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PrefaeOrdinary Di�erential Equations (ODEs) play a entral role in the mathe-matial modelling of real world phenomena. The solution of suh equationsallows to �nd answers to suh questions as how a physial system evolves orwhat are the possible e�ets of hanges in the system. In general, it is ex-tremely diÆult, if not impossible, to obtain an analyti solution of an ODEs.It is for this reason that the researh onerning numerial methods for theapproximate solution of suh equations beame so important. In partiular,the solution of Initial Value Problems (IVPs) for ODEs has been, and ontin-ues to be, one of the most ative �eld of investigation in Numerial Analysis.This is shown by the very rih amount of signi�ant ontributions during thelast �fty years. In addition, many of the obtained results have been olletedin several books, among whih we quote [5, 20, 25, 35, 47, 58, 59, 76, 94℄.Aross the years, the required properties for a numerial method havehad an interesting evolution. Indeed, until the �fties, auray require-ments were onsidered as the most important for the methods. After that,stability requirements beame foal, in partiular in onnetion with the nu-merial solution of sti� problems. More reently, attention has been devotedto methods well suited for partiular di�erential problems (like, for exam-ple, Delay Di�erential Equations [8℄, Hamiltonian problems [61, 93℄, andStohasti Di�erential Equations [26℄), and to methods well suited for aneÆient implementation on modern omputers, inluding parallel omput-ers. In the latter ontext, properties of the methods suh as the de�nition ofeÆient splittings, degree of parallelism, et. have beome foal, espeiallyin onnetion with the solution of large-size problems, and the present dis-sertation deal with this topi. The thesis, in fat, is devoted to the so-alledBlended Impliit Methods. In addition to lassial requirements, suh ashigh order of auray and \good" stability properties, the latter are meth-ods de�ned in order to favourably meet implementation requirements. Thegenerated disrete problem, in fat, may be eÆiently solved by means ofan iterative proedure based on a orresponding nonlinear splitting whih is\naturally" de�ned. The main result of the developed researh onsists inthe new ode BiM for the numerial solution of sti� problems.v



vi PREFACEThe thesis is organized as follows. Chapter 1 is devoted to a brief intro-dution on the referene ontinuous problem and on numerial methods forits approximate solution. Some of the most important results onerningthe theory of numerial methods for ODEs are also reported, in partiularin onnetion with the solution of sti� problems.Chapter 2 is devoted to disuss the most eÆient tehniques urrentlyused for the implementation of Blok Impliit Methods. In more details,the issue of the solution of the disrete problem generated, at eah step ofintegration, by a method in that lass is addressed.Blended Impliit Methods are then presented in Chapter 3 together withthe linear analysis of onvergene of the assoiated iteration, whih theynaturally de�ne, for the solution of the disrete problem.The implementation strategies, used in the development of the variable-stepsize, variable-order ode BiM, are, then, disussed in full details in Chap-ter 4. It will be shown that almost all of suh strategies are supported andjusti�ed by the results obtained through the previously mentioned linearanalysis of onvergene.The numerial results obtained by using the new ode are reportedand analyzed in Chapter 5. In partiular, suh results are ompared withthose provided by some of the best odes for sti� ODEs urrently available.Finally, some diretions for future researhes onerning Blended ImpliitMethods are briey skethed.AknowledgementsI would like to take this opportunity to thank my supervisor Prof. LuigiBrugnano for his support and valuable advie. He invested a lot of time inme during this period of researh and he helped me an inredible amountto shape my ideas on how researh should be approahed. I would also liketo thank him for having believed in me.



Chapter 1IntrodutionThis hapter is intended to present the basi notions onerning numerialmethods for the approximate solution of ODEs. In partiular, some of themost important results onerning the theory of Linear Multistep Formulaeand Runge-Kutta methods are realled. Sti� problems and their numerialsolution are then, briey, disussed in the last setion.1.1 The referene problemThe referene problem of the thesis is the �rst-order ODEy0(t) = f(t; y(t)); t 2 [t0; T ℄: (1.1)In the previous equation one an distinguish the independent variable twhih, often, in the desribed physial system, represents the time and thedependent variable y(t) whih onstitute the solution of the problem. Fre-quently, y(t) is a vetor valued funtion, i.e.,y(t) : IR! IRm; f(t; y(t)) : IR� IRm ! IRm;where m is the dimension of the system.In general, the solution of (1.1), in the ase it exists, is not unique. Anadditional requirement on the solution is neessary to obtain its uniqueness.One of the most widely used is, ertainly, to presribe the value the solutionmust assume at the initial time t0. The orresponding problem(y0(t) = f(t; y(t)); t 2 [t0; T ℄;y(t0) = y0 2 IRm; (1.2)where y0 is the presribed initial value, is known as an Initial Value Problem(IVP) for the ODE (1.1). This kind of problems our very frequently inthe appliations sine, in many ases, the state of the system is known at a1



2 CHAPTER 1. INTRODUCTIONertain time and one is interested to know the state at a ertain time in thefuture.The existene and uniqueness of the solution of the IVP (1.2) are (loally)guaranteed by the following well-known theorem.Theorem 1.1 Suppose that in the region D � IRm+1, de�ned byD = f(t; y) : jt� t0j < a; jjy � y0jj < bg;the funtion f(t; y) is ontinuous and satis�es the Lipshitz onditionjjf(t; y)� f(t; z)jj � Ljjy � zjj:Then, there exists a unique solution of problem (1.2). Moreover, ifM � sup(t;z)2D (jjf(t; z)jj) ;the solution is de�ned in the interval jt� t0j � min(a; b=M):In the following, the hypotheses of the previous theorem will be alwaysassumed to be satis�ed.1.2 Numerial Methods for ODEsThe numerial solution of the IVP (1.2) is usually arried out by formallyexeuting the following three steps:1. the de�nition of a suitable disrete set (or mesh) ftngn=Nn=0 in the in-terval [t0; T ℄;2. the replaement of the ontinuous problem by a disrete one, de�nedon suh a disrete set;3. the solution of the disrete problem.Conerning the �rst step, the mesh may be predetermined or, as it hap-pens more frequently, generated dynamially during the integration proess.Atually, the problem of appropriately selet the mesh points ftngn=Nn=0 playsa entral role on the possibility of obtaining, in an eÆient way, a numerialapproximation to the solution of the di�erential equation. This argumentwill be addressed in details in Chapter 4. Until then, for the sake of simpli-ity, the simplest mesh, given by the following set of uniformly distributedgrid-points in [t0; T ℄,tn = t0 + nh; n = 0; 1; : : : ; N; h = T � t0N ; (1.3)



1.2. NUMERICAL METHODS FOR ODES 3will be always onsidered. The parameter h in (1.3) is often alled the step-size or the steplength.The third point, in the previous sheme, may either be a trivial or adiÆult task aording to the disrete problem de�ned in the seond step.Atually, the main subjet of the present dissertation will be the de�nitionof eÆient tehniques for its solution.Finally, the disrete problem, replaing the ontinuous one on the dis-rete set, stritly depends on the partiular numerial method. As a matterof fat, the latter de�nes the \rules" used in performing suh a replaement.From an historial point of view, the �rst method for ODEs is known as theexpliit Euler method due to Euler in the early days of alulus (1768). Thedisrete problem generated by suh method is the following one,yn+1 = yn + h fn; fn � f(tn; yn); n = 0; : : : ; N � 1; (1.4)where yn represents, for eah n, the numerial approximation of the solutionat tn, i.e., yn � y(tn):Thus, at eah step, suh method assumes the knowledge of the inomingdata yn and the new approximation is obtained by assuming the slope ofthe y funtion onstant throughout the interval [tn; tn+1℄. Equivalently, thenumerial integration proeeds by onsidering, after eah step n, a new(loal) IVP to be approximated, with initial value given by y(tn) = yn.This initiates the idea of loal error where after eah step the inomingdata is assumed to be exat. The auray of the numerial solution isthen measured by omparing the approximation, after one single step ofintegration, with the Taylor series expansion of the loal exat solution,given by y(tn+1) = y(tn) + h y0(tn) + h22! y00(tn) + � � � :In partiular, the Euler method is a �rst order one sine it agrees with suhan expansion up to the �rst power of h. Aording to the approah adoptedfor inreasing the auray of the approximate solution, nowadays numerialmethods for ODEs may be subdivided into two main lasses of methods:� Multistep methods;� One-step (Multistage) methods.Multistep methods obtain higher auray by allowing the approximate solu-tion at a point to depend on the values of the solution and of the derivativesbefore the immediately previous point. One-step (multistage) methods, in-stead, build up yn+1 from values of the solution, and the orrespondingderivatives, at several internal points (or stages) between tn and tn+1.



4 CHAPTER 1. INTRODUCTION1.3 Linear Multistep FormulaeThe most popular multistep methods are, ertainly, Linear Multistep For-mulae (LMF), also alled Linear Multistep Methods (LMMs). They generatedisrete problems with the following general form:kXj=0 �j yn+j = h kXj=0 �j fn+j; n = 0; : : : ; N � k; (1.5)where fn � f(tn; yn), and k is alled the stepnumber of the method. Thus,a k-step LMF transforms the di�erential equation (1.2) in a linear, withrespet to yn and fn, di�erene equation of order k. Usually an IVP for theontinuous equation is solved by means of an IVP for the disrete one, thatis, a set of k initial values, y0; y1; : : : yk�1; (1.6)is always assoiated to (1.5). Sine only y0 is provided by the ontinu-ous problem, a starting proedure is required to obtain the remaining ones.Then, a reursive proedure may be applied to ompute the overall numeri-al solution. In partiular, expliitmethods are, by de�nition, those methodshaving �k = 0. In this ase, the algorithm for the solution of the disreteproblem turns out to be a trivial and heap one. On the other hand, when�k 6= 0 (i.e. the method is an impliit one) the solution of an algebraiequation in IRm is required, at eah step, to get the new approximation.A general theory onerning multistep methods was started by the workof Dahlquist [44, 45℄ and beame famous through the lassial book ofHenrii [63℄. In partiular, in the 1956 paper [44℄, Dahlquist introduedthe fundamental onepts of onsisteny, 0-stability and onvergene. Thelatter property desribes the asymptotial behaviour of the numerial so-lution, with respet to the ontinuous one, when an inreasing number ofmesh-points in [t0; T ℄ is used. More preisely, a LMF is said to be onvergentin [t0; T ℄ if, starting from \suÆiently" aurate values and assuming thatthe disrete problem is solved exatly, it provides approximations suh that,limN!1 maxn=k;:::;N jj y(tn)� yn jj = 0; h = T � t0N :When looking for the properties that a onvergent LMF has to satisfy, itwas found fundamental the onvergene of the numerial method in orre-spondene of the following three problems:� y0(t) = 0; y(0) = 0;� y0(t) = 0; y(0) = 1;



1.3. LINEAR MULTISTEP FORMULAE 5� y0(t) = 1; y(0) = 0.In partiular, by introduing the polynomials,�(z) � kXj=0 �jzj ; �(z) � kXj=0 �jzj; (1.7)it was found that onvergene of a LMF for the �rst problem neessarilyrequires �(z) to be a Von Neumann polynomial (i.e. all zeros of �(z) lie inthe unit dis and all zeros on the boundary are simple). LMF with suhproperty are alled stable or 0-stable. Conerning the seond problem inthe previous list, it an be proved that the numerial solution may onvergeuniformly to the ontinuous one, only in the ase where�(1) = 0: (1.8)The previous ondition is, sometimes, referened as the \pre-onsistenyondition". Finally, a 0-stable and pre-onsistent LMF is able to omputethe exat solution of the third problem, in the limit, only in the ase where�0(1) = �(1): (1.9)A LMF is said to be onsistent when it satis�es the onsisteny onditions(1.8)-(1.9). Therefore, onvergene for a LMF requires both onsisteny and0-stability. In [44℄ Dahlquist proved that the last two properties are, indeed,suÆient for onvergene, thus leading to the well-known result:onvergene , onsisteny + 0-stability.For a general IVP, the residual obtained when the sequene fy(tn)g,onsisting of the values that the exat solution assumes at the mesh-points,is inserted into the disrete problem,�n � kXj=0 �j y(tn+j)� h kXj=0 �j f(tn+j; y(tn+j)); (1.10)is alled the trunation error of the method. By onsidering the Taylorseries expansion of the ontinuous solution at tn, it an be seen that, for aonsistent method, the trunation error depends, at least, quadratially onh. The order of auray for a LMF is, then, de�ned as the largest p suhthat �n = O(hp+1):The same Taylor expansion allows to prove that p is given by the largestinteger suh that the following order onditions hold true:



6 CHAPTER 1. INTRODUCTIONkXj=0 �js�j � sjs�1�j� = 0; s = 0; 1; : : : ; p: (1.11)In this ase, the trunation error an be expressed as�n = vp+1hp+1y(p+1)(tn) +O(hp+2);where vp+1 � 1(p+ 1)! kXj=0 �jp+1�j � (p+ 1)jp�j� (1.12)is alled the prinipal error oeÆient of the method (obviously, the ontin-uous problem is assumed to be suÆiently smooth).The following is a well-known result onerning the auray of the nu-merial solution provided by a method of order p (see, for example, [20, 63℄).Theorem 1.2 If the ontinuous problem is suÆiently smooth and the ini-tial onditions (1.6) are, at least, O(hp) aurate, then the numerial so-lution provided by a 0-stable LMF of order p � 1 is suh that, for eahn, ky(tn)� ynk � Chp;where the parameter C is independent of h.Thought it is possible to �nd LMF of order p = 2k, in [44℄ Dahlquistproved the following restrition on the maximum attainable order of a 0-stable (and, therefore, onvergent) LMF. This result is known as the �rstDahlquist barrier.Theorem 1.3 A 0-stable k-step LMF has order not larger than k + 1, if kis odd, and not larger than k + 2, if k is even.Let us now, briey, disuss some of the most famous families of LMF.The �rst one was derived in the 1883 paper by Bashforth and Adams, [2℄:suh methods are now known as the Adams-Bashforth methods. The basiidea, used in deriving suh methods, has been that of using the fundamentaltheorem of alulus for a salar equation,y(tn) = y(tn�1) + Z tntn�1 y0(s) ds;and then to approximate the integrand with the interpolating polynomialthrough (tn�k; fn�k); : : : ; (tn�1; fn�1): The obtained methods were, there-fore, expliit. An impliit version of the Adams methods was also introdued



1.3. LINEAR MULTISTEP FORMULAE 7in the ited paper by Bashforth and Adams. However, suh impliit methodswere studied, in their own-right, in 1926 by Moulton in [82℄, and, nowadays,they are known as the Adams-Moulton methods. For eah value of k, boththe expliit and the impliit Adams methods are onvergent methods of or-ders, respetively, p = k and p = k + 1, [76℄.In 1952, Curtiss and Hirshfelder introdued another important family ofLMF known as the Bakward Di�erentiation Formulae (BDF), [43℄. LikeAdams methods are based on numerial integration, BDF are based on nu-merial di�erentiation. In fat, the disrete problem generated by suh meth-ods has the following form: fn+k = 1h kXj=0 �jyj:It is well-known that the BDF are onvergent methods of order p = k pro-vided that k � 6 (see, for example, [76℄).In order to de�ne a \good" method, onvergene is, obviously, a nees-sary requirement. However, there exist important di�erential problems forwhih suh property is ertainly not enough. Convergene, in fat, does nottake into aount the e�ets that perturbations, like, for example, the onesdue to round-o� errors, produe on the numerial solution. Moreover, byde�nition, onvergene is a limit property for values of h approahing 0 and,on the ontrary, in the pratie, the used stepsize is a �xed nonzero value.The midpoint method, yn+2 = yn + 2h fn+1; (1.13)is a lassial example that is frequently used to show how, even for arbitrar-ily small stepsizes, onvergene may not provide useful indiations on theauray of the numerial solution. Suh method, in fat, is onvergent oforder p = 2. In spite of this, when it is used to approximate the solution ofthe IVP,y0(t) = 2 � 104 �e�t � y(t)�� e�t; t 2 [0; 1℄; y(0) = 1; (1.14)\large errors" are obtained in the numerial solution omputed in standarddouble preision, regardless the (nonzero) value of the stepsize (see, for ex-ample, [20℄).A theory for error propagation for a �xed value of the stepsize h, is,therefore, needed. The development of suh a theory requires, in general,the analysis of the stability properties of solutions of nonlinear di�ereneequations and, unfortunately, the available mathematial tools do not pro-vide suitably simple instruments for this task. However, when the solution



