
where artol = 2:%:(1

twise ratio operator.

... DT € R™ and ./ represents the componen-

the Work-Precision Diagrams (WPDs) plotting the “work”, measured
in terms of the elapsed-time required for the integration, versus the
“precision” measured in terms of both scd and mescd.
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5.1 The elastic Beam problem

The problem originates from mechanics and describes the motion of a thin
elastic beam of length 1 which is supposed inextensible. Moreover, it is as-
sumed that the beam is clamped at one end and a force F' acts at the free
end. It was originally described by a partial differential equation subject to
boundary conditions. The semi-discretization in space of this equation leads
to a stiff system of n nonlinear second-order differential equations which is
rewritten to first order form thus providing a stiff system of nonlinear ODEs
of size 2n. The eigenvalues of the corresponding Jacobian are purely imag-
inary and vary between —6400i and 6400i. A complete description of the
problem can be found in [59].

Numerical experiments on this problem have been done for n = 40 (lead-
ing to a system of 80 ODEs). Moreover, the equation has been integrated for
0 <t < 5. Table 5.1 and Figure 5.1 present, respectively, the corresponding
run characteristics and the work-precision diagrams. For the latter ones we
used: hg = atol = rtol = 10-Z+m/8) 1 =0, ..., 40.

We remark the high regularity of the WPDs corresponding to the codes
BiM and GAM. The widely chaotic behaviour of the code MEBDFDAE and the
high inefficiency of the code DASSL are mainly due to the lack of A-stability
of the higher order formulae on which such codes are based.

Table 5.1: Run characteristics for the Elastic Beam problem (hy = atol =
rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BiM 102 ] 1.83 2.18 14 14 289 12 14 4.88 102
10-% | 2.63 3.45 63 63 1224 58 61 2181071
1076 | 4.08 4.73 332 332 7038 301 312 1.18 - 10°
DASSL 1072 | 0.62 1.45 63 60 101 7 2,26 - 1072
10=% | 1.57 1.98 28473 28269 30714 276 2.86 - 10°
10-6 | 3.36 4.20 53079 52532 58352 650 5.84 - 100
GAM 10-2 | 1.76 2.03 16 15 485 14 16  5.89 .10~ 2
10=% | 2.80 3.65 51 49 1793 47 51 2.16-10""
10-6 | 3.93 4.92 244 242 8699 237 244  1.04-10°
MEBDFDAE 1072 | 1.25 1.52 57 55 740 8 8 2.59.10 2
1074 | 2.23 2.49 274 270 2514 26 26 9.45-102
107% | 3.19 4.02 4622 4620 30577 303 303 1.25-10°
RADAU 10-2 | 1.99 2.59 23 20 176 16 23 1.18-10" T
1074 | 2.49 3.57 62 55 406 43 61 3.13-10"1
1076 | 2.84 3.73 58 58 847 41 55  4.53.10" 1
RADAU5 10-2 | 1.99 2.59 23 20 176 16 23 1.17 10771
10=% | 2.49 3.57 62 55 406 43 60 3.02-10""'
10-6 | 2.89 3.77 162 148 1114 95 139 7.31-10""
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5.2 The Brusselator with 1D diffusion problem

The problem arises from chemical kinetics. Its mathematical formulation is
a reaction-diffusion partial differential equation. In particular, the following
one-spatial variable formulation of the problem has been considered [59]:

ov

{ %:A-I-UQ’U—(B-I-DU-I-O(%,
ot

_ 2 92
= Bu —u“v + ags,
with0 <z <1, 0<¢t<10, A=1, B =3, a = 1/50 and boundary

conditions

u(0,t) = w(l,t) =1, v(0,1)
u(z,0) = 1+ sin(27x), v(z,0)

U(lat) =3,
3.

The equation is transformed into a large stiff system of ODEs by means
of the method of lines applied to the diffusion terms. In particular, a grid
of 500 points has been considered for the space interval, thus leading to an
IVP for a system of 1000 ODEs. By considering the following ordering for
the components of the solution
)T

y=(uy vy ugvg ... )",

where u; and v; represent the approximations at the i-th spatial grid point,
the Jacobian of the resulting system turns out to be banded with upper and
lower bandwidth equal to 2.