8 CHAPTER 1. INTRODUCTIONbelongs to a suitable neighbourhood of a uniformly asymptotially stableequilibrium point, the �rst approximation stability theorem may be appliedthus allowing to on�ne the previous analysis to linear problems, [20℄. Inaddition to this, a onsideration on the interval of existene of the solu-tions is required. It is, in fat, obvious that the ase where h is �nite andn ! 1, requires the existene of the ontinuous solution for all t � t0 andthe existene of the numerial solution for all tn = t0 + nh. The previousrequirements are ful�lled when both the exat and the numerial solutionsbelong to a neighbourhood of a uniformly asymptotially stable onstantsolution. All suh arguments justify the study of the methods on the well-known Dahlquist test equation� y0(t) = �y(t); t � t0; Re(�) < 0;y(t0) = y0; (1.15)whose solution is given by y(t) = y0e�(t�t0). Therefore, the ontinuous prob-lem, admits y(t) � 0 as asymptotially stable equilibrium point. Moreover,from (1.5), one an verify that the disrete problem for (1.15) admits theonstant solution yn � 0 as equilibrium point and that the orrespondingstability properties are determined by the roots of the stability polynomialassoiated to the method (see (1.5) and (1.7)),�(z; q) � �(z) � q�(z); q � h�: (1.16)In partiular, the zero sequene is an asymptotially stable equilibriumpoint, for the disrete problem, provided all the roots of �(z; q) lie insidethe unit disk (i.e. �(z; q) is a Shur polynomial). This lead to the de�nitionof the region D of Absolute stability for a LMF as the region of the omplexq-plane for whih �(z; q) is a Shur polynomial.A LMF is able to provide qualitatively orret results for (1.15) only inthe ase where q 2 D. In this ontext, the midpoint method (1.13) er-tainly represents a limit ase, sine its region of Absolute stability is empty.In other ases, like, for example, for the Adams methods (with the onlyexeption of the Trapezoidal rule), the intersetion of D with the left-halfomplex plane is a bounded region and, if the method is 0-stable, the originbelongs to the boundary of D. When this happen, the stability propertiesof the numerial method determines an upper bound for the allowed stepsize.In 1963, Dahlquist understood the great advantage gained, in solvingertain lasses of problems, by the use A-stable methods, namely methodswith a stability region whih inludes all the left-half omplex plane. As itwill be disussed in Setion 1.5, sti� problems represent an important lassof di�erential problems, sine frequent in the appliations, whose numerialintegration e�etively requires the use of an A-stable method. However in



1.3. LINEAR MULTISTEP FORMULAE 9[46℄, the same author proved the well-known seond Dahlquist barrier whihstates a severe restrition on the possibility of obtaining high order A-stableLMF. More preisely, the following results were proved in that paper.Theorem 1.4 There are no expliit LMF whih are A-stable. The maxi-mum order of an A-stable impliit LMF is two.In looking for \nearly" A-stable methods, the property of A(�)-stability,with � � �=2, turns out to be one of the most desirable. By de�nition,in fat, the previous property holds when the region of Absolute stabilityontains the setor C� � fq 2 C : j� � arg(q)j � �g: (1.17)In suh a ase, the method is able to provide qualitatively orret resultsfor all values of � in (1.15) suh that j� � �j � �, without requiring anyrestrition on the stepsize. The already mentioned BDF are, for example,A(�)-stable method for eah k � 6, [76℄. As a onsequene, many numerialodes, designed for the solution of sti� di�erential problems, are based onsuh formulae or subsequent modi�ations of them [11, 12, 40, 65℄.In attempting to irumvent the Dahlquist's barriers, many approaheshave been adopted. Among them we quote the approah based on the useof higher derivatives of the solution, as in the ase of the Seond DerivativeMultistep Methods of Enright [51℄; the approah based on suitable ombi-nations of two or more methods, as for the Blended Multistep Methods ofSkeel and Kong [100℄, and the approah based on the use of further stages,additional nodes or o�-step points, as in the ase of the Modi�ed ExtendedBDF of Cash [38℄.Another important and reent ontribution to the analysis of multistepmethods is, ertainly, due to Brugnano and Trigiante. In the 1998 book [20℄,the authors introdued Boundary Value Methods (BVMs). The basi idea,on whih suh methods rely, is to adopt alternative hoies for the additionalonditions required by the disrete problem (1.5). In more detail, this is doneby approximating the ontinuous IVP (1.2) by means of a disrete BoundaryValue Problem (BVP). In the prefae of that book, in fat, the authors write:\Even if initial value problems are easier in the realm of in�nite prei-sion arithmeti (i.e. real or omplex numbers), boundary value problems aresafer in the realm of �nite preision".By means of an appropriate hoie for the boundary onditions, meth-ods with very good stability properties were then obtained. Among them,we mention the Generalized Adams Methods (GAMs) and the GeneralizedBakward Di�erentiation Formulae (GBDF).



10 CHAPTER 1. INTRODUCTION1.4 Runge-Kutta MethodsRunge-Kutta (RK) methods are generally onsidered as the most popularone-step (multistage) methods. The �rst method adopting the \multistagephilosophy" to obtain higher auray, is generally attribute to Runge in1895, [91℄. Further early ontributions, to what are now known as Runge-Kutta methods, are those due to Heun, Kutta and Nystr�om, [64, 75, 85℄.In partiular, the famous fourth-order method in Kutta's paper is often re-ferred to as the Runge-Kutta method.At eah step of integration, an r-stage Runge-Kutta method advanesthe numerial solution as follows:yn+1 = yn + h rXi=1 bif(tn + ih; yin); (1.18)where yin = yn + h rXj=1 aij f(tn + jh; yjn); i = 1; : : : ; r: (1.19)Here, the quantities yin, alled the internal stages, represent approximationsto the solution at the points tn + ih, generally internal to the interval[tn; tn+1℄. The oeÆients of a RK method are, usually, olleted into thefollowing Buther array,  AbTwhere, � 0B� 1...r 1CA ; b � 0B� b1...br 1CA ; A � 0B� a11 � � � a1r... . . . ...ar1 � � � arr 1CA :The previous notation allows to rewrite the disrete problem (1.18)-(1.19)in the more ompat form,yn = 1
 yn + h(A 
 Im)fn; (1.20)yn+1 = yn + h(bT 
 Im)fn; (1.21)where Im is the identity matrix of order m, 1 � (1; : : : ; 1)T 2 IRr, andyn � 0B� y1n...yrn 1CA ; fn � 0B� f1n...frn 1CA ; fin � f(tn + ih; yin):



1.4. RUNGE-KUTTA METHODS 11A RK method is alled expliit when the matrix A is stritly lower trian-gular, impliit otherwise. As for LMF, the proedure for the solution of thedisrete problem greatly simpli�es in the ase of expliit methods. This ismuh more true for RK methods sine, at eah step, the new approximationdepends on r new unknowns in IRm.The order of auray, for a RK method, is de�ned on the base of theasymptotial behaviour, as h approahes 0, of the loal error. The latter isgiven by the di�erene between the exat and the numerial solution afterone step of integration, under the assumption of an exat starting value.In partiular, a RK method has order p provided that, for a suÆientlysmooth funtion f de�ning the ontinuous problem, there exist a onstantC, independent of h, suh thatky(t0 + h)� y1k � C hp+1:The analysis of the order onditions for the oeÆients of a RK method isde�nitely muh more ompliated, with respet to the same for LMF. Themain reason is the fat that, in general, the numerial solution, at eah step,is built up from the derivatives evaluated at stage values having a lowerauray. The basi idea, used for suh analysis, is to ompare, term byterm, the series expansions, in powers of h, for the exat and the numerialsolutions at the end of a single step of integration. However, the terms in-volved in suh expansions beome greatly ompliated quite soon and thishas been one of the main diÆulties enountered in the early time of theresearh on suh methods. The major ontribution onerning the analysisof the order onditions for RK methods is due to Buther. In his 1963 paper[27℄, based on the earlier work by Gill [55℄ and Merson [80℄, he related thevarious terms involved in the Taylor series expansions, of both the exatand the approximated solution omputed by a Runge-Kutta method, to thegraphs of the so-alled rooted trees. Making use of the resulting theory, in[30, 34℄, Buther proved quite ompliated relationships between the mini-mum number of stages r to obtain expliit methods of order p > 4.In the 1964 paper [28℄, on impliit RK methods, Buther introdued theso-alled simplifying assumptions onsisting in a set of onditions whih,when satis�ed, redue, signi�antly, the number of onditions needed to ob-tain a method with a presribed order. This, in turn, made it possible toderive methods of higher order. In [28℄, in fat, Buther introdued impliitRK methods based on the Gaussian quadrature formulae of order p = 2r,while in [29℄ the same author introdued the Radau I and Radau II methods,of orders p = 2r � 1, and the Lobatto III methods of orders p = 2r � 2.When a RK method is applied to the test equation (1.15), the obtained



12 CHAPTER 1. INTRODUCTIONnumerial solution satis�es yn+1 = g(q) yn; (1.22)where it an be proved, (see [59℄), that g(q), alled the stability funtion ofthe method, is given byg(q) = det �Ir � qA+ q1bT �det (Ir � qA) ; (1.23)being Ir the identity matrix of order r. The region of absolute stability Dfor a RK method is, therefore, de�ned asD � fq 2 C : jg(q)j < 1g:Consequently, expliit RK methods always have a bounded stability domainsine, for suh methods, g(q) is a polynomial (see (1.23)). Impliit methods,instead, have a rational stability funtion and methods of arbitrarily highorder an be A-stable. In partiular, in 1969, Ehle proved the impliit GaussRK methods to be A-stable while the Radau I, Radau II and Lobatto IIImethods to be not, [49℄. Moreover, Ehle took up the ideas of Buther andonstruted the well-known A-stable Radau IA, Radau IIA, Lobatto IIIA,and Lobatto IIIB methods. In the same year, the Radau IIA methods werefound, independently, by Axelsson together with an elegant proof of theirA-stability, [6℄. The general de�nition of the Lobatto IIIC methods is dueto Chipman [42℄; see also the paper by Axelsson [7℄.The linear stability theory, based on the analysis of the methods on thetest equation (1.15), seems to suggest that methods with a stability domainwhih exatly oinides with the left-half omplex plane (i.e. perfetly A-stable methods) have to be onsidered as \optimal" methods. The previousproperty, however, turns out to be not as desirable as it may appear. It anbe proved, in fat, that the stability funtion of perfetly A-stable methodsis suh that limq!1 jg(q)j = 1:This means that, when q is lose to the real axis and has a very large negativereal part, the ontinuous solution of (1.15) fast deays to zero while themodulus of the numerial solution is very slowly damped. Therefore, inorder to reet the behaviour of the ontinuous solution, one should havejg(q)j � 1 as q ! �1. This leads Ehle to introdue the following propertyfor a method [49℄:De�nition 1.1 A method is alled L-stable if it is A-stable and if, in ad-dition, limq!1 g(q) = 0:



1.5. STIFF DIFFERENTIAL EQUATIONS 131.5 Sti� Di�erential EquationsSti� di�erential equations arise in a ountless amount of appliations andtheir numerial solution has hallenged Numerial Analysts as well as Ap-plied Mathematiians during the last �fty years.The �rst appearane of the term \sti�", in onnetion with the numerialsolution of ODEs, is in the paper by Curtiss and Hirshfelder [43℄ publishedin 1952. In that work, the authors showed that ertain types of problems,arising from hemial kinetis, are best solved by means of appropriatelyseleted numerial methods. The analysis arried out in that paper was the�rst example of the \tailoring" of the method to the properties of the ontin-uous problem to be solved, whih has beome ommon pratie nowadays.Sine then, the phenomenon of sti�ness for ODEs has been one of the moststudied subjet in Numerial Analysis. Nevertheless, a preise mathematialharaterization of sti�ness, able to over the most important faets of thephenomenon, has not yet been given. As a matter of fat, in the Lambertbook [76℄, �ve di�erent de�nitions of sti�ness an be found.From the early time of the researh on sti� problems, there has been alarge agreement on the fat that sti�ness ours when very di�erent timesales are present in a problem. The term itself, in fat, seems to derivefrom suh peuliarity sine it seems to desend from mehanial models ofsystems of weights onneted with springs having very di�erent rigidity on-stants (sti� onstants). The solutions of the orresponding equations are,therefore, haraterized by fast modes, orresponding to the e�ets of thestronger springs, and slow modes, orresponding to the e�et of the soft ones.The lassial example, whih is always used to disuss the phenomenonof sti�ness, is the linear autonomous equation,y0(t) = Ay(t); t 2 [t0; T ℄; (1.24)where the oeÆient matrix A has distint, real and negative eigenvalues,�max � �1 < �2 < : : : < �m � �min < 0:The general solution of suh equation takes the formy(t) = mXi=1 ie�i (t�t0)vi;where, for eah i, vi 2 Cm is an eigenvetor orresponding to �i and theoeÆient i 2 C depends on the initial value y(t0). In partiular, when theextreme eigenvalues of A are suh thatj�maxj � j�minj;



14 CHAPTER 1. INTRODUCTIONthe general solution of (1.24) is made up by \fast" modes, orresponding tothe eigenvalues of largest modulus, and \slows", modes orresponding to thesmallest modulus ones. In suh a ase, to get a omplete information on thesystem, it is neessary to keep integrating until the slowest modes beamenegligible. This requires to take, at least, T � t0 � j�minj�1. On the otherhand, the fast modes signi�antly ontribute to the solution only during avery short initial period, say [t0; t0+ j�maxj�1℄. Therefore, the di�erent timesales for (1.24), giving rise to the phenomenon of sti�ness, are given by themodulus of the extreme eigenvalues and the sti�ness ratio,j�maxjj�minj ;is traditionally used as a measure of the sti�ness of the problem. More gen-erally, when the spetrum of the oeÆient matrix in (1.24) is ontained inC�, the problem is sti� when the eigenvalues of A have very di�erent realparts.Looking at the solution urves of a sti� salar equation, one often reog-nize a smooth \slowly varying" solution (the steady-state solution) whih isapproahed by the other ones after a rapid transient phase. A well-knownexample, showing suh behaviour, is provided by the following equation,[89℄: y0(t) = �(y(t)� �(t)) + �0(t); y(t0) = y0; (1.25)where �� 0 and �(t) is a slowly varying smooth funtion. It is not diÆultto verify that the orresponding solution urves are given byy(t) = (y0 � �(t0))e�(t�t0) + �(t);(see the plots in Figure 1.1 for the ase � = �50 and �(t) = os(t)). Thedi�erent time sales, giving rise to the phenomenon of sti�ness, are reog-nized to be j�j, whih measure the rapidity at whih �(t) is approahed bythe other solutions, and a \measure" of the rate at whih the solution �(t)varies. The latter, in turn, often determines the required length of the inte-gration interval for obtaining a omplete information about the behaviourof the solution.Probably, the diÆulties in formulating a unifying de�nition of \sti�problems" are mainly due to the fat that it is better understood whatgoes wrong when numerial methods, not designed for suh problems, areused to try to solve them. In the �rst line of the �rst setion of the Hairerand Wanner's book [59℄, one of the most omprehensive on the subjet, theauthors write:\Sti� equations are problems for whih expliit methods don't work".
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Figure 1.1: Solution urves for (1.25) with � = �50 and �(t) = os(t).Obviously, this is only an empirial de�nition and, onsequently, not math-ematially aeptable. Nevertheless, the authors refer to expliit methodssine they always have a bounded stability domain. Moreover, an immediateonsequene of the di�erent time sales present in a sti� ODE is that suhequation are best solved, both in terms of eÆieny and of error aumula-tion, when an appropriate strategy for the de�nition of the disrete partitionis adopted. On the base of the required auray for the numerial solution,the above strategy has to be able to selet the most suitable value for thestepsize h. In partiular, this implies the need for a �ne mesh during thetransient phase and the possibility of using a muh more oarser mesh in thestationary one. The previous arguments, however, are based only on on-siderations onerning the required auray for the numerial solution. Onthe other hand, when a method with a bounded stability domain is used, theonstraints on the stepsize, arising from the lak of stability properties, haveto be respeted by the stepsize variation strategy. In partiular, when suhtypes of methods are used to integrate sti� ODEs, the stability properties ofthe method often fore the use of stepsizes whih, in the stationary phase,are \unrealistially" small with respet to the smoothness of the ontinuoussolution. For this reason, the numerial approximation of sti� equationsrequires the use of A-stable, and therefore impliit, methods.
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Chapter 2The implementation issue ofBlok Impliit MethodsIn the reent years the implementation issue has beome foal for numerialmethods for ODEs. Indeed, sine a number of stable, high order methodsare urrently available, one of the main reasons to use a method in plae ofanother is given by its omputational ost. In partiular, for blok impliitmethods the main problem to be addressed for an eÆient implementationonsists in the de�nition of \suitable" strategies for the solution of the dis-rete problem generated at eah step of integration. The present hapteris devoted to disuss the most eÆient tehniques urrently used for suhpurpose.2.1 IntrodutionWhen applied to the IVP(y0(t) = f(t; y(t)); t 2 [t0; T ℄;y(t0) = y0 2 IRm; (2.1)an r-Blok Impliit Method generates, at eah step of integration n, a dis-rete problem in the form:F (yn) � A
 Imyn � hB 
 Imfn � �n = 0; (2.2)where the matries A;B 2 IRr�r de�ne the method, Im is the identitymatrix of order m, h is the stepsize and the vetor �n only depends on17