Table 5.2 and Figure 5.2 present, respectively, the run characteristics
and the work-precision diagrams of the numerical experiments on this prob-
lem. For the diagrams we used: hg = atol = rtol = 10-2tm/4) mpy =
0,...,44. We observe that since only the components with indexes 7k +
1,k = 0,...,142 are provided for the reference solution, the reported scd
values refer only to them. Moreover, the mescd values have not been com-
puted since this measure of the precision is of interest only when it refers to
all the components of the numerical solution (see [73]).
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Table 5.2: Run characteristics for the Brusselator 1D problem (hy = atol =
rtol).

Solver rtol scd steps accept f-eval j-eval LU-dec CPU
BIM 105 6.36 33 32 663 28 33  2.86-10" 1
10-8 9.64 50 50 1268 38 49  5.20-10""'
10~ | 1277 74 73 2501 55 73 1.11-10°
DASSL 10°° 4.13 133 131 161 18 1.04 - 101
108 6.79 474 473 550 24 3.60 - 107!
10~ 11 9.68 1442 1440 2014 49 1.16 - 10°
GAM 1077 5.41 26 24 847 21 26  4.08 - 10771
10-8 8.22 37 36 1392 27 36 7.34.10""'
10~ | 1141 74 72 3055 58 74 1.62-10°
MEBDFDAE 105 5.83 121 120 182 19 19 2791071
10-8 7.68 263 261 380 31 31 6.98 10""'
10~ | 11.06 614 614 861 59 59  1.66 - 10°
RADAU 100 5.54 46 44 320 38 46 1.85.10 !
10-8 9.04 43 40 656 29 43 3.32-1071
10~ 11 11.59 49 46 1169 28 49  5.60-10" "
RADAUS5 10-° 5.54 46 44 320 38 46 1.81 101
10-8 8.15 124 123 846 92 107 4.56-10~"!
10~ | 10.66 381 381 2637 58 169  1.18-10°
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Figure 5.2: Work-Precision Diagrams for the Brusselator 1D problem.
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5.3 The Emep problem

The problem is the chemistry part of the EMEP MSC-W ozone chemistry
model which is in development at the Norwegian Meteorological Institute of
Oslo, [73, 95, 96, 97]. About 140 reactions with a total of 66 species are in-
volved in the model. The time interval [ty, T] = [3600 - 4, 3600 - (—4+24-5)]
covers 112 hours of simulation (the time is measured in seconds). Moreover,
some of the involved species undergo a discontinuity at sunrise and sunset
corresponding to to ¢ = 3600 (£4 + 244) with i = 1,2, 3,4.

The equation has been solved by subdividing [to, T'] into 9 adjacent sub-
intervals determined by the previous discontinuities. Table 5.3 and Fig-
ure 5.3 contain, respectively, the run characteristics and the work-precision
diagrams for the Emep Problem. Since components y3g and ysg are rel-
atively very small and considered physically unimportant, they are not
included in the computation of the scd values. For the WPDs we used:
rtol = 10~ &+™/Y = 0,...,36; atol =1 and hg = 10~ 7.

We observe that, even thought the codes DASSL and MEBDFDAE turn out
to be the most efficient ones in solving this problem, the code BiM is able
to provide very regular results (see in particular the WPD with the mescd
on the abscissae in Figure 5.3). As a matter of fact, this is not the case for
the codes GAM, RADAU and RADAUS.