18 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.already known quantities. The blok vetorsyn = 0B� y1n...yrn 1CA ; fn = 0B� f1n...frn 1CA ; fin = f(tin; yin);ontain r values of the disrete solution or the internal stage values of thestep.Instanes of methods falling in this lass are RK methods, a number ofGeneral Linear methods [35, 58, 59℄ and, more reently, blok BVMs [20℄.In the following, we shall always assume the two matries A and B tobe nonsingular so that the underlying method is an impliit one. Morepreisely, in the ase of RK methods with expliit stages, like the Lobattoshemes, r equals the number of impliit stages and the matrix B is obtainedby onsidering only the orresponding oeÆients, [68℄.First of all, it must be observed that in (2.2) a multipliation from theleft by �A�1 
 Im� of both sides of the equation allows to normalize the�rst oeÆient matrix to the identity. Nevertheless, sometimes it ould bepreferable to keep the more general formulation (2.2), as in the ase, for ex-ample, of blok BVMs [20℄. Moreover, as disussed in full details in the nexthapter, the more general formulation in (2.2) presents some advantages indisussing the implementation issues of the method.For a nonlinear di�erential equation, the implementation of blok im-pliit methods requires, therefore, the solution of an algebrai equation ofsize rm at eah step of integration. This is the reason for whih, for manyyears, it was generally believed that, in spite of their better stability prop-erties, blok impliit methods would never be ompetitive with respet, forexample, to A(�)-stable LMF with � � �2 .As a onsequene, the problem of devising eÆient algorithms for thesolution of (2.2) has been extensively studied for various lasses of methods(see, e.g.,[4, 14, 33, 68, 69℄), also with referene to the implementation ondi�erent omputer platform [25, 52, 53℄, and this is still an ative �eld ofresearh in the area. In the sequel, for sake of simpliity, the step index nwill be always omitted sine the reported analysis equally applies to eahstep of integration. Therefore, without loss of generality, we an analyze the�rst step of integration.During the early time of sti� omputation people were usually think-ing of a simple �xed-point iteration to solve (2.2). Nevertheless a similar



2.2. THE SIMPLIFIED NEWTON METHOD 19approah essentially transforms the method into an expliit one, thus de-stroying the good stability properties of the underlying impliit one.Then, the use of proedures based on Newton's type methods, in par-tiular those based on the simpli�ed Newton method, and proedures basedon suitable nonlinear splittings for the nonlinear equation (2.2) has beomea ommon pratie. The following setions are devoted to a review of suhimplementation tehniques.2.2 The simpli�ed Newton methodThe simpli�ed Newton method is haraterized by the following approxima-tion of the Jaobian matrix of the funtion F in (2.2)JF � (A
 Im � hB 
 J0);where J0 � �f�y (t0; y0)denotes the Jaobian matrix of f at the initial point of the step. The disreteproblem (2.2) is, therefore, solved by means of the following iteration:((A
 Im � hB 
 J0)�y(i) = �F (y(i));y(i+1) = y(i) +�y(i); i = 0; 1; : : : : (2.3)Obviously, the onstant oeÆient matrix in (2.3),M � (A
 Im � hB 
 J0); (2.4)has to be evaluated only one and, in addition, this requires only one eval-uation of the Jaobian matrix of f . In spite of this, the use of diret solversfor solving the linear systems in (2.3) turns out to be extremely ostly sinethe fatorization of the rm�rm matrixM is required. If we do not onsider(for sake of simpliity) the terms due to funtion and Jaobian evaluationsthen, at least for large-size problems, the leading term in the arithmetiomplexity of the iteration (2.3) is given by 23(r �m)3 ops, where we ountas one op one of the four basi oating point binary operations with realquantities. This ost is onsiderably higher if ompared, for example, withthe omplexity of the proedure for the solution of the disrete problem gen-erated by a LMF.The �rst attempts to redue the ost for the solution of the Newton sys-tems (2.3) were based on the idea of using methods with simple strutured



20 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.matries A and B. In partiular, sine for RK methods A = Ir, see (1.19),the researh was foused on methods with a lower triangular oeÆient ma-trix B, [3, 83℄. The obtained methods have been variously named arossthe years. Today, it is usual to all them diagonally impliit Runge-Kuttamethods (DIRK) or, in the ase of equal diagonal entries, singly diagonallyimpliit Runge-Kutta methods (SDIRK). The above methods have the obvi-ous advantage of allowing to solve the linear systems in (2.3) in r suessivestages with only m-dimensional systems to be solved at eah stage. How-ever, they also have disadvantages. One of the most important is givenby their low stage order whih, in view of the order redution phenomenon(see [89℄), make them not really appropriate for the solution of sti� problems.Aording to the general ways of solving linear systems, that is by usingdiret or iterative proedures, it is possible to lassify the urrently usedalgorithms into the following main ategories:� diagonalization (or blok diagonalization) of the matries A and B;� de�nition of suitable linear splittings for the systems in (2.3);The following setions are devoted to disuss the two possibilities.2.2.1 DiagonalizationThe algorithm desribed in the present setion has been proposed by Butherin his 1976 paper [33℄ on the implementation of impliit RK methods. Asalready observed, eah Newton iteration in (2.3) requires the solution of thelinear system (the index i has been omitted for simpliity),M�y = �F (y); (2.5)where, for RK methods (see (2.4)), the matrix M beomesM = Ir 
 Im � hB 
 J0:The main idea of the algorithm proposed in [33℄ has been that of usingthe Jordan form of the matrix B to de�ne two nonsingular r� r matries Pand Q suh thatPQ = 0BBB� 1"2 1. . . . . ."r 1 1CCCA ; PBQ = 0BBB� �1 �2 . . . �r 1CCCA :Here "i = 0; 1 while �(B) = f�1; : : : ; �rg represents the spetrum of B. Thesystem (2.5) was then transformed into the following equivalent one,



2.2. THE SIMPLIFIED NEWTON METHOD 21~M�~y = � ~F (y); (2.6)where �~y � �Q�1 
 Im��y; ~F (y) � (P 
 Im)F (y); (2.7)~M � (PQ)
 Im � h(PBQ)
 J0: (2.8)The matrix ~M is therefore omposed by diagonal bloks of the formIm�h�J0 with possibly omplex � and subdiagonal bloks of either the zeroor the identity matrix. Sine eah of the transformations in (2.7) requiresO(m) operations, the overall advantage, in terms of arithmeti omplexity,of this proedure is determined by the spetrum of the matrix B. In parti-ular, the higher the number of real and multiple eigenvalues of the matrix B,the lower the omputational ost for solving (2.6). In order to take full ad-vantage from the Buther proedure, in [22, 84℄ the so-alled singly impliitRunge-Kutta methods (SIRKs), namely methods with a real one-point spe-trum matrix B, were introdued. However, the obtained methods were lessfavourable than Runge-Kutta methods with omplex eigenvalues in termsof auray and stability properties.A slight di�erent proedure is the one urrently used in the RADAU5and RADAU odes both implementing the Radau IIA impliit Runge-Kuttamethods [59℄. The basi idea, used in suh odes, essentially onsists inreduing B to a blok diagonal matrix by means of a real similarity trans-formation. That is T�1BT = � � 0B� �1 . . . �s 1CA ; (2.9)where �i = �i, if �i is a real eigenvalue of B, while�i = � � ��� � � ;if �i = �� i� is a omplex onjugate pair. In addition, the linear subsystemarising in (2.6), in orrespondene of a omplex onjugate pair �� i�, givenby, � Im � h� J0 h� J0�h� J0 Im � h� J0 �� u1u2 � = � z1z2 � ;is transformed in the following equivalent m-dimensional omplex one:�(Im � h� J0)� ih� J0�(u1 + iu2) = (z1 + i z2):



22 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.It follows that, if the matrix B has k distint real eigenvalues and l =(r� k)=2 distint onjugate pairs, the orresponding proedure requires thefatorization of k m�m real matries and l omplex matries of the samedimension. As a onsequene, sine the omplexity for the fatorization ofomplex matries is approximately 4 times the omplexity for the fatoriza-tion of real matries, the leading term in the arithmeti omplexity of theoverall proedure is approximately given by23 (k + 4l)m3 ops:As an example, the spetrum of the matrixB orresponding to the Radau IIAmethod of order 5 is omposed by one real eigenvalue and one omplex on-jugate pair. In suh a ase, when ompared to the 23 (3 � m)3 operationsrequired for the fatorization of M in (2.4), a fator of about 5 has beengained.The approah disussed in the present setion is very popular for RKmethods sine the matrix A in (2.2) is the identity matrix. The general-ization to blok methods with nonsingular matries A and B requires suhmatries to be diagonalizable by means of the same similarity transforma-tion.However, a severe drawbak of the desribed approah onsists in thepossible ill-onditioning of the matrix T in (2.9). This is espeially true formethods with large bloksize r (see, for example, [9, 10℄).2.2.2 Linear SplittingsThe main idea of the proedure desribed in this setion onsists in usingan iterative solver for the Newton systems in (2.3). More preisely, insteadof solving the linear system for �y(i),(A
 Im � hB 
 J0)�y(i) = �F (y(i)); (2.10)required by the outer (or primary) iteration in (2.3), the following inner (orseondary) iteration is applied(A� 
 Im � hB� 
 J0)�y(j;i) =�(A� �A)
 Im � h(B� �B)
 J0��y(j�1;i) � F (y(i)); (2.11)j = 1; : : : ; �; where � is a suitable, possibly small, integer while A� and B�



2.2. THE SIMPLIFIED NEWTON METHOD 23are two nonsingular r � r matries. The vetor �y(�;i) is then adopted asthe solution of (2.10) and the numerial solution is updated as (see (2.3)),y(i+1) = y(i) +�y(�;i):Conerning the hoie of the splitting matries A� and B� in (2.11), theompetitiveness of the inner iteration is the ommonly used riterion fortheir de�nition. As a onsequene, it must be observed, �rst of all, that asimple struture is a neessary requirement for them, sine the arithmetiomplexity for the solution of the linear systems in (2.11) is expeted to bemuh lower than that of the original one.However, this is ertainly not enough for ompetitiveness. As matter offat, the eÆieny of suh inner-outer iteration sheme stritly depends onthe onvergene properties of the inner iteration. Conerning this point, theommon pratie [68, 69℄ is to arry out a linear analysis of onvergene ofthe iteration, thus studying its behaviour on the linear problemy0(t) = J y(t):For suh problem, the simpli�ed Newton method globally onverges in oneiteration. It follows that one has to onsider only the behaviour of the inneriteration. Moreover, sine the iteration matrix in (2.11) is a funtion ofthe Jaobian matrix J , onvergene is determined by the behaviour of theiteration matrix in orrespondene of eah eigenvalue � of J . The salar testequation y0(t) = �y(t); � 2 C; (2.12)is, therefore, always adopted as the referene problem for the linear analysisof onvergene. In suh a ase, by setting, as usual,q = h�;the iteration (2.11) will onverge to the solution of (2.10) provided that thespetral radius, say �(q), of the iteration matrix or ampli�ation matrix,Z(q) � Ir � (A� � qB�)�1(A� qB); (2.13)is smaller than 1. The region of onvergene of the iteration is thereforede�ned as � = fq 2 C : �(q) < 1g: (2.14)Obviously, it would be desirable the region of onvergene to be as large aspossible and the ideal ase would be that of a globally onvergent inner iter-ation. Nevertheless, this annot be aomplished by using onstant splitting



24 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.matries A� and B� with a suitably \simple" struture. The region � is,therefore, always stritly ontained in C. A �rst reasonable requirement,that is always demanded, is the onvergene of the iteration for all values ofq � 0. This is the ase, for example, when the spetral radius �(q) is suhthat �(0) = 0; �(q) analytial in B(0; "); (2.15)where B(0; ") is a suitable neighbourhood of the origin. Under suh assump-tions, in fat, for eah values of �, the proedure is e�etive provided asuÆiently small stepsize h is used. Moreover, the assumptions (2.15) on�(q) do not impose severe restritions on the possible hoies of the split-ting matries. For example, they obviously hold true when A� = A. In thesequel, therefore, we shall always assume them to be veri�ed.Evidently, when the ontinuous problem is a sti� di�erential equation,additional requirements on the onvergene of the inner iteration are nees-sary. As a matter of fat, the use of A-stable methods has been preferredsine their stability properties do not impose any restrition on the stepsizeh to be used when Re(�) < 0. In order not to introdue restritions on h atthe implementation level of the method, it is therefore desirable the use ofiterative proedures onverging for all values of q 2 C�. These argumentslead to the following de�nitions.De�nition 2.1 The iteration (2.11) is said to be A-onvergent ifC� � �:Similarly, the iteration is said to be A(�)-onvergent if the setor C�, de�nedin (1.17), is ontained in �.Clearly, the iteration (2.11) annot beA-onvergent if the penilA��qB�is singular for some values of q 2 C�. Therefore, the following ondition onthe spetrum of the matrix penil is a pre-requirement for the A-onvergeneof the iteration:�(A�; B�) � fq 2 C : det(A� � qB�) = 0g � C+: (2.16)The splitting matries are always hosen in order to satisfy this requirement.Moreover, when (2.16) holds true, �(q) is analytial in C� so that, by themaximum-modulus priniple, A-onvergene is equivalent to require�� � maxarg(q)=�2 �(q) < 1: (2.17)The parameter �� is alled themaximum ampli�ation fator of the iteration.This is a �rst important evaluation parameter measuring the onvergene



2.2. THE SIMPLIFIED NEWTON METHOD 25properties of the iteration. In fat, sine it refers to the worst ase situ-ation, when Re(�) < 0, it serves as an indiator of the robustness of theproedure. Nevertheless, when sti� di�erential equations are to be solved,one has to onsider that sti� and nonsti� modes are present in the iterationerror omponents. Therefore, it is also very important to onsider the be-haviour of the iteration for values of q lose to 0 and values of q approahingin�nity. Then, the following parameters are de�ned to measure additionalonvergene properties of the iteration:� the nonsti� ampli�ation fator,~� � limq!0 �(q)jqj ; (2.18)� the sti� ampli�ation fator,�(1) � limq!1�(q): (2.19)Conerning the nonsti� ampli�ation fator, it must be stressed that, sineq � 0 ) �(q) � ~� jqj;a moderate value for ~� would be desirable. Regarding the sti� ampli�ationfator, instead, in [68, 69℄ the authors underlined the fat that a strongdamping of the sti� error omponents is ruial for a fast overall onvergeneof the iteration. The ompetitiveness of the algorithm requires, therefore,a small valued or, possibly, a zero valued, parameter �(1): This lead to thefollowing de�nitionDe�nition 2.2 An A-onvergent iteration suh that �(1) = 0 is alled L-onvergent.In some ases, the previously de�ned ampli�ation fators may not pro-vide suÆient information. This often happens when the matrix Z(q) in(2.13) is highly nonnormal so that parameters de�ned trough the eigenval-ues of the involved matries do not give insight into the behaviour of theiteration during the initial phase of the proedure. The so-alled averagedampli�ation fators, orresponding to � inner iterations, are therefore alsoonsidered. In detail, by onsidering a suitable matrix norm k � k, and byde�ning, ��(q) � kZ(q)�k 1� ;the averaged ampli�ation fators are de�ned as,��� � suparg(q)=�2 ��(q); ~�� � limq!0 ��(q)jqj ; �(1)� � limq!1 ��(q): (2.20)



26 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.We onlude the present setion with a disussion of some of the reentlyproposed linear splittings for the solution of the Newton linear systems in(2.3). The main idea used in the derivation of the splitting matries hasbeen that of de�ning B� as a lower triangular matrix L obtained from asuitable fatorization of B. Conerning the matrix A no splitting has beenyet onsidered for it (i.e. A� � A), sine it has always a very simple (andonvenient) struture.Some of suh shemes were proposed by Van der Houwen and De Swartin [68, 69℄. In partiular, for the Parallel Triangularly Impliit Runge-Kutta(PTIRK) method the matrix L was de�ned as the lower triangular fator inthe Crout LU deomposition of B, i.e.B = LU;whereL = 0BBBB� `1... `2... . . .� � � � � � � `r
1CCCCA ; U = 0BBBB� 1 � � � � � � �1 .... . . ...1

1CCCCA : (2.21)The unit diagonal entries on the main diagonal of U determines theequivalene between the A-onvergene and the L-onvergene properties ofthe iteration. This an be easily seen by onsidering that, when A� = A = Irand sine B� = L, the iteration matrix (2.13) redues toZ(q) = q(Ir � qL)�1(B � L) = q(Ir � qL)�1L(U � Ir):Consequently, q !1 ) Z(q)! (Ir � U) ; (2.22)and, see (2.19), �(1) � limq!1�(q) = � (Ir � U) = 0: (2.23)Moreover, see (2.20), the sti� omponents are removed from the iterationerror within r iterations, i.e. �(1)r = 0. In addition, for RK methods basedon olloation with positive and distint absissae, the authors proved theA-onvergene of the iteration, see also [66℄. The asymptoti ampli�ationfators of the PTIRK method for some RK methods are listed in Table 2.1.