Table 5.3: Run characteristics for the Emep problem (atol = 1, hg = 1077).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10-3 | 2.13 2.13 368 360 5635 240 364  3.65-10" 1
1076 | 4.63 4.65 727 669 16960 549 713 1.01-10°
10~° | 7.01 7.48 978 859 20064 647 930  1.64-10°
DASSL 103 | 2.40 2,40 1149 1093 2171 189 1.62-10 1
1076 | 4.83 4.83 4145 3965 6981 459 4.99 - 107!
1072 | 7.40 7.68 9022 8770 12811 708 9.11-10" !
GAM 10-3 | 3.46 3.46 316 282 11148 210 316  5.15-10" 1
1076 | 5.97 5.98 444 407 22184 324 432 1.02-10°
1079 | 7.25 7.69 758 648 35939 485 697  1.65 - 10°
MEBDFDAE 10-3 | 2.35 2.35 1020 960 2247 172 172 1.81-10 1
1076 | 5.18 5.18 2887 2728 5343 441 441 4741071
10-° | 7.80 8.24 4962 4731 8107 713 713 7.74-10""
RADAU 103 | 2.46 2.46 436 382 3837 277 436  6.89-10 1
1076 | 3.60 3.62 463 390 10241 281 463  2.03-10°
1077 | 5.47 5.94 651 547 13929 408 650 2.81-10°
RADAUS5 103 | 2.46 2.46 436 382 3837 277 436  6.80-10 1
1076 | 4.43 4.45 965 905 8026 760 930  1.47 - 10°
1079 | 5.57 6.04 1867 1756 13882 1462 1724 2.68 - 10°
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5.4 The Medical Akzo Nobel problem

The Medical Akzo Nobel research laboratories formulated this problem in
the study of the penetration of radio-labeled antibodies into a tissue that
has been infected by a tumor, [67]. This study was carried out for diagnostic
as well as therapeutic purposes.

The mathematical formulation of the model leads to a reaction diffusion
system of size 2 in one spatial dimension, (see [73] for further details). The
problem is then transformed into a stiff IVP for a system of 2N ODEs by
means of the method of lines. The Jacobian of such system is banded with
upper and lower bandwidth equal to 2.

Numerical experiments were done in the case N = 200. Table 5.4 and
Figure 5.4 show the run characteristics and the work-precision diagrams
respectively. For the latter ones, we used atol = rtol = 10~ (2+m/4)
0,...,28, hg = 10~° rtol.

We remark the competitiveness of the results provided by the code BiM.
In addition to this, when compared to the other variable-order codes, the
WPD corresponding to the code BiM turns out to be the most regular.

7m=

Table 5.4: Run characteristics for the Medical Akzo Nobel problem (atol =
rtol, hg = 107" - rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10-3 | 3.65 3.66 73 73 972 62 73 8.78-10 2
1076 | 7.23 7.29 152 152 2067 131 152 3.07-10"!
1079 | 9.82 9.83 216 216 5998 194 214  6.36-10"1
DASSL 10-3 | 2.34 2.35 254 239 395 50 7.16 - 10~ 2
1076 | 4.64 4.71 898 873 1272 86 2.39-10""!
10~° | 7.61 7.65 2363 2336 2906 120 5.72 .10~ !
GAM 10-3 | 3.89 3.91 61 61 1538 53 61 1.14-10 1
10°6 | 7.17 7.18 99 99 4034 82 99 3.50-10"1
10-° | 9.54 9.55 138 137 8516 114 138 7.95-10"1
MEBDFDAE 10-3 | 3.36 3.44 241 230 420 53 53  9.00-10 2
1076 | 6.38 6.44 686 667 1005 95 95 2.57-1071
10-° | 8.61 8.67 1342 1312 1911 147 147  5.40-10"!
RADAU 10-3 | 3.62 3.68 71 70 598 43 71 5.67-10"2
1076 | 6.59 6.65 85 85 1527 49 85 2.35-.10""
1079 | 9.11 9.17 142 142 2490 85 141 3.91-10""!
RADAUS5 10-° | 3.62 3.68 71 70 598 43 71 5.49-10" 2
10-% | 5.49 5.50 182 182 1370 124 169 1.29-10"!
10-° | 8.31 8.46 522 522 3384 336 401 3.23-10"!
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5.5 The Plate problem

The plate problem is a linear non-autonomous problem with constant coef-
ficient matrix arising from the description of the movement of a rectangular
plate under the load of a car passing across it, [59]. The mathematical
formulation of the problem is:

%+w%+UAAU:f($ayat)’ (Ji,y)GQ,
ulyg =0, Aulyg = 0,

u(xayao) =0, %u(q"ayao) =0.