2.2. THE SIMPLIFIED NEWTON METHOD 27Table 2.1: Asymptoti ampli�ation fators for the PTIRK methodMethod Order r �� ~� �(1)Gauss 4 2 0.14 0.08 0Radau IIA 3 2 0.18 0.15 05 3 0.37 0.19 07 4 0.50 0.17 0Lobatto IIIA 4 2 0.14 0.08 06 3 0.30 0.12 0Conerning the arithmeti omplexity of the iteration, the diagonal entries inL were found to be distint. As a onsequene, see (2.21), the orrespondinginner-outer iteration (2.10)-(2.11) requires the fatorization of the followingm�m matries, (Im � h`iJ0); i = 1; : : : ; r:However, in [68℄ the authors do not onsider this as a severe limitation forthe algorithm sine all the above fatorizations are eah other independentand they were onerned with a parallel implementation on r proessors ofthe algorithm.A relevant improvement on the desribed proedure for an eÆient im-plementation on sequential omputers was found by Amodio and Brugnanoin [4℄ for methods having the �rst oeÆient matrix A equal to the identity.In fat, the authors proved that, whenever det(B) > 0, as it is the ase foran A-stable method with A = Ir, a transformation matrix T exists suhthat B̂ � TBT�1 = LU;where L and U are de�ned aording to (2.21), with`1 = `2 = : : : = `r = det(B) 1r :The authors, therefore, proposed to solve the linear systems in the Newtoniteration (2.10) by �rst performing the variable transformationŷ(i) = (T 
 Im)y(i); (2.24)whih requires O(m) operations, and then, for the obtained linear system,�Ir 
 Im � hB̂ 
 J0��ŷ(i) = � (T 
 Im)F (y(i));



28 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.by using an inner iteration with splitting matries A� = Ir and B� = L.The leading term in the arithmeti omplexity of suh iteration was, there-fore, redued to 23m3 ops required for the fatorization of only one m�mmatrix. The proof of ompetitiveness, with respet to the PTIRK method,was ompleted by means of a omparison based on the ampli�ation fa-tors of the two iterations whih, for many RK methods, shows omparableonvergene properties, [4℄.2.3 Nonlinear splittingsThe roles of the primary and seondary iteration in (2.10)-(2.11) may beexhanged. As matter of fat, one may think of �rst performing a nonlinearsplitting on (2.2) to obtain a \simple strutured" system to be solved byan appropriate method for nonlinear equations. The most famous nonlineariterative proesses are of ourse the extensions to nonlinear systems of thewell-known iterative methods, namely the Jaobi, Gauss-Seidel and SORmethods. Convergene results for these shemes may be found in [86℄.In partiular, for equation (2.2), a nonlinear blok-splitting proess isoften applied. This is obtained from the following deompositions of thematries A and B A = A� �RA; B = B� �RB; (2.25)where A� and B� are nonsingular matries with a \simple" struture. Thenonlinear equation (2.2) is then solved by means of the following iterationA� 
 Imy(i) � hB� 
 Imf (i)= (A� �A)
 Imy(i�1) � h(B� �B)
 Imf (i�1) + �; (2.26)i = 1; : : : ; �. At eah iteration, the equation (2.26) still represents a nonlin-ear system for y(i) 2 IRrm. A Newton type method is always adopted forits solution and the most widely used is, as before, the simpli�ed Newtonmethod. However, sine the matries A� and B� are hosen with a simplestruture, the arising linear systems are muh more heaply solvable. As anexample, the matries A� and B� are hosen lower triangular with onstantentries on the main diagonal, so that the simpli�ed Newton iteration forsolving (2.26) only requires to fator one m�m real matrix.Obviously, for eah iteration in (2.26), one may iterate the simpli�edNewton method until onvergene. However, in many ases a single-inneriteration has been found to perform better and the orresponding proesshas been alled one-step splitting-Newton proess, [71℄.



2.3. NONLINEAR SPLITTINGS 29We observe that, when the ontinuous problem is a linear di�erentialequation with onstant oeÆient matrix, the one-step splitting-Newtonproess is equivalent to the Newton-splitting one desribed in the previ-ous setion. This is beause, the simpli�ed Newton method exatly solves(2.2) and (2.26) in one iteration. It follows that the results obtained withthe linear analysis of onvergene applied to (2.11) an be diretly extendedto (2.26). In partiular, for the test equation (2.12), the iteration matrixorresponding to (2.26) oinides with the one spei�ed in (2.13).A nonlinear splitting has been used, for example, in the ode GAM im-plementing methods in the family of BVMs, namely the Generalized AdamsMethods of orders 3,5,7,9, [20, 71℄. The �rst oeÆient matrix of suh meth-ods is given by A = 0BBB� 1�1 1. . . . . .�1 1 1CCCAr�r :Consequently, the �rst splitting matrix A� has been hosen equal to A.Conerning the matrix B�, the fatorizationB = LVhas been used to de�ne B� � L. Here L is a lower triangular matrix withdiagonal entries all equal to ` = det(B) 1r ;and V is a real matrix suh that det(V ) = 1. More preisely, see (2.22),sine as q !1, the iteration matrix (2.13) approahesIr � V = Ir � L�1B;the stritly lower triangular entries in L were found by means of a suitableminimization tehnique over the quantities�(Ir � L�1B); k(L�1B)rk 1r :The asymptoti ampli�ation fators of the iteration used in GAM havebeen reported in Table 2.2. As one an seen from the last two rows, theiterations orresponding to the last two higher order method were not A-onvergent, though A(�)-onvergent with � � �=2.



30 CHAPTER 2. THE IMPLEMENTATION ISSUE OF BLOCK I.M.Table 2.2: Asymptoti ampli�ation fators for the iteration used in theode GAMOrder r �� ��(�=2:14) ��(�=2:64) ~� �(1)3 4 0.2562 0.2305 0.1806 0.1819 0.00195 6 0.5929 0.5326 0.4173 0.2585 0.02127 8 1.0048 0.9007 0.7038 0.3064 0.06299 9 1.3563 1.2113 0.9390 0.3014 0.07532.4 RemarksThe approah desribed in Setion 2.3 may be very ompetitive providedthat suitable matries A� and B� an be obtained. Nevertheless, when sat-isfatory onvergene properties are required, their derivation may be verydiÆult. In partiular, many diÆulties have been enountered when a zero-valued sti� ampli�ation fator is required in order to make the iterationwell-suited for the solution of disrete problems orresponding to the solu-tion of sti� di�erential equations.In the next hapter, it will be shown how the use of blended shemesallows to \naturally" derive iterative proedures with \low" arithmeti om-plexity per step and very \good" onvergene properties.



Chapter 3Blended Impliit MethodsBlended Impliit Methods are methods whih, in addition to lassial re-quirement, suh as high order of auray and \good" stability properties,do have favourable properties from the implementation point of view. Theyare obtained by means of a suitable ombination of two omponent methods,so that eÆient nonlinear splittings are naturally de�ned for the solution ofthe obtained disrete problem.In the past years, many attempts have been made to derive numeri-al methods for ODEs as the ombination of two methods. A well-knownexample is the popular �-method. Additional examples are provided bythe Blended Linear Multistep Formulas of Skeel and Kong [100℄ and by theBlended Blok BVMs of Brugnano [14℄. However, slight di�erent aims werepursued in doing this:� in the ase of the �-method and of the blended linear multistep for-mulas, the only aim was that of getting a method with better stabilityproperties than the two omponent ones;� in the ase of blended blok BVMs, the above aim was oupled withthat of getting an eÆient implementation of the resulting method.Blended Impliit Methods, instead, are obtained by means of a suitableombination of disrete problems derived from the same basi method sothat, with the latter, they share the same auray and stability properties.For this reason, we shall also speak about the blended implementation of thebasi method.3.1 Blended Implementation of Blok Impliit Meth-odsIn order to unneessarily ompliate the notation and to arry out the linearanalysis of onvergene, we shall onsider the appliation of the methods to31



32 CHAPTER 3. BLENDED IMPLICIT METHODSthe lassial test equationy0 = �y; y(t0) = y0; Re(�) < 0; (3.1)for whih, by setting as usual q = h�, the disrete problem (2.2), at step n,assumes the form: (A� qB)yn = �n: (3.2)We observe that the solution of the previous equation is not a�eted byleft-multipliation by A�1 or B�1 of both sides of the equation,(Ir � qA�1B)yn = A�1�n; (B�1A� qIr)yn = B�1�n: (3.3)The basi idea for the blended implementation of the method (3.2) relieson the fat that, by ombining equations in the form (3.3), the disretesolution does not hange. In more detail, let A1 be a nonsingular matrixwith a \simple" struture. By multiplying on the left both sides of the �rstequation in (3.3), we then obtain(A1 � qB1)yn = �1n; (3.4)where B1 = A1A�1B; �1n = A1A�1�n: (3.5)Similarly, by onsidering another nonsingular and \simple strutured" ma-trix B2, by multiplying on the left the seond equation in (3.3) we obtain(A2 � qB2)y = �2n; (3.6)where A2 = B2B�1A; �2n = B2B�1�n: (3.7)Obviously, both equations (3.4) and (3.6) do have the same solution asequation (3.2), sine they are derived from the same method. In additionto this, let us de�ne a suitable weighting funtion �(q) suh that�(0) = I; �(q)! O; as q !1; (3.8)being, hereafter, I and O the r�r identity and the zero matrix respetively.Then, also the following equation,



3.1. BLENDED IMPLEMENTATION OF BLOCK METHODS 33M(q)yn � �n(q) � (A(q)� qB(q))yn � �n(q) = 0; (3.9)where A(q) � �(q)A1 + (I � �(q))A2;B(q) � �(q)B1 + (I � �(q))B2;�n(q) � �(q)�1n + (I � �(q))�2n; (3.10)does have the same solution as (3.2). Equation (3.9) de�nes a blended im-pliit method assoiated with the blok method (3.2), due to the fat thatthe disrete problem is obtained as the \blending" of two equivalent formsof the same blok method. We observe that, sine the numerial solutionhas not been a�eted, the blended impliit method (3.9) does have the sameauray and stability properties of the method in (3.2) .The key point onerning a blended impliit method is that its struturenaturally indues the hoie of a nonlinear splitting for iteratively solving(3.9). As matter of fat, from (3.8), one easily veri�es that the matrix M(q)in (3.9) is suh that:� M(q) = A1 +O(q) � A1; when q � 0;� M(q) = �q �B2 +O(q�1)� � �qB2; as q !1.Consequently, instead of solving (3.9), one may think to solve iterativelyN(q)y(i+1)n = (N(q)�M(q))y(i)n + �n(q); i = 0; 1; : : : ; (3.11)where N(q) � A1 � qB2: (3.12)This is beauseN(0) =M(0); and N(q) �M(q); when jqj � 1: (3.13)We shall all (3.11) the blended iteration assoiated with the blended method(3.9). The orresponding iteration matrix is then given by



34 CHAPTER 3. BLENDED IMPLICIT METHODSZ(q) � N(q)�1 (N(q)�M(q)) = I �N(q)�1M(q); (3.14)and the iteration will onverge if and only if the spetral radius �(q) of Z(q)is smaller than 1. We observe that, from (3.13), one immediately obtains,Z(0) = O; Z(q)! O; as q !1: (3.15)Consequently, see (2.19),�(0) = 0; �(1) � limq!1�(q) = 0: (3.16)Moreover, see (2.20), the seond property in (3.15) implies that�(1)� = 0; for all � � 1;so that the iteration (3.9) is partiularly well-suited for sti� problems.It must be stressed that the properties (3.16) of the blended iterationdo not depend on the partiular hoie of the matries A1 and B2 used in(3.4) and (3.6). They are only due to the blended implementation of themethod, namely to the partiular struture of the matries M(q) and N(q)in (3.9) and (3.12). As a onsequene, additional onvergene properties ofthe iteration may be improved by means of an appropriate hoie of the twomatries A1 and B2. As an example, a possible riterion to be adopted fortheir de�nition is the minimization of the maximum ampli�ation fator ��of the iteration in order to possibly obtain an A-onvergent (and, then, L-onvergent) iteration. Conerning this point, in the sequel, we shall alwaysassume the weighting funtion �(q) to be analytial in C� and the spetrumof the matrix penil (3.12) to be ontained in C+, so that the maximumampli�ation fator of the blended iteration is given by�� = maxx�0 �(ix); (3.17)where, as usual, i denotes the imaginary unit. Moreover, we will assumethe iteration matrix to be well-de�ned in a neighbourhood of the origin.Consequently, from the �rst equation in (3.16), it follows that�(q) � ~� jqj; when q � 0; (3.18)where ~� is the nonsti� ampli�ation fator de�ned in (2.18).



3.2. CHOICE OF THE COMPONENT METHODS 35Conerning the two \simple strutured" matries A1 and B2, we haveonsidered the following hoie, though di�erent ones are possible,A1 = I + LA; B2 = I + LB ; (3.19)where LA and LB are stritly lower triangular matries, and  is a positiveparameter. With suh assumptions, we have that the linear systems requiredby the iteration (3.11) are lower triangular (blok lower triangular whenthe method is applied to a system of equations). Moreover, in the ase ofsystems, one only needs to fator one matrix having the same size of theontinuous problem.Finally, in order to keep low the omputational ost, the weight funtion�(q) is de�ned as �(q) � diag(N(q))�1 = (I � qI)�1; (3.20)so that the properties (3.8) are satis�ed, the iteration (3.11) is well-de�nedfor all q 2 C�, and, in the ase of systems, no additional fatorizations arerequired, besides the one needed for N(q).With suh assumptions, the only key-point whih we need to larify arethe following ones:1. the hoie of an appropriate basi method (3.2),2. the hoie of orresponding \simple strutured" matries A1 and B2in (3.19) (the remaining matries B1 and A2 being de�ned by (3.5)and (3.7), respetively).The �rst point will be disussed in the next setion, whereas the seondone will be addressed in Setion 3.3.3.2 Choie of the omponent methodsLet now introdue the methods that we shall implement in blended form, a-ording to what has been said in the previous setion. Even though di�erenthoies are possible, we have onsidered methods whih have been alreadyintrodued in the past years by Watts and Shampine [104℄. Suh methodsare haraterized by the fat that eah one of the r equations whih de�nethe method itself orresponds to a linear multistep formula with the sameorder of auray. The numerial solution is therefore advaned by a blokof r equally aurate new values at a time approximating the solution on aset of r uniformly distributed mesh-points. In more details, if we assume, for



36 CHAPTER 3. BLENDED IMPLICIT METHODSsimpliity, the following uniform partition for the entire integration interval[t0; T ℄: tk = t0 + k � h; k = 0; : : : ; N � lr; h = T � t0N ; (3.21)then for eah n multiple of r the blok method provides the following rapproximations to y(t),yn+i � y(tn+i); i = 1; : : : ; r;starting from the approximation yn to y(tn). Consequently, for theoretialpurposes, the blok proedure may be onsider to be a one-step method.As a onsequene, suh shemes posses features of both RK methods andLMF. In partiular, with RK methods, they share good stability propertiesfor high order methods and a stepsize variation strategy typial of one-stepshemes (whih is simpler than those for LMF). With LMF, instead, theyshare the same simple representation of the loal trunation error, whihallows to de�ne eÆient strategies for a variable-order implementation ofthe methods.We now disuss how blok methods with \good" lassial requirementsan be obtained. Even though the methods ould be also derived in theframework of Runge-Kutta methods (by means of the \V -transform" [22,23, 59℄) we prefer to use the same framework originally used in [104℄ (seealso [21℄). Let, therefore, de�ne the following r � (r + 1) matries,Â = [a jA℄ � 0B� �(1)0 �(1)1 : : : �(1)r... ... ...�(r)0 �(r)1 : : : �(r)r 1CA ; (3.22)B̂ = [b jB℄ � 0B� �(1)0 �(1)1 : : : �(1)r... ... ...�(r)0 �(r)1 : : : �(r)r 1CA ;where the oeÆients on the ith row of the two matries de�ne a suitabler-step LMF. In the following, both the two matries A and B will be alwaysassumed to be nonsingular. Then, for eah n = 0; r; 2r; : : : ; the new blokof values is obtained as the solution of the following disrete problem:F (yn) � A
 Imyn � hB 
 Imfn + (a
 yn � hb
 fn) = 0; (3.23)



3.2. CHOICE OF THE COMPONENT METHODS 37where yn = 0B� yn+1...yn+r 1CA ; fn = 0B� fn+1...fn+r 1CA ; fj = f(tj; yj):Here the vetor �n in (2.2) is then given by�n = �(a
 yn � hb
 fn): (3.24)The following is a �rst important result onerning the auray of suhmethods, [21℄.Theorem 3.1 Let the matries (3.22) satisfy the following set of equations,Âq̂i = iB̂q̂i�1; i = 0; : : : ; p; (3.25)where q̂�1 � 0; q̂i = 0BBB� 0i1i...ri 1CCCA � � 0iqi � ; i = 0; 1; : : : : (3.26)Then the LMF de�ning the blok method (3.22) have a trunation errorwhih is at least O(hp+1).Proof The equations (3.25) are nothing but the usual order p onditions forLMF, see (1.11), simultaneously imposed for all the r LMF orrespondingto (3.22).By onsidering in (3.25) the equations orresponding to i = 0; 1, theabove result implies that when all methods in (3.22) are onsistent (p � 1)the �rst two olumns of the augmented matries Â and B̂ are related to theorresponding square matries A and B by means of the following relationsa = �A1; b = Aq1 �B1; (3.27)where 1 � q0 denotes the vetor with all unit entries (see (3.26)). Asa onsequene, attention an be driven to the square matries A and Balone provided that, as we obviously assume, onsistent LMF are used. Inpartiular, it is an easy matter to verify the following result.