The domain Q = [0,2] x [0,4/3], representing the plate, is discretized
on a grid of 8 x 5 interior points thus leading to an IVP for a second-order
system of 40 ODEs. This is then transformed into a system of 80 first-order
ODEs.

Numerical experiments for this problem were done for w = 1000, 0 = 100
and integration interval [tg,T] = [0,7]. Table 5.5 and Figure 5.5 contain,
respectively, the run characteristics and the corresponding work-precision
diagrams. The input parameters used for the diagrams are the following:
ho = atol = rtol = 10~(2t™/Y) 1 =0, ..., 44.

As one can see from the values listed in Table 5.5, the implemented
strategy concerning the evaluation of the Jacobian recognize the problem to
be linear with a constant coefficient matrix and, consequently, such evalu-
ation is almost always avoided. Moreover, this is a problem for which the
order reduction phenomenon occurs and the reported results prove the ef-
fectiveness of the corresponding recovery implemented in the code BiM (see
Section 4.3.1).

Table 5.5: Run characteristics for the Plate problem (hy = atol = rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 105 5.41 7.41 21 20 522 3 19  3.99.-10 2
10~8 7.40 9.51 38 37 1315 2 31 9.37-1072
10~ 11 10.12 12.19 61 60 2728 2 49  1.90-10""'
DASSL 10~° 2.81 4.95 115 112 181 15 1.76 - 10~ 2
108 5.62 7.98 524 520 710 26 5.78 . 1072
10~ 11 8.14 10.08 3424 3413 4877 44 3.32. 107!
GAM 105 3.50 5.64 22 20 655 17 22 4.17 1072
108 6.26 8.40 38 35 1561 29 38 9.62.1072
10~ 11 9.27 11.41 68 66 3641 59 68 2.09. 107"
MEBDFDAE 105 3.35 5.29 96 91 152 9 9  1.77-10 2
108 7.14 9.08 206 202 299 23 23 3.94.10"2
10~ 11 10.22 12.16 445 442 636 35 35 7.80-10"2
RADAU 10-° 3.18 5.43 21 19 107 3 18 6.07-10"2
108 4.42 6.56 30 29 181 2 25  9.47.1072
10~ 11 6.81 8.91 47 44 341 4 37 1.51.10""
RADAUS5 105 3.20 5.34 27 25 117 3 21  6.09-10"2
108 5.07 7.18 87 85 394 3 32 1.15.10""'
10~ 11 6.46 8.50 292 289 1438 4 75 3.34.10""'
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5.6 The Pollution problem

The problem is a chemical model consisting of 25 reactions and 20 reacting
compounds. It represents the chemical reaction part of the air pollution
model developed at The Dutch National Institute of Public Health and En-
vironmental Protection (RIVM) and it is described by Verwer in [103].

The mathematical formulation of such model produce a stiff IVP for a
system of 20 nonlinear ODEs, [73]. The time interval [0, 60] is sufficient to
adequately represent the behaviour of the reactants.

Numerical experiments for this problem have been done with the follow-
ing set of input parameters hg = atol = rtol = 10~/ = 0,...,22.
The codes RADAU and RADAUS fail to solve the problem for m = 0 since
the used stepsize became too small. The run characteristics and the work-
precision diagrams are reported in Table 5.6 and Figure 5.6 respectively.

Table 5.6: Run characteristics for the Pollution problem (hg = atol = rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10—2 4.49 6.25 14 14 198 14 14 1.35-10"3
10~7 5.81 9.24 24 24 571 21 24 3.82.1073
10-10 | 9.32 12.53 43 43 1241 29 43 8.25.1073
DASSL 10~ 4% 1.96 3.89 35 34 55 13 8.43-10 %
10~7 4.13 5.94 135 135 190 22 2,67 -1073
10710 | 5.93 9.92 381 378 497 37 6.81 - 103
GAM 10-42 3.53 5.58 13 12 284 9 13 1.49-10"3
10-7 6.64 8.70 25 24 743 15 24 4.11-1073
1010 | 579 12.91 36 36 1463 26 36 8.37-1077
MEBDFDAE 10—2 3.15 5.18 37 37 57 10 10 873-10"7
10~7 4.74 6.72 123 123 184 19 19 2.72-10"3
10~10 | 6.98 10.75 247 247 352 34 34  5.45-.1073
RADAU 10 2 1.23 3.05 22 18 156 15 21  1.70- 10 °
107 3.78 5.59 32 29 227 21 32 2.48-1073
10710 | 7.75 8.77 35 35 449 21 35 4.09-107°
RADAUS5 102 1.23 3.05 22 18 156 15 21 1.68-10 3
10-7 3.78 5.59 32 29 227 21 32 2.44-1073
10710 | 7.39 8.78 65 65 458 31 46  4.10-107°
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5.7 The Ring Modulator problem

The problem originates from electrical circuit analysis and describes the be-
haviour of the so-called “ring modulator”. The latter is an electrical circuit
which produce a mixed signal starting from two input signals: one with
low-frequency and the second with high frequency, [70, 73]. The application
of the Kirchoff Current and Voltage Laws to each closed loop present in the
circuit yields an IVP for a system of 15 nonlinear ODEs.

The type and difficulty of the problem depends on the value of the ca-
pacity Cs in the circuit. The numerical results here presented refers to
Cs = 2 x 10712 farad, for which the resulting problem is a stiff differential
equation. In Table 5.7 and in Figure 5.7 the run characteristics and the
work precision diagrams are shown. The input parameters used for the di-
agrams are the following hy = atol = rtol = 10~ ¢+m/4) 1y = 0,...,32.
Failed runs due to overflow occurs when the Radau code is used to solve the
problem with input tolerances corresponding to m = 0 — 11, 15 — 17. We
remark that, with respect to the source code available at [73], the control
aimed to prevent overflow has been omitted.

Table 5.7: Run characteristics for the Ring Modulator problem (hy = atol =
rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10~ % 2.22 2.91 18406 17998 420799 16831 18258  2.41 - 107
1077 6.17 7.11 25741 25091 816709 25077 25733 4.56 - 10°
10710 | 8.83 9.52 29380 28609 1422679 28591 29376  8.13-10°
DASSL 10~ % 0.46 1.15 85466 82972 115884 3510 1.26 - 107
1077 2.52 3.21 248615 244982 322234 7720 3.62 - 10°
1010 | 4.93 5.62 749570 743521 1071129 17106 1.11 - 101
GAM 10— 1.73 2.41 13482 11731 475787 11532 13468  2.41 - 10°
10~7 5.32 6.01 19443 18041 014241 17194 19310  4.74 - 10°
10710 | 7.96 8.65 34488 33218 1763773 30011 33581  9.09 - 10°
MEBDFDAE 10~ % 1.78 2.46 65732 65404 99268 6419 6419  1.17 - 100
10~7 4.64 5.33 155991 155293 217989 13796 13796  2.67 - 100
10-10 | 7.28 7.97 348393 347390 464821 25611 25611  5.82 - 10°
RADAU 10~ 10 | 7.83 8.52 19617 16807 454097 7572 17076  2.90 - 107
RADAUS5 10— 2 1.45 2.14 36373 28683 176940 8923 32269  1.49 - 107
10~7 3.81 4.49 102504 93116 545239 12302 54807  3.58 - 10°
10710 | 6.12 6.81 288746 279396 1704967 13033 142688  1.04-10'
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5.8 The Robertson problem

The problem describes the kinetics of an autocatalytic reaction given in
1966 by Robertson, [90]. The model involves three chemical species and the
corresponding mathematical formulation is:

yi = —0.04y; + 10% yo y3,
yh = 0.04y; — 104 yay3 — 3+ 107y§,
Y3 = 3-107y3,

where ¢ € [0, T] and initial value yo = (1,0,0)7.