38 CHAPTER 3. BLENDED IMPLICIT METHODSCorollary 3.1 Let the matries de�ned in (3.22) satisfy (3.27) and the fol-lowing set of equationsAqi = iBqi�1; i = 2; : : : ; p: (3.28)Then the LMF de�ning the blok method (3.22) have a trunation errorwhih is at least O(hp+1).Let now de�ne, for eah j = 1; 2; : : : ; the following matries,Dj = diag ( 1; 2; : : : ; j ) ; Qj = (q1 : : : qj ) : (3.29)Then, the set of equations in (3.28) may be olleted into the following one:ADrQp�1 = BQp�1 (Ip�1 +Dp�1) : (3.30)Obviously, in the above equation it must be p � r + 1. In addition, whenp = r + 1, the following result holds true (see also [14℄).Theorem 3.2 If p = r + 1 then the matrix A�1B is uniquely determined.Proof In fat, when p = r + 1, the matrix Qr in (3.30) is, essentially, anonsingular Vandermonde matrix. Consequently, one obtains thatA�1B = DrQr (Ir +Dr)�1Q�1r : (3.31)whose right-hand side only depends on r.As already observed, the nonsingularity of the matries A and B impliesthat methods sharing the same matrixC = A�1B; (3.32)provides the same numerial solution and, as a onsequene, have the sameauray and stability properties. In this sense, in [14℄ suh methods havebeen alled equivalent methods. Then, from Theorem 3.2, it follows that allblok methods de�ned by a set of LMF with the highest order p = r+1 areequivalent.Let us now look at the stability properties of suh equivalent methods.As already observed in the introdution of the setion, blok methods areonsidered as one-step methods for theoretial purposes. Consequently, asfor RK methods, the stability properties are studied by onsidering thestability funtion of the method. In partiular, see (3.23), sine the disreteproblem orresponding to the test equation (3.1) is given by



3.2. CHOICE OF THE COMPONENT METHODS 39(A� qB)yn = (qb� a)yn; (3.33)and the starting point for the subsequent appliation of the method is thelast entry in yn, the stability funtion of the method is given byg(q) � eTr (A� qB)�1 (qb� a) = det(W (q))det(Ir � qC) ; (3.34)where er is the last unit vetor in IRr while W (q) is obtained from thematrix Ir � qC, whose last olumn has been substituted by 1+ q(q1 �C1).The seond equality in (3.34) follows from the nonsingularity of A and B,the onsisteny onditions in (3.27), and the Cramer's rule. The method istherefore A-stable provided thatRe(q) < 0 ) jg(q)j < 1:A neessary requirement for the above property to hold is the funtion g(q)to be well-de�ned in the left-half omplex plane. This leads to the followingde�nition.De�nition 3.1 A blok method is said to be pre-stable if the spetrum ofthe orresponding matrix penil is ontained in C+.This fat implies that the result of Theorem 3.2 is useful only to de�nepre-stable methods up to r = 8; as matter of fat, by diret inspetion oneveri�es that the matrix on the right-hand side of (3.31) has eigenvalues withnegative real part when r � 9. Consequently, the orresponding methodsannot be pre-stable: in fat, the spetrum of the penil (A� qB) oinideswith that of C�1 (see (3.32)), sine both the two matries A and B areassumed to be nonsingular.In order to obtain alternative riteria for hoosing C, we shall relax theorder onditions for the LMF on eah row of the blok method. In partiular,it will be onvenient to impose only the order r onditions: i.e. (see (3.30)and (3.32)) DrQr�1 = CQr�1 (Ir�1 +Dr�1) : (3.35)It remains one more ondition to be imposed and it will be used to �xthe spetrum of the matrix C. Conerning this point, the following resultapplies.



40 CHAPTER 3. BLENDED IMPLICIT METHODSTheorem 3.3 The matrix C de�ned asC = QrG�1FGQ�1r ; (3.36)where Qr is de�ned aording to (3.29), andG = 0B� 1! . . . r! 1CA ; F = 0BBB� �d01 �d1. . . ...1 �dr�1 1CCCA ; (3.37)is the unique matrix suh that:(i) the harateristi polynomial is given byd(z) = rXi=0 dizi; dr = 1; (3.38)(ii) eah row of the onsistent blok method with matriesA = Ir; B = C; (3.39)orresponds to a LMF with an O(hr+1) trunation error.Proof We will prove that if the matrix C satis�es the properties (i) and(ii), then it must be neessarily equal to the matrix on the right-hand sideof equation (3.36). As matter of fat, beause of the seond requirement, wehave already seen that C must satisfy equation (3.35), whih is equivalentto (see (3.26) and (3.29)),Qr � 0T(Ir�1 +Dr�1)�1 � = CQr� Ir�10T � : (3.40)Let now denote with d̂ the unique vetor suh thatQrd̂ = Cqr: (3.41)Then, we an ollet the two previous equations into the following one:Qr � � 0T�Ir�1 +Dr�1)�1� � d̂ � = CQr: (3.42)Moreover, see (3.37), we observe that



3.2. CHOICE OF THE COMPONENT METHODS 41� � 0T(Ir�1 +Dr�1)�1 � d̂ � = G�1F̂G; (3.43)where F̂ = � � 0TIr�1 � �d � ; d � � 1r!Gd̂: (3.44)The matrix C is therefore similar to the Frobenius-type matrix F̂ . It followsthat the harateristi polynomial of C is given by the polynomial in (3.38)provided that, see (3.37), d � ( d0 : : : dr�1 )T ;or, equivalently, F̂ = F so that C must be equal to the matrix on the right-hand side in (3.36). By using similar arguments, it is easily proved that thelatter matrix always satis�es the properties in (i) and (ii) so that the proofis omplete.From the previous theorem it follows that one the desired harateristipolynomial d(z) (or, equivalently, the desired spetrum) for the matrix Chas been hosen, one an simply use the formula in (3.36) to derive the blokmethod with the presribed properties. Let us now disuss how to properlyhoose the polynomial d(z) in order to obtain a method with \good" stabil-ity properties.We surely will hoose it in order to have all the roots ontained in C+,so that the method is pre-stable. This is not enough, however, to de�ne a\good" method. In fat, from (3.33) and (3.34) for n = 0, one obtainsyr(q) = det(W (q))det(Ir � qC)y0 � erqy0;so that (see (3.34) and (3.38))erq � g(q) = det(W (q))det(Ir � qC) = '(q)qrd(q�1) � '(q)�(q) ; (3.45)where '(q) = det(�W (q)) is a polynomial of maximum degree r and�(q) = rXi=0 diqr�i; dr = 1;is a polynomial of exat degree r sine we assume (Ir�qC) to be nonsingularin the left-half omplex plane.



42 CHAPTER 3. BLENDED IMPLICIT METHODSRemark 3.1 Observe that, beause of (3.35), the approximation in (3.45)must be at least O(qr+1) aurate.The harateristi polynomial d(q) of the matrix C oinides, therefore,with the reiproal and saled polynomial at the denominator of a rationalapproximation to the exponential. One of the most lassial ones is the Pad�e(�; r); ez � '�;r(z)��;r(z) ;where '�;r(z) and ��;r(z) are the unique polynomials of degree � and r,respetively, suh that'�;r(z) = ��;r(z)ez +O(z�+r+1): (3.46)The expression of the two polynomials is well-known and is given by'�;r(z) = �Xi=0 (� + r � i)! �!(� + r)! i! (� � i)! zi; (3.47)��;r(z) = rXi=0(�1)i (� + r � i)! r!(� + r)! i! (r � i)! zi:Moreover, the following properties hold true for suh polynomials (see [92℄and the referenes therein).Theorem 3.4 For all �; r � 0:1. ��;r(z) � 'r;�(�z);2. if r � 1, all the zeros of the polynomial ��;r lie in the annulus(r + �)� < jzj < r + � + 4=3;where � � 0:278465 is the unique positive root of xex+1 = 1.By onsidering (3.45) and (3.46), the following hoie for the harater-isti polynomial d(q) of the matrix C seems, therefore, appropriateqrd(q�1) = ��;r(rq): (3.48)As matter of fat, we observe, �rst of all, that from Remark 3.1 and(3.46) it follows that, if d(q) is de�ned as in (3.48), the polynomial '(q) in(3.45) is neessarily given by



3.2. CHOICE OF THE COMPONENT METHODS 43'(q) = '�;r(rq):As a onsequene, the stability funtion g(q) of the method obtained throughthe hoie (3.48) oinides with the (�; r) Pad�e approximation to the expo-nential evaluated at rq. From the Ehle onjeture [50℄, subsequently provedin [57℄ by Hairer, Wanner and N�rsett, it is known that methods with suhstability funtion are A-stable, for eah r � 3, i� � 2 fr�2; r�1; rg. More-over, suh methods are also L-stable only if � < r. In the present ase, welook for L-stable methods and, onsequently, we need to hoose appropriatevalues for the ouples (�; r), � 2 fr� 2; r� 1g. In order to make the properhoie, we observe that, for the test equation, we haveyr = '�;r(rq)��;r(rq) y0 � erqy0:We know that suh an approximation is exat at q = 0 and as q ! 1(due to the L-stability of the methods). In addition to this, we also require,for � < 0 (see (3.1)), the disrete solution to have the same sign as theontinuous one (whih is the sign of y0), whatever the stepsize h used. Thisrestrit the range of hoies for the ouple (�; r) to the following ones:� (r � 2; r) when r is even,� (r � 1; r) when r is odd,sine it is known that only for suh values, when � 2 fr�2; r�1g, the Pad�eapproximation is analyti in C� with no real and negative zeros.Let now disuss the order of auray of the orresponding blok meth-ods. For this purpose, let us denote byŷ � 0B� y(t1)...y(tr) 1CA ; f̂ � 0B� f(t1; y(t1))...f(tr; y(tr)) 1CA ;where y(t) is the solution of the IVP (2.1). From (3.23) one then obtainsA
 Imŷ� hB 
 Im f̂ + a
 y0 � hb
 f0 = � ; (3.49)where � is the vetor with the trunation errors of the method. By assumingthat y(t) is suÆiently smooth, the entries of the latter vetor are given by



44 CHAPTER 3. BLENDED IMPLICIT METHODS
�i = Xj>r y(j)(t0)j! hj  rXk=0 kj�1(k�(i)k � j�(i)k )!� Xj>r y(j)(t0)hjvji; i = 1; : : : ; r; (3.50)beause of the order r onditions (3.35). Consequently, by subtrating (3.23)from (3.49), we obtainA
 Im(ŷ � y)� hB 
 Im(f̂ � f) = � :By introduing the vetor e = ŷ � y of the loal error, one then onludesthat the latter satis�es the equation�A
 Im � hB 
 Im Ĵ� e = � ; (3.51)where Ĵ = 0B� Ĵ1 . . . Ĵr 1CA ; (3.52)Ĵi = Z 10 J(ti; sy(ti) + (1� s)yi)ds � J0 +O(h);J(t; y) = ��yf(t; y) and J0 = J(t0; y0). Like any one-step method, the orderof auray is de�ned as follows.De�nition 3.2 The blok method orresponding to (3.51) has order p pro-vided that er = O(hp+1); where er is the last blok entry of the vetor e.Obviously, from (3.50) and (3.51), we have that the order of the methodis p � r. In general, the relations between the order onditions (3.50) andthe global order of the method may be very entangled, as the Buther theoryfor Runge-Kutta methods shows. Nevertheless, in ase we look for values ofp only slightly greater than r, the following result may be useful.Theorem 3.5 Consider the following possible ases for the method orre-sponding to (3.50)-(3.51)(0) eTr A�1vr+1 6= 0;



3.2. CHOICE OF THE COMPONENT METHODS 45(1) eTr A�1vr+1 = 0 and (eTr A�1vr+2 6= 0 or eTr CA�1vr+1 6= 0);(2) eTr A�1vr+1 = eTr A�1vr+2 = eTr CA�1vr+1 = 0;where, see (3.50), vj = 0B� vj1...vjr 1CA ; j > r: (3.53)Then the global order of the method is exatly p = r + i in ases i = 0; 1;and p � r + 2 in ase 2.Proof In fat, from (3.32), and (3.50)-(3.52) one obtainse = �Ir 
 Im � hC 
 Im Ĵ��1 �A�1 
 Im� �= hr+1(A�1vr+1)
 Im y(r+1)(t0) +hr+2 �(A�1vr+2)
 Im y(r+2)(t0)+C 
 Im Ĵ (A�1vr+1)
 Im y(r+1)(t0)�+O(hr+3)= hr+1(A�1vr+1)
 Im y(r+1)(t0) +hr+2 �(A�1vr+2)
 Im y(r+2)(t0) + (CA�1vr+1)
 J0 y(r+1)(t0)�+O(hr+3); (3.54)from whih, in view of De�nition 3.2, the thesis easily follows.By diret inspetion, one veri�es that the methods obtained with thehoie in (3.48) satisfy the hypothesis (1), in the previous Theorem, whenr is odd, and the hypothesis (2), when r is even. In addition, in the latterase, some omputations allows to prove that the last blok entry in the loalerror is exatly O(hr+3) aurate. The order of auray of the methods hereonsidered is, therefore, given byp = r + 1; when r is odd; r � 3; � = r � 2; r � 1; r: (3.55)p = r + 2; when r is even;All the previous onsiderations, lead us to hoose as basi methods forthe blended implementation the ones listed in Table 3.1. We remark thatthe bloksize r of eah method has been always hosen equal to the order