Numerical experiments for this problem have been done for 7' = 4 - 10,
Table 5.9 and Figure 5.8 show respectively the run characteristics and the
corresponding work-precision diagrams. For the diagrams we used hy =
atol = rtol = 10~ (+™/Y = (,...,44. In Table 5.8, we list the failed
runs occurred during the experiments.

We observe that, when high accuracy is required for the numerical solu-
tion, the codes BiM and RADAU are the most efficient ones.

Table 5.8: Failed runs for the Robertson problem.

Solver m reason

DASSL 1,2 error test failed repeatedly
MEBDFDAE 3,4,5 hmin reduced by a factor of 1010
RADAU and RADAU5 0-8 stepsize too small

Table 5.9: Run characteristics for the Robertson problem (hg = atol = rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10-° 5.50 8.79 59 59 1038 59 59 7.28 10 2
108 8.28 11.57 58 57 2213 53 58 1.53-107%
10~ 11 11.39 14.48 93 92 3960 86 93  2.77-107%
DASSL 105 2.13 5.99 226 219 341 40 8.72 .10 %
10~8 4.56 8.49 776 752 1116 75 2.86 1073
10~ 11 7.29 10.94 1855 1817 2526 113 6.34 1073
GAM 105 4.92 8.21 51 43 1726 39 49  1.09-1073
108 6.66 10.36 55 55 2089 45 55 2.03.1073
10~ 11 9.65 13.03 101 101 5719 89 101 3.89-1073
MEBDFDAE 105 4.11 7.40 213 212 305 39 39  6.68-10 2
1078 7.35 10.65 500 496 747 63 63 1.62-107%
10~ 11 9.37 12.66 991 988 1446 114 114 3.19.107%
RADAU 10-° 3.93 7.22 61 59 488 56 61  4.57-10 2
108 6.83 10.12 147 145 1057 139 147 9.88.10 %
10~ 11 8.88 12.16 104 103 1952 91 104 1.42.107°
RADAUS5 105 3.93 7.22 61 59 488 56 61 3.94.-10"%
108 6.83 10.12 147 145 1057 139 147  8.82.10"%
10~ 11 8.49 11.78 416 415 2914 217 229  2.12.1073
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5.9 The van der Pol problem

The van der Pol problem originates from electronics and describes the be-
haviour of a nonlinear vacuum tube circuit, [59]. The standard mathematical
formulation of the problem is:

(2 - 1) +2=0, w > 0.

This equation has two periodic solutions: the constant solution z(t) = 0,
that is unstable, and the nontrivial periodic solution (corresponding to the
initial conditions z(0) = 2, 2/(0) = 0), which it is an attractive limit cycle,
since all the other nontrivial solutions approach it, as ¢t — oc.

Numerical experiments on this problem have been done by performing
the classical transformation into a first-order system of 2 ODEs, and con-
sidering the initial value (2,0)7, Finally, we consider the value y = 1000
and the integration interval [0,u]. In Table 5.10 and Figure 5.9, the run
characteristics and the work-precision diagrams are shown. For the latter
ones, we used hg = atol = rtol = 10-2+t™/Y) 1 =0, ..., 44.

Table 5.10: Run characteristics for the van der Pol problem (hy = atol =
rtol).

Solver rtol scd mescd steps accept f-eval j-eval LU-dec CPU
BIM 10-° 6.15 6.40 79 69 1848 66 79 9.32.10" 2
108 8.97 9.66 123 117 3940 108 123 1.93.1073
10~ 11 11.96 13.71 157 157 6397 144 157  3.12.107%
DASSL 105 4.10 4.49 354 335 574 64 1.06 - 103
108 6.09 6.54 973 959 1537 74 2.93.1073
10~ 11 8.89 9.34 3275 3251 4861 116 9.33 . 1073
GAM 10°° 6.15 6.34 66 50 2751 42 66  1.25-10" %
10~8 7.73 7.94 101 87 5988 62 101 2.73.107%
10~ | 10.35 10.75 126 118 7743 63 117 3.54-107°
MEBDFDAE 105 3.77 4.21 336 313 562 48 48 8.67-10 %
108 7.07 7.47 668 647 1090 74 74 1.74-1073
10~ 11 9.99 10.58 1560 1544 2337 160 160 3.98 107 %
RADAU 105 4.33 5.88 127 113 1116 93 125  7.49-10~%
108 6.47 7.92 137 134 1877 106 133 1.12.1073
10~ | 10.95 11.14 143 135 3403 98 138 1.77-1073
RADAUS5 105 5.22 6.04 146 131 1133 93 134  6.57-10" %
10-8 7.48 7.92 373 368 2813 181 306 1.63-1073
10~ 11 9.46 9.95 1147 1146 8394 243 854  4.70- 1073
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5.10 Final Remarks