46 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.1: Basi blok methodsPad�e (2,3) (2,4) (4,6) (6,8) (8,10) (10,12)r 3 4 6 8 10 12Order 4 6 8 10 12 14of the previous method in that list. This features, in fat, will be used toderive an eÆient variable-order implementation of the methods themselves(see the next hapter). In Figure 3.1 the boundaries of the absolute stabilityregions of suh methods have been plotted.3.3 Choie of the splitting matriesIn this setion we shall study in more detail partiular hoies of appropriatematries A1 and B2, as de�ned in (3.19). As explained in Setion 3.1, thisuniquely de�nes the whole blended implementation of the underlying blokmethod. The remaining matries B1 and A2 are, in fat, de�ned aording to(3.5) and (3.7), respetively, and the weight funtion � is de�ned aordingto (3.12) and (3.20).To begin with, we derive from (3.9), (3.12) and (3.14) the following expres-sion for the ampli�ation matrix of the blended iteration:Z(q) = N(q)�1 (N(q)�M(q))= N(q)�1� (I � �(q)) (A1 �A2) + q �(q)(B1 �B2)�: (3.56)Let now onsider the simpler ase where (see (3.19)),LA = LB = O; (3.57)sine in suh a ase a omplete spetral analysis an be arried out. In fat,in suh a ase, one obtains thatA1 = I ) B1 = C; B2 = I ) A2 = C�1: (3.58)This, in turn, allows us to easily derive the following result.Theorem 3.6 Assume that for the blended method (3.9) the previous equal-ities (3.57) hold true. Then, the eigenvalues of the ampli�ation matrix(3.56)-(3.58) are given by
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Figure 3.1: Boundaries of the Absolute stability regions of the blok methodsin Table 3.1



48 CHAPTER 3. BLENDED IMPLICIT METHODSq(�� )2�(1� q)2 ; � 2 �(C): (3.59)Proof Sine the equalities (3.57) are satis�ed, then also (3.58) do. Conse-quently, by taking into aount (3.12) and (3.20), from (3.56) one obtainsZ(q) = (1� q)�1�q(1� q)�1(C�1 � I) + q(1� q)�1(C � I)�= q(1� q)�2 �C � 2I + 2C�1�= q(1� q)�2C�1 (C � I)2 :from whih the thesis follows.When (3.57) holds true, the above result allows the following easy har-aterization of the spetral radius �(q) of the ampli�ation matrix Z(q):�(q) = max�2�(C) ���� q(�� )2�(1 � q)2 ���� = ���� q(1� q)2 ���� max�2�(C) ����(�� )2� ���� : (3.60)Consequently, a simple expression an be obtained for the two parameters�� and ~� de�ned in (3.17) and (3.18), respetively. In fat, by expanding(3.60) at q = 0, one readily obtains that~� = max�2�(C) j�� j2j�j : (3.61)Similarly, for q = ix, one has that �(q) in (3.60) is given byx(1 + x22) ~� ; x � 0;whih is stritly monotone inreasing in [0; �1), and dereasing in (�1;1).As a onsequene, one obtains that, at x = �1,�� = ~�2 : (3.62)In (3.61) and (3.62) the subsript  has been used to state that thevalue of suh parameters atually depends on the diagonal entry  in B2.The above relations allow the derivation of simple riteria for hoosing theparameter : indeed one may think to hoose it in order to minimize either(3.61), or (3.62), or a ombination of the two. Conerning the minimizationof (3.61) and (3.62), a orresponding result an be derived. In order to stateit, let use set



3.3. CHOICE OF THE SPLITTING MATRICES 49�(C) = f�j = 'j ei�j ; j = 1; : : : ; rg; (3.63)and sort the eigenvalues by dereasing arguments as follows (we reall that�(C) � C+), �2 > �1 � � � � � �r > ��2 : (3.64)Sine the matrix is real, we shall only onsider the �rst ` = dr=2e eigenvalues,in the sequel. Let now assume that the moduli of suh eigenvalues are stritlyinreasing, that is, 0 < '1 < � � � < '`: (3.65)Consequently, the following preliminary result holds true.Lemma 3.1 Assume that (3.57) hold true and the eigenvalues of the matrixC satisfy (3.64)-(3.65). Then, for all values of  greater than or equal tô � maxj2f2;:::;`g	j +q	2j + '1'j ; 	j = '1'j(os �1 � os �j)'j � '1 ; (3.66)one has that j�1 � j2j�1j = maxj2f1;:::;`g j�j � j2j�j j : (3.67)Proof Indeed, in order for (3.67) to be satis�ed, for all j > 1 one must havej�j � j2j�j j � j�1 � j2j�1j :By multiplying both sides by j�1�jj, and taking into aount (3.65), onethen obtains the following seond order inequality,2 � 2	j � '1'j � 0;whih, onsidering that, beause of (3.64), 	j � 0 and that the disriminantof the equation is positive, is satis�ed for all � 	j +q	2j + '1'j :The previous lemma allows us to state the desired results.Theorem 3.7 Assume the hypotheses of Lemma 3.1 to be satis�ed and,moreover, let ̂ be de�ned aording to (3.66). Then:



50 CHAPTER 3. BLENDED IMPLICIT METHODS1. the minimum value of �� is obtained at  = '1, and it is given bymin>0 �� = 1� os �1; (3.68)provided that '1 � ̂; (3.69)2. The minimum value of ~� is obtained at  = '1 os �1, and it is givenby min>0 ~� = '1 sin2 �1; (3.70)provided that '1 os �1 � ̂: (3.71)Proof Let us onsider the �rst point. By taking into aount (3.61) and(3.62), we have to solve the problemmin>0 maxj2f1;:::;`g j'j ei �j � j22'j :If suh a minimum would be obtained at a value of  � ̂ (see (3.66)) then,from Lemma 3.1, the previous problem would redue to the following simplerone,min>0 '21 + 2 � 2'1 os �12'1 = min>0 12 �'1 + '1 � 2 os �1� � min>0 g�():Consequently, by onsidering that the only stationary point of g� is givenby dg�d ('1) = 0 and, moreover, d2g�(d)2 ('1) > 0; from (3.69), one then obtainsthat at  = '1, ��'1 = g�('1) = 1� os �1:Similarly, for the seond point we obtain thatmin>0 maxj2f1;:::;`g j'j ei �j � j2'j = min>0 '21 + 2 � 2'1 os �1'1= min>0 �'1 + 2'1 � 2 os �1� � min>0 ~g();



3.3. CHOICE OF THE SPLITTING MATRICES 51provided that the minimum is obtained at a value of  � ̂. Indeed, byonsidering that the only stationary point of ~g is given by d~gd ('1 os �1) = 0and, moreover, d2~g(d)2 ('1 os �1) > 0, from (3.71), one then obtains that, at = '1 os �1, ~�'1 os �1 = ~g('1 os �1) = '1 sin2 �1:Remark 3.2 We observe that the above relation (3.66) and (3.69) an bealso written as'j'1 + '1'j < 2(1 + os �j � os �1); j = 2; : : : ; `: (3.72)By taking into aount (3.64)-(3.65), the previous inequalities are satis�edwhen all the eigenvalues of the matrix C are ontained in the small annuluswith internal and external radii given, respetively, by:%1 = '1; %2 = '1(1 + 2(os �2 � os �1)): (3.73)A similar onlusion an be obtained from (3.66) and (3.71),'j'1 + '1'j os2 �1 < 1 + os2 �1 + 2 os �1(os �j � os �1); (3.74)j = 2; : : : ; `;whih, however, is more restritive than (3.72).It turns out that both results in Theorem 3.7 apply to the methods listedin Table 3.1 (see Table 3.2). Moreover, aording to what was stated in Re-mark 3.2, the eigenvalues of the matrix C are ontained in the suitably smallannulus with internal and external radii de�ned in (3.73) (see Figure 3.2).Let now onsider in more details the onvergene properties of the blendediteration when q ! 1. We have already remarked that the sti� ampli�a-tion fator �(1) for the blended iteration (3.11) is \automatially" zero-valued beause of the seond property in (3.15). In addition to this, theprevious analysis allows to measure the rate at whih �(q) deays to 0 asq !1. As matter of fat, when jqj � 1 and  > ̂, from (3.60)-(3.61) and(3.67) one easily obtains�(q) � ~�2jqj � ~�(1)jqj ; where ~�(1) � ~�2 = 2�� : (3.75)As a onsequene, the previously de�ned parameter ~�(1) is a further ampli-�ation fator desribing the onvergene properties of the blended iteration



52 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.2: Values of the parameters ̂, '1 and '1 os �1 orresponding to themethods in Table 3.1Order r Pad�e ̂ '1 '1 os �14 3 (2,3) .1233 .7387 .48776 4 (2,4) .1517 .8482 .39948 6 (4,6) .1415 .7285 .269610 8 (6,8) .1376 .6745 .210112 10 (8,10) .1356 .6433 .175214 12 (10,12) .1345 .6227 .1519
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Figure 3.2: Spetrum of the matrix C for the blok methods in Table 3.1and orresponding annuli aording to (3.73).



3.3. CHOICE OF THE SPLITTING MATRICES 53(evidently, the smaller ~�(1), the better the L-onvergene property of theiteration). In Table 3.3 we list the obtained values for the ampli�ationparameters ~�, �� and ~�(1) of the iteration orresponding to the two val-ues of  onsidered in Theorem 3.7. As one an see, when  is de�ned inorder to minimize the nonsti� ampli�ation fator, the resulting iterationturns out to be not A-onvergent for methods with bloksize greater than 4.Moreover, from (3.61), (3.62) and (3.75) one an easily derive that the valueof  whih minimize the maximum ampli�ation fator is the same valuewhih minimize the geometri mean of ~� and ~�(1). It represents, therefore,a \good ompromise" with the requirement of a fast onvergent iterationboth when q � 0 and jqj � 1. Finally, for ompleteness, in Table 3.4, theaveraged ampli�ation fators (with respet to the in�nity matrix norm, see(2.20)) have been also listed.When the blended implementation does not satisfy (3.58), then the aboveanalysis annot be applied, sine the involved matries no more ommute.In suh a ase, one must resort to omputational tehniques in order tominimize either one of the two parameters (3.17) and (3.18). We observethat, from (3.20) and (3.56), one obtainsZ(q) = (A1 � qB2)�1�q(1� q)�1(A2 �A1) + q(1� q)�1(B1 �B2)�= q(1� q)�1(A1 � qB2)�1�B1 �B2 + (A2 �A1)�;so that:� when q � 0,Z(q) � qA�11 �B1 �B2 + (A2 �A1)� � qR; (3.76)� when jqj � 1,Z(q) � 1qB�12 �B1 �B2 + (A2 �A1)� � 1qR(1): (3.77)It follows that the ampli�ation fators ~� and ~�(1) are given, respetively,by the spetral radius of the above matries R and R(1). Conerning al-ternative hoies for the matries A1 and B2, we have onsidered the asewhere A1 = 0BBB� 1�1 1. . . . . .�1 1 1CCCA ; B2 = I: (3.78)



54 CHAPTER 3. BLENDED IMPLICIT METHODS
Table 3.3: Asymptoti ampli�ation fators for the methods satisfying (3.58)with the hoies  = '1 and  = '1 os �1 respetively.Order r Pad�e  �� ~� ~�(1)4 3 (2,3) .7387 .3398 .5021 .92016 4 (2,4) .8482 .5291 .8975 1.24768 6 (4,6) .7285 .6299 .9177 1.729510 8 (6,8) .6745 .6885 .9288 2.041312 10 (8,10) .6433 .7276 .9361 2.262114 12 (10,12) .6227 .7560 .9415 2.42824 3 (2,3) .4877 .4273 .4168 1.75246 4 (2,4) .3994 .8262 .6601 4.13728 6 (4,6) .2696 1.1660 .6287 8.650410 8 (6,8) .2101 1.4492 .6091 13.791812 10 (8,10) .1752 1.6993 .5956 19.394214 12 (10,12) .1519 1.9272 .5856 25.3685Table 3.4: Averaged ampli�ation fators for the blended iteration withdiagonal splitting ( = '1).Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) 1.7311 .5820 .4693 .40666 4 (2,4) 2.7844 1.0301 .7895 .66088 6 (4,6) 7.2986 1.3512 .9614 .794910 8 (6,8) 18.9785 2.2408 1.4146 1.012312 10 (8,10) 54.1473 4.8439 1.8673 1.306114 12 (10,12) 167.4919 8.9677 2.5791 1.4882Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 2.5575 .8598 .6933 .60076 4 (2,4) 4.7233 1.7473 1.3392 1.12098 6 (4,6) 10.6335 1.9686 1.4007 1.158210 8 (6,8) 25.6036 3.0230 1.9085 1.365712 10 (8,10) 69.6657 6.2321 2.4024 1.680514 12 (10,12) 208.5873 11.1680 3.2119 1.8533



3.3. CHOICE OF THE SPLITTING MATRICES 55Table 3.5: Asymptoti and averaged ampli�ation fators for the methodssatisfying (3.78) with minimized maximum ampli�ation fator ��.Order r Pad�e  �� ~� ~�(1)4 3 (2,3) .6884 .2686 .3366 .62486 4 (2,4) .8351 .4045 .4513 .62208 6 (4,6) .7677 .5235 .4747 .859810 8 (6,8) .6151 .5468 .6032 2.051612 10 (8,10) .6046 .6482 .6884 3.668414 12 (10,12) .5819 .7417 .7462 5.7378Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) .9685 .4047 .3462 .30866 4 (2,4) 2.2948 .6252 .5285 .46988 6 (4,6) 7.3490 .8836 .7174 .623710 8 (6,8) 16.2617 1.5806 1.1758 .867212 10 (8,10) 52.4037 1.9002 1.4913 1.151314 12 (10,12) 167.8829 3.8893 1.9866 1.3105Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 1.4230 .4912 .4089 .37996 4 (2,4) 3.0605 .6621 .5761 .51858 6 (4,6) 9.5122 .9024 .6768 .627010 8 (6,8) 18.2097 1.1149 .8629 .725112 10 (8,10) 63.9458 1.9968 1.3118 .986214 12 (10,12) 205.1073 4.1068 1.7443 1.1984In Table 3.5 and in Table 3.6 we list the obtained results when hoosing  inorder to minimize �� and p~�kRk2, respetively. The in�nity matrix normhas been used for the omputation of the averaged ampli�ation fators.The seond riteria, for hoosing , has been adopted in order to \improve"the onvergene properties of the iteration when q � 0 and, at the sametime, to obtain inreasing values for ~� when the order of the method in-rease. This property, in fat, turns out to be useful for an eÆient variableorder implementation of the methods. As told before, in suh a ase theparameters have been numerially omputed. We observe that the hoieof minimizing p~�kRk2 makes the method orresponding to r = 12 not A-onvergent (though A(�)-onvergent with � � �=2).Hereafter, we shall refer to the following three blended shemes:1. A1 and B2 as in (3.58) and  hosen in order to minimize ��;2. A1 and B2 as in (3.78) and  hosen in order to minimize ��;



56 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.6: Asymptoti and averaged ampli�ation fators for the methodssatisfying (3.78) with minimizedp~�kRk2.Order r Pad�e  �� ~� ~�(1)4 3 (2,3) .5802 .3020 .2692 .86386 4 (2,4) .5960 .5441 .3833 1.20188 6 (4,6) .5165 .6719 .4310 1.822110 8 (6,8) .4472 .7860 .4389 2.140212 10 (8,10) .4088 .9112 .4408 2.682114 12 (10,12) .3866 1.0010 .4583 4.1523Order r Pad�e ��1 ��3 ��5 ��94 3 (2,3) .9034 .4194 .3683 .33706 4 (2,4) 1.4129 .8798 .7153 .63368 6 (4,6) 4.1309 1.1826 .9404 .809610 8 (6,8) 8.8690 2.3211 1.5682 1.128912 10 (8,10) 24.7268 3.5040 2.3807 1.479414 12 (10,12) 77.7625 5.4215 3.5041 1.8642Order r Pad�e ~�1 ~�3 ~�5 ~�94 3 (2,3) 1.0846 .4445 .3679 .31776 4 (2,4) 1.2992 .6259 .5871 .48318 6 (4,6) 2.8751 .9453 .6415 .542810 8 (6,8) 5.8632 2.2464 .9509 .631912 10 (8,10) 14.7973 3.9311 1.9095 .784214 12 (10,12) 42.8203 6.6707 3.3158 1.01833. A1 and B2 as in (3.78) and  hosen in order to minimize p~�kRk2,as the type 1, 2 and 3 shemes, respetively. A omparative analysis ofTable 3.3 and Table 3.4 with Table 3.5 and Table 3.6 puts into evidenethe type 2 shemes as the ones with the best features from the point ofview of the ampli�ation fators, with the only exeption of the fators~�(1) orresponding to the last two higher order methods. On the otherhand, the type 1 shemes allows to arry out a omplete spetral analysis ofthe ampli�ation matrix. Moreover, the diagonal splittings haraterizingsuh shemes make them very appealing for an implementation on parallelomputers.3.4 Numerial experimentsIn order to ompare the performanes of the proposed blended shemeson some referene sti� problems taken from the CWI testset [79℄ for ODE



3.4. NUMERICAL EXPERIMENTS 57solvers, a Matlab ode had been realized. In partiular, the ode imple-mented variable-stepsize and variable-order strategies for the methods inTable 3.1 (we do not disuss here the details of suh implementation sinethey will be fully desribed in the next hapter).We here report the results obtained on the following well-known testproblems:� Van der Pol, of size m = 2, sti� parameter � = 1000, and [t0; T ℄ =[0; 1000℄;� Robertson, of size m = 3, and [t0; T ℄ = [0; 4 � 106℄;� Pollution, of size m = 20, and [t0; T ℄ = [0; 60℄;� Ring Modulator, of size m = 15, parameter Cs = 10�9, and [t0; T ℄ =[0; 10�3℄;In Tables 3.7, 3.8, 3.9, and 3.10, some statistis onerning the integra-tion of the previous four problems with the type 1, 2, 3 shemes previouslydesribed have been reported. In suh tables, for eah run, we list: thevalues of the input toleranes atol and rtol for, respetively, the absoluteand the relative error of the numerial solution, and the initial stepsize h0.Moreover, in suh tables we ount as 1 step one single appliation of theblok methods. Finally, the preision of the numerial solution is measuredwith the number of signi�ant orret digits, de�ned assd � � log10 k(y � ytrue):=ytruek1; (3.79)where y denotes the numerial solution at t = T , while ytrue is a known ref-erene solution. The operator := used in (3.79) denotes the omponentwiseratio.In addition, in Figures 3.3, 3.4, 3.5, and 3.6, the orresponding Work-Preision Diagrams have been plotted with the work measured either interms of funtion evaluations or of solved linear systems. The input toler-anes, used for the diagrams, were:atol = rtol = 10�(2+k); k = 0; : : : ; 10;and the initial stepsize was: h0 = 10�6 for the Van der Pol, the Robertson,and the Pollution problems, and h0 = 10�8 for the Ring Modulator problem.The previous results show that, in spite of the di�erent values of theampli�ation fators of the orresponding iteration, the three shemes areable to provide omparable results for the onsidered test problems.



58 CHAPTER 3. BLENDED IMPLICIT METHODSTable 3.7: Results for the Van der Pol problem.Type 1 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 3.98 113 102 1583 317810�6 10�6 6.50 112 109 2166 434010�8 10�6 9.69 178 177 3967 794210�10 10�6 11.05 160 158 5405 10814Type 2 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 3.81 86 75 1383 277010�6 10�6 6.53 112 110 2393 479410�8 10�6 9.27 166 166 3750 750810�10 10�6 10.92 140 138 5271 10554Type 3 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 4.05 81 71 1350 270010�6 10�6 6.12 111 111 2326 466810�8 10�6 9.06 146 145 3710 742010�10 10�6 11.91 140 138 5389 10778Table 3.8: Results for the Robertson problem.Type 1 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 4.06 54 54 723 144610�6 10�6 5.67 99 99 1365 273010�8 10�6 8.01 86 86 2192 438410�10 10�6 9.80 130 130 3624 7248Type 2 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 3.91 55 55 690 138010�6 10�6 5.96 106 106 1321 264210�8 10�6 8.30 81 81 2103 420610�10 10�6 10.10 110 110 3386 6772Type 3 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 3.37 55 55 690 138010�6 10�6 5.69 108 108 1346 269210�8 10�6 8.04 81 81 2124 424810�10 10�6 10.48 106 106 3406 6812



3.4. NUMERICAL EXPERIMENTS 59Table 3.9: Results for the Pollution problem.Type 1 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 4.08 17 17 198 39610�6 10�6 5.99 31 31 381 76210�8 10�6 7.96 48 48 767 153410�10 10�6 9.31 49 49 1116 2232Type 2 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 4.49 17 17 189 37810�6 10�6 5.36 30 30 354 70810�8 10�6 8.24 48 48 724 144810�10 10�6 10.16 49 49 1100 2200Type 3 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�6 4.64 17 17 192 38410�6 10�6 5.63 24 24 351 70210�8 10�6 7.62 31 31 681 136210�10 10�6 10.17 49 49 1083 2166Table 3.10: Results for the Ring Modulator problem.Type 1 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�8 3.09 1366 1341 25982 5202810�6 10�8 5.01 1831 1765 43176 8650010�8 10�8 6.65 2068 1982 65376 13100410�10 10�8 9.51 2581 2506 96084 192376Type 2 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�8 2.54 1359 1325 26309 5275410�6 10�8 4.77 1580 1500 41217 8262610�8 10�8 6.98 2008 1925 64140 12861210�10 10�8 9.40 2295 2199 92015 184334Type 3 shemeatol=rtol h0 sd steps aept f-eval lin-sys10�4 10�8 2.71 1413 1398 23376 4676010�6 10�8 4.93 1590 1518 40391 8084210�8 10�8 7.57 2198 2126 65124 13038810�10 10�8 8.49 2937 2845 97731 195626
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Figure 3.3: Work-Preision Diagrams for the Van der Pol problem.
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Figure 3.4: Work-Preision Diagrams for the Robertson problem.



62 CHAPTER 3. BLENDED IMPLICIT METHODS

1 2 3 4 5 6 7 8 9 10 11 12 13
10

2

10
3

Significant Correct Digits

F
u

n
ct

io
n

 E
va

lu
a

tio
n

s

Type 1
Type 2
Type 3

1 2 3 4 5 6 7 8 9 10 11 12 13
10

2

10
3

Significant Correct Digits

L
in

e
a

r 
S

ys
te

m
s

Figure 3.5: Work-Preision Diagrams for the Pollution problem.
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Figure 3.6: Work-Preision Diagrams for the Ring Modulator problem.
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Chapter 4The ode BiMComputational odes represent an outstanding tehnologial aspet of theMathematial Sienes. Moreover, these odes onstitute basi tools forproblem solving in applied �elds. The onstrution of suh odes requires,in turn, the systemati solution of a number of related sub-problems, whihonstitute the intermediate steps to reah the desired goal. This aspet ofNumerial Mathematis is usually underestimated and onsidered to be onlyof seondary importane. On the ontrary, it is a soure of new trends ofinvestigation and a neessary building blok to make Mathematis usablefrom people involved in solving real-life problems.With this premise, and in light of the numerial results provided by theMatlab prototype mentioned in Setion 3.4, we deided to implement in theode BiM the blended impliit methods with splitting matries given byA1 = Ir; B2 =  Ir; (4.1)i.e., the type 1 shemes introdued in the previous hapter. As we are goingto disuss in full details in the present hapter, the diagonal struture of theorresponding nonlinear splittings has allowed to onstrut a omputationalode for whih almost all of the implementation strategies are supportedby a linear analysis of onvergene of the iteration. In addition to this, theperfet degree of parallelism of suh splittings, for what onern the funtionevaluations and the system solvings, makes these shemes very appealing foran implementation on parallel omputers.For later referene, we reall that when the parameter  is seleted inorder to minimize the maximum ampli�ation fator of the iteration, thefollowing results apply (see Setion 3.3): = j�1j � min�2�(C) j�j; �� = 1� os �1; ~� = 2��: (4.2)65



66 CHAPTER 4. THE CODE BIMMoreover, for sake of brevity, hereafter the following notation will be used forthe urrent blok of integration, sine the reported analysis equally appliesto eah appliation of the blok method:� (t0; y0) for the initial point of the blok,� t1; : : : ; tr for the internal absissae,� the vetorsy = 0B� y1...yr 1CA ; f = 0B� f1...fr 1CA ; fj = f(tj; yj);for the urrent numerial solution.The organization of this hapter is the following: in Setion 4.1 we dis-uss the nonlinear blended iteration applied to problem (1.2); Setion 4.2onerns with the loal error estimate used in the ode, on whih both thevariation of the stepsize and of the order of the method rely. The detailsof the latter are then disussed in Setion 4.3. The problem of the even-tual re-evaluation of the Jaobian and/or of the fatorization involved in thenonlinear splitting is addressed in Setion 4.4.4.1 The nonlinear iterationWe start onsidering in full detail the nonlinear iteration generated by theblended impliit methods with splitting matries as in (4.1) applied to prob-lem (2.1). In suh a ase, the blended iteration (3.11) beomes�y(i) = �� �� �(I � C�1)
 Imy(i) � h(C � I)
 Imf (i)�+ �C�1 
 Imy(i) � hI 
 Imf (i)�� �� ; (4.3)y(i+1) = y(i) +�y(i); i = 0; 1; : : : ;where y(i) = 0B� y(i)1...y(i)r 1CA ; f (i) = 0B� f (i)1...f (i)r 1CA ; f (i)j = f(tj; y(i)j );the vetor � only depends on the initial ondition, and, if J0 denotes theJaobian of f at (t0; y0),� = I 
 
�1; 
 = (Im � hJ0): (4.4)Consequently, if � iterations are performed to obtain onvergene, theoverall omputational ost is approximately given by:



4.1. THE NONLINEAR ITERATION 67� the evaluation of the Jaobian matrix J0,� the fatorization of the m�m matrix 
 in (4.4),� r� funtion evaluations and� 2r� system solvings with the fators of the matrix 
.Let us now briey sketh the hoie of the starting vetor y(0) and thestopping riterion for the iteration (4.3). Conerning the �rst point, theadopted strategy is similar to that used in most of the available odes:the default pro�le is obtained by using the interpolating polynomial overthe previous blok of points; alternatively, we use a onstant initial vetor(namely, the starting point repeated r times) in either one of the followingases:- when we integrate over the very �rst blok;- after a failure of the iteration;- when the solution is very slowing varying. This last ondition is re-ognized when, on the last blok (whose size is r, if the order has notbeen hanged), the following test is true:8j = 1; : : : m : jyrj � y0j j1 + jy0j j < minf10�2; 102�toljg and kfrk1 < 0:5;(4.5)where tolj � rtol (the presribed relative tolerane) if jy0jj > 10�1,tolj � atol (the presribed absolute tolerane) if jy0j j � 10�1 and,in general, y`j is the jth entry of y`.Let us now analyze the stopping riterion for the iteration (4.3). Letus onsider the vetor �y(i), as de�ned in that equation, and introdue thenormk�y(i)k � max`=1;:::;r j�y(i)` j � max`=1;:::;rvuut 1m mXj=1� �y`j1 + ratoljy0j j�2; (4.6)where ratol = rtolatol is the ratio between the spei�ed relative (rtol) andabsolute (atol) toleranes, and y0 is the starting point for the urrent blok.Then, the iteration ends as soon as the following ondition is satis�ed,k�y(i)k � max�; uroundrtol � � atol; (4.7)where uround is the mahine preision (on input, rtol > uround) and theparameter  = 0:1. Moreover, in order to make more restritive the stopping



68 CHAPTER 4. THE CODE BIMTable 4.1: Values of various parameters for the methods implemented in theode BiM.p r Pad�e  �� ~� ~�(1) maxit faterr4 3 (2,3) .7387 .3398 .5021 0.9201 10 76 4 (2,4) .8482 .5291 .8975 1.2476 12 68 6 (4,6) .7285 .6299 .9177 1.7295 14 510 8 (6,8) .6745 .6885 .9288 2.0413 16 412 10 (8,10) .6433 .7276 .9361 2.2621 18 314 12 (10,12) .6227 .7560 .9415 2.4282 20 {riterion when the solution has small entries and/or is slowly varying, thevalue of the parameter  may be dereased as follows:- when ky0k�1 � jy0sj < 10�2, jf0sj < 10�4, and kf0k1 <10�3; then  = 5 � 10�3;- when (4.5) holds true, then  = minf; 5 � 10�2g.The iteration (4.3) fails if the ondition (4.7) is not satis�ed within maxititerations, where this parameter depends on the method urrently used,aording to Table 4.1. The iteration also fails if i > 2 and �(i) > 0:99,where �(i) is the estimate of the spetral radius of the iteration matrix atthe ith iterate. Suh an estimate is obtained, after at least two iterations,as follows:�(1) = k�y(1)kk�y(0)k ; �(i) =s�(i�1) k�y(i)kk�y(i�1)k ; if i � 2: (4.8)In ase of failure of the iteration (4.3) the order of the method is de-reased (if r > 3) and the stepsize is halved.4.2 The loal error estimateThe algorithm used in the ode BiM for the estimate of the loal error isbased on deferred orretion. We observe that the latter is a useful frame-work for error estimation when solving ODEs [39, 41, 77, 78, 87, 88, 98, 99,101, 102, 105℄. Its main use is to provide a tool for the iterative improve-ment of the numerial solution. This approah has been suessfully usedin numerial odes for BVPs (see, for example, [41, 77℄), where it is usedto obtain an approximation of the global error. Nevertheless, when solving



4.2. THE LOCAL ERROR ESTIMATE 69IVPs, suh an approah may be also used to estimate loal errors, in on-netion with mesh-seletion (see, e.g., [13, 20℄). This is exatly the use ofdeferred orretion whih has been onsidered in the ode BiM.We remark, one more, that, sine equivalent methods provide the samenumerial solution, they do have the same orresponding loal error. We an,therefore, assume, without loss of generality, the following normalization forthe matrix A and onsequently, from onsisteny (see (3.27)), for the vetora in (3.22), A = Ir; a = �1 � � � 1 : : : 1 �T : (4.9)Conversely, one easily realizes that the vetor � with the trunationerrors (see (3.49)) depends on the partiular form of the disrete problem.As a matter of fat, from the de�nition given in (3.49), it is not diÆultto prove that if the ouples of matries (A1; B1) and (A2; B2) de�ne twoequivalent methods, then the following equality must hold(A�11 
 Im)� 1 = (A�12 
 Im)� 2;where � 1 and � 2 are the vetors with the trunation errors of the two meth-ods, respetively. In the sequel, we will denote with � the vetor orrespond-ing to the blok method with the normalization in (4.9), i.e. the methodwritten in the �rst equivalent form (see (3.58)) in the blended implementa-tion. The vetor orresponding to the seond equivalent form is, therefore,given by  C�1 
 Im� : (4.10)Moreover, as disussed in Setion 3.2, the basi blok method (3.23) isde�ned in order to have the equations on eah row with an O(hr+1) loaltrunation error. Therefore, provided the loal ontinuous solution y(t) issuitably regular, � admits the expansion (see (3.50))� = vr+1 
 hr+1y(r+1)(t0) + vr+2 
 hr+2y(r+2)(t0) + : : : : (4.11)Consequently, (see, for example, [59, pag. 123℄) a �rst order approxima-tion to the loal error is given by (see (4.4))e = � � : (4.12)It follows that we an obtain an eÆient estimate of the loal error onean estimate of the loal trunation error � is available. For this purpose, letus reall that it is possible to uniquely de�ne two r� (r+1) matries [~a j ~A℄and [~b j ~B℄,



70 CHAPTER 4. THE CODE BIM
[~a j ~A℄ � 0B� �1 1... . . .�1 1 1CA ; (4.13)[~b j ~B℄ � 0B� ~�(1)0 ~�(1)1 : : : ~�(1)r... ... ...~�(r)0 ~�(r)1 : : : ~�(r)r 1CA ;suh that the oeÆients on eah row of the two matries de�ne an r-stepLMF with an O(hr+2) trunation error (see Theorem 3.2). Deferred or-retion is then implemented by plugging in the numerial solution in thedisrete problem de�ned by the blok method (4.13), thus obtaining (see,for example, [13, 20℄)Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 � �� : (4.14)The leading term in the arithmeti omplexity for the loal error estimateis therefore given by the solution of the r linear systems with the fators of
 required in (4.12) (see also (4.4)). Moreover, the estimate of � requires toinlude the matrix ~B in the data struture of the ode. We are now going toprove that, beause of the properties of the methods used in the ode BiM,deferred orretion allows a notieable short ut in its atual implementation.This result will be proved in the more general ase of blok impliit methodswith internal absissae: t0 + 1h; : : : ; t0 + rh;where 0 < 1 < : : : < r (in partiular, for the methods implemented inthe ode BiM, one has i = i, i = 1; : : : ; r). From the analysis reported inSetion 3.2, it an be seen that the matrix Dr in (3.29) and the vetors qiin (3.26) generalize toDr = diag( 1 : : : r ); qi = Dir1:The order onditions (3.27) and (3.28), with p = r, then beome:Dr1� b�B1 = 0; (4.15)Dir1� iBDi�1r 1 = 0; i = 2; : : : ; r: (4.16)We observe that, from (4.15), the vetor b turns out to be uniquely deter-mined, provided all LMF are onsistent, by the hoie of the matrix B. The