The previous results prove that the code BiM turns out to be a robust and
reliable one. We think that such peculiarities are mainly due to the results
obtained with the linear analysis of convergence for the blended iteration
which have allowed to construct a code with a very little heuristics inside.
Moreover , we think that, in evaluating the usability of a numerical software,
the capability of providing regular and robust results has to be taken into
full account.

In terms of efficiency, the new code turns out to be competitive with
respect to some of the best codes currently available. In particular, we
remark that the code BiM always well compare with respect to the code
GAM. This comparison turns out to be of particular interest because of the
following considerations:

e both codes make use of a nonlinear splitting for the solution of the dis-
crete problem generated by the implemented block implicit methods;

e the nonlinear iteration used in BiM requires the solution of twice linear
systems per iteration with respect to the one used in GAM, for methods
with the same blocksize r.

As a consequence, the obtained results prove the high efficiency of the pro-
posed blended implementation in terms of convergence properties of the
corresponding nonlinear iteration.

The code BiM is currently available at the WEB site:

http://www.math.unifi.it/ brugnano/BiM/

The page contains the Fortran77 source files of the code. Moreover, the
results obtained in several numerical experiments, among which the ones
here reported, are also available on that page. In addition, for each test
problem, a corresponding Fortran77 source code is available . The latter
contains the routines for the function and jacobian evaluations, the definition
of the initial value and of the integration interval and, finally, the reference
solution with respect to which the precision of the numerical solution has
been computed.
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5.11 Future Research

Several directions for future researches concerning blended implicit methods
can be foreseen. Among them, we quote the following ones:

e The research for the implementation on parallel computer of the code
BiM . As already observed, the diagonal splitting used in the code
BiM determines a perfect degree of parallelism of the blended iter-
ation, for what concerns the system solvings and the function eval-
uations. An implementation on parallel computer of such methods
seems, therefore, to be promising. Obviously, a necessary requirement
for the effectiveness of the parallel code, at least for small/medium size
problems, is a “reasonable” balance between the peak performance of
the processor elements of the parallel computer and the cost for the
interprocessor communications. When large size problems have to be
solved, instead, the use of an algorithm for a parallel decomposition
is mandatory. The previous considerations refers to a general-purpose
IVP parallel solver. However, when the continuous problem is of large
size and has a sparse Jacobian matrix (as it happens, for example,
for the ODEs arising from the application of the method of lines to
reaction-diffusion PDEs in more than 1 dimension), the use of itera-
tive methods for linear systems, in place of direct ones, may be more
convenient. In solving this kind of problems, a parallel version of the
code BiM seems to have great potentialities;

e The extension of the code BiM for the solution of linearly implicit
DAEs,

My'(t) = f(t,y), (5.1)

with constant mass matrix M and index lower or equal to 3, is a further
important argument of future research. In this context, the choice of
the weight function 0 in (4.4) has to be adapted. Then, a linear analysis
of convergence of the obtained iteration is required. Moreover, the
problem of the local error estimates needed for the variation of both
the stepsize and the order of the method has to be investigated;

e Finally, the search for different Blended Implicit Methods, with re-
spect to the ones implemented in the code BiM, represents an interest-
ing subject of further investigation. As an example, the use of basic
block implicit methods with non uniformly distributed internal abscis-
sae may result in an improvement of the conditioning of the coefficient
matrix C' of the method and, consequently, of the discrete problem.
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