4.2. THE LOCAL ERROR ESTIMATE 71latter turns out to be uniquely determined by the order onditions (4.16)and by �xing its spetrum (see Setion 3.2). Moreover, for i = r+ 1, (4.16)beomes Dr+1r 1� (r + 1)BDrr1 = wr+1 � 0B� wr+1;1...wr+1;r 1CA ; (4.17)where wr+1 � (r + 1)! vr+1: (4.18)The vetor vr+1 ontains the leading oeÆients of the trunation errors ofthe LMF orresponding to eah equation of the blok method (see (3.50)and (3.53) for the partiular ase i = i; i = 1; : : : ; r). Then, from (4.16)and (4.17), it is not diÆult to obtainD2rV �BDrV G = wr+1eTr ; (4.19)where G = diag( 2 : : : r + 1 ); V = 0B� 1 11 : : : r�11... ... ...1 1r : : : r�1r 1CA : (4.20)Sine the absissae fig are supposed to be distint, the Vandermonde ma-trix V in (4.20) turns out to be nonsingular. Consequently, one immediatelyobtains B = �D2rV �wr+1eTr �G�1V �1D�1r : (4.21)Now, in order to apply deferred orretion, we need an additional oupleof matries in the form (4.13), whose rows de�ne r-step LMF of order (atleast) r + 1, de�ned over the same set of absissae fig. The orrespondingorder onditions are, therefore, given by:Dr1� ~b� ~B1 = 0; (4.22)Dir1� i ~BDi�1r 1 = 0; i = 2; : : : ; r + 1: (4.23)Similarly to what seen in (4.15), now (4.22) uniquely de�nes the vetor ~b,one ~B is �xed. For the latter matrix, from (4.23) one readily obtains that~B = D2rV G�1V �1D�1r ; (4.24)



72 CHAPTER 4. THE CODE BIMthat is, the matrix is uniquely determined by the order onditions. The lat-ter equation generalizes the result of Theorem 3.2, onerning the partiularase i = i; i = 1; : : : ; r:Let us now report some results onerning the fatorization of a Van-dermonde matrix (atually, its transpose as it is the matrix V ), to be usedlater. Though some of them are partially known (see, for example, [1℄), suhresults are here ast in the most general and appropriate form for subsequentreferene. For this purpose, we need to introdue the following notations:� !j(x) = Qj�1k=1(x � k), j = 1; : : : ; r, is the jth Newton polynomialde�ned by the onsidered absissae;� xj [1; : : : ; i℄ is the divided di�erene of the funtion xj over the ab-sissae 1; : : : ; i.The following basi properties are also realled, for sake of ompleteness:P1: !j(i) = 0, if i < j;P2: xj�1[1; : : : ; i℄ = 0, for j < i; xj�1[1; : : : ; j ℄ = 1.An easy onsequene of the above properties is the following result.Lemma 4.1 The matriesL = (wj(i))i;j=1;:::;r ; U = �xj�1[1; : : : ; i℄�i;j=1;:::;r ; (4.25)are lower and unit upper triangular, respetively.Then, the following result follows.Lemma 4.2 Let V;L; U be de�ned aording to (4.20) and (4.25). Then,V = LU: (4.26)Proof In fat, for all i; j = 1; : : : ; r, one has:eTi LUej = rXk=1!k(i)xj�1[1; : : : ; k℄ = j�1i ;where the last equality is due to the fat that the orresponding left-handside is the interpolating polynomial of the funtion xj�1, over the absissae1; : : : ; r, evaluated at i.



4.2. THE LOCAL ERROR ESTIMATE 73Lemma 4.3 The inverse of the matrix L in (4.25) is given byL�1 = (`ij) � 8><>: 0; if j > i;1Qik=1;k 6=j(j � k) ; if j � i:Proof By onsidering that`ii � (!i(i))�1 ; i = 1; : : : ; r;and that both L and L�1 are lower triangular, it is then suÆient to provethat eTi L�1Lej = 0; for i > j:In suh a ase, by taking into aount P1, one obtains:eTi L�1Lej = iX�=1 wj(�)Qik=1;k 6=�(� � k) = wj [1; : : : ; i℄ = 0;where the last equality follows from the fat that, for j < i, the polynomialwj has degree less than or equal to i� 2.From Lemma 4.3, the following result follows.Corollary 4.1 Let g(t) be a given funtion and let gi = g(t0 + ih), i =1 : : : ; r. Then,L�10B� g1...gr 1CA = 0B� h0g[t0 + 1h℄...hr�1g[t0 + 1h; : : : ; t0 + rh℄ 1CA :Proof From Lemma 4.3, for all i = 1; : : : ; r, one obtains thateTi L�10B� g1...gr 1CA = iX�=1 g�Qik=1;k 6=�(� � k)= hi�1 iX�=1 g�Qik=1;k 6=�(� � k)h= hi�1g[t0 + 1h; : : : ; t0 + ih℄:Now, we are going to prove the result whih will allow us to signi�-antly simplify the proedure for the loal error estimate, thus providingthe \short ut" previously mentioned. Moreover, suh result learly quan-ti�es the approximation to the trunation error provided by the left-handside of equation (4.14).



74 CHAPTER 4. THE CODE BIMTheorem 4.1 Let 0 = 0 and g(t) be any funtion suh thatg(t0 + ih) = f(t0 + ih; yi); i = 0; : : : ; r: (4.27)Then, (see (4.18)),Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 == � hr+1r + 1wr+1 
 g[t0 + 0h; : : : ; t0 + rh℄: (4.28)Remark 4.1 By onsidering that the disrete solution is an O(hr+1) ap-proximation to the (loal) solution at the grid points, and realling that (see(2.1)) y0 = f(t; y), one easily realizes that, under suitable smoothness as-sumptions for f ,g[t0 + 0h; : : : ; t0 + rh℄ = 1r!y(r+1)(t0) +O(h):From (4.18), it then follows that (4.28) provides a �rst order approximationto the leading term at the right-hand side of equation (4.11).Proof The numerial solution satis�es the disrete problemIr 
 Imy � hB 
 Imf � 1
 y0 � hb
 f0 = 0: (4.29)Therefore, by subtrating (4.29) from the left-hand side of (4.28), and bysetting ~f = � f0f � � 0B� f0...fr 1CA ;where fi = f(t0 + ih; yi) � g(t0 + ih); i = 0; : : : ; r; from (4.15){(4.24) weobtain: Ir 
 Imy � h ~B 
 Imf � 1
 y0 � h~b
 f0 == h([b jB℄ � [~b j ~B℄)
 Im~f= h(B � ~B)[�1 j Ir℄
 Im~f= �hwr+1eTr G�1V �1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr V �1D�1r [�1 j Ir℄
 Im~f = (�):From (4.25)-(4.26), property P2, Corollary 4.1, and onsidering that 0 = 0,one then obtains:



4.2. THE LOCAL ERROR ESTIMATE 75(�) = � hr + 1wr+1eTr U�1L�1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr L�1D�1r [�1 j Ir℄
 Im~f= � hr + 1wr+1eTr L�1 264 �11 11... . . .�1r 1r 375
 Im~f= � h2r + 1wr+1eTr L�1 264 �1(1�0)h 1(1�0)h... . . .�1(r�0)h 1(r�0)h 375
 Im~f= � h2r + 1wr+1eTr L�1 
 Im0B� g[t0 + 0h; t0 + 1h℄...g[t0 + 0h; t0 + rh℄ 1CA= � hr+1r + 1wr+1 
 g[t0 + 0h; : : : ; t0 + rh℄:Sine the vetor wr+1 is known, see (4.18) and (3.50)-(3.53), from theprevious theorem it follows that we an diretly ompute the divided di�er-ene at the right-hand side of equation (4.28), in order to obtain the estimateof � via deferred orretion. This implies that the matrix ~B is no longerrequired. In partiular, when i = i, i = 0; : : : ; r; as it happens for themethods implemented in the ode BiM, one obtains (see (4.18) and (4.27))hr+1r + 1wr+1 
 g[t0 + 0h; : : : ; t0 + rh℄ = vr+1 
 (h�rf0) ; (4.30)where, here, � represents the (omponentwise) di�erene operator. More-over, see (4.4), the �rst order approximation (4.12) to the loal error reduesto e = � � = �vr+1 
 �h
�1�rf0� ; (4.31)so that it an be obtained at the ost of only one linear system solvingwith the fators of 
. From the previous analysis, it follows that eah blokentry of the vetor e is O(hr+1), provided that the orresponding entry ofthe vetor vr+1 is nonzero. Nevertheless, from Theorem 3.5 and (3.55),we observe that, sine the last entry in vr+1 is 0, the last blok entry in(4.31), say er, is 0 as well, whereas we need an O(hp+1) approximation, ifp is the order of the method. In order to obtain a orresponding suitableapproximation also for er, we then onsider the last blok entry of the vetor(see (4.4), (4.10)-(4.11))



76 CHAPTER 4. THE CODE BIM�(I � �)s(C�1vr+1 
 h�rf0); (4.32)where s = 1, when r = 3, and s = 2, otherwise. This entry turns out to bethe one of largest norm and this feature will be useful for what we shall seein Setion 4.3.1, when speaking about the handling of the \order redution"phenomenon for sti� problems.4.3 Stepsize and Order VariationIn this setion we desribe the strategies for the variation of both the step-size of integration h and the order p of the method. Both strategies rely onthe estimate of the loal error previously disussed.First of all, the norm used to measure the error is the same norm de�nedin (4.6). As a onsequene, on one hand, from (4.4), (4.12), (4.31), and (4.32)one obtains thatkek = maxnvr1 j
�1Æ(r)(f0)j; jerjo = O(hr+1); (4.33)where vr1 � kvr+1k1 and Æ(r)(f0) � h�rf0. On the other hand, the quan-tity jerj =vuut 1m mXj=1� erj1 + ratoljy0j j�2 = O(hp+1); (4.34)already omputed to obtain (4.33), provides an estimate for keupk, namelythe error orresponding to the use of the next higher-order method. Thisfeature will be onveniently exploited when we shall speak about the ordervariation strategy. Before that, let us onsider the problem of the stepsizevariation in detail. If rtol and atol are the presribed relative and absolutetoleranes, the urrent solution is aepted provided that (see (4.33))kek � atol: (4.35)The new stepsize, to be used by the same method, is then obtainedthrough extrapolation:hnew = h�sftyerr � atolkek � 1r+1 ; (4.36)where sftyerr = 120 if (4.35) holds true and sftyerr = 110 otherwise.Similarly, if r < 12 the stepsize to be used by the next higher-order methodwould be



4.3. STEPSIZE AND ORDER VARIATION 77hup = h�sftyup � atolkeupk� 1p+1 ; (4.37)where the approximation keupk = jerj is used (see (4.34)) and, moreover, wehave set sftyup = sftyerr=2. We shall use suh an estimate for the stepsizeof the higher order method when disussing the order variation strategy.Moreover, by denoting with ĥnew the seleted stepsize for the subsequentintegration step and with rnew the bloksize of the orresponding method tobe used, we setĥnew  minfmaxfĥnew; 0:12 � hg; 10 � h; hmax; (T � t0)=rnewg;where, by default, hmax � (T � t̂0)=8 being t̂0 the initial time of the IVP. Inaddition to this, if 0:1 � h � t0 � uround (the mahine preision), then theexeution ends beause the seleted stepsize is too small. Finally, we alsouse the following heuristis: if nfail onseutive failures have ourred (ei-ther for the onvergene of the iteration or for the auray) before the lastsuessful step, then the stepsize is inreased only after at least nfail+ 1onseutive suessful steps our.Let us now onsider the problem of the order variation. The aim is thatof reduing the global omputational ost for getting a disrete solution witha presribed auray. For this purpose, we normalize the ost with respetto the width of the overed interval. By negleting, for sake of simpliity,Jaobian and funtion evaluations, whose ost in general is strongly problemdependent, we then introdue the following spei� ost per step funtion forthe method with bloksize r:tot(�; r;m; h) = fat + it + errrh ; (4.38)where fat is the ost for the fatorization of the matrix 
 in (4.4), it isthe number of ops required by � iterations in (4.3), and err is the ost foromputing the estimate (4.33) of the loal error. In partiular, in ase of afull m�m Jaobian,fat � 23 m3; it � it(r; �;m) � 4r�m2; err � � 4m2; if r = 3;6m2; otherwise.Corresponding formulae are used in ase of a banded Jaobian.Therefore, the next higher-order method, with bloksize rup (see theseond olumn in Table 4.1), requiring �up iterations for satisfying the samestopping riterion, and using a stepsize hup for getting the same auray,would be preferable in the subsequent step provided that



78 CHAPTER 4. THE CODE BIMtot(�up; rup;m; hup) < tot(�new; r;m; hnew); (4.39)where hnew and �new are the stepsize and the number of expeted iterationsfor the urrent-order method. Therefore, the problem is easily solved, onewe have an estimate for the above quantities. We have already seen howto get estimates for hnew and hup (see (4.36) and (4.37), respetively). Itremains to obtain estimates for �new and �up. We observe that, if the samestopping riterion has to be satis�ed, then the following equalities shouldapproximately hold, �� = (�new)�new = (�up)�up :In the above equation, � is the spetral radius of the urrent iteration matrix(estimated by (4.8)), � is the (known) number of iterations arried out tosatisfy the onvergene riterion (4.7), and �new, �up are the spetral radiiof the iteration matries of the urrent-order method, by using the newstepsize hnew, and of the next higher-order method, respetively. By takinginto aount that the sti� ampli�ation fator of both methods is 0, andonsidering (3.18), we then obtain the following estimates,�new = � log �log �(hnew=h) ; �up = � log �log �(~�up=~�)(hup=h) ; (4.40)where ~� and ~�up are the nonsti� ampli�ation fators of the urrent and thenext higher-order methods, respetively (see Table 4.1). Finally, in order toprevent errati behaviour in some pathologial ases, the previous strategyis applied provided that all the following three onditions are satis�ed:1. 0:8h � hnew � 1:25h;2. at least maxf2; nfailg suessful onseutive steps have been arriedout with the urrent-order method, when the previous nfail stepsfailed to satisfy the auray requirement (4.35);3. the (estimated) spetral radius of the urrent iteration, say �, is \suit-ably small". The latter ondition is assumed to be ful�lled, providedthat � < �p, where the parameter �p is de�ned so that all methods dohave a presribed absolute ost to obtain onvergene. In more detail,by setting �4 = 10�2j log10minf10�1; atol; rtolgj; (4.41)we require that, for all allowed orders p, the quantity it(rp; �p;m)(see Table 4.1 and (4.38)) is onstant, for the same stopping riterion,



4.3. STEPSIZE AND ORDER VARIATION 79where rp and �p are the bloksize and the number of iterations requiredby the pth order method, p = 4; 6; 8; 10; 12; 14. This leads to theequalities,rp �p = rp�2 �p�2; ��pp = ��p�2p�2 ; p = 6; 8; 10; 12; 14;whih provide the following reursion with starting value given by(4.41): �p = (�p�2) rprp�2 ; p = 6; 8; 10; 12; 14: (4.42)We observe that the sequene f�pg is a dereasing one.Atually, the last ondition is relaxed when � � 3 and both the on-ditions of stepsize stagnation and onvergene stagnation, as desribed inSetion 4.3.1 below, are veri�ed.So far, we have dealt with the strategy for inreasing the order of themethod to be used at the subsequent step of numerial integration. However,it may be onvenient to derease the order of the method as well. Obviously,the riterion based on the minimization of the spei� ost per step (4.38)ould be, in priniple, also used to derease the order of the method, pro-vided that an estimate for hlow, namely the stepsize to be used by the nextlower-order formula, is available. Its omputation, based on a proeduresimilar to that required for evaluating hnew, would require an additionallinear system with the matrix 
 to be solved. Nevertheless, we deided notto systematially resort to suh a riterion for dereasing the order, beausethere is numerial evidene that it is seldom e�etive. Instead, we hose tolower the order p to p� 2 (when r > 3, see Table 4.1), in either one of thefollowing two situations:� a failure of the nonlinear iteration (4.3) ours (in suh a ase, hnew =h=2, as we have already said at the end of Setion 4.1);� all the following four onditions hold true:1. in the last step the urrent-order method has been suessful;2. the nonlinear iteration (4.3) has required more than 3 iterations;3. the (estimated) spetral radius of the iteration matrix, �, satis�es� > �p, where �p is again de�ned aording to (4.42), but withthe initial ondition, in plae of (4.41),�4 = 0:5; (4.43)
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Figure 4.1: Variable versus �xed order implementation.4. if ondition (4.45) below is satis�ed, then hlow � hnew.In this ase, the new stepsize is set equal to:� hlow; if (4.45) and hlow � hnew hold true,minfhlow; hnewg; otherwise.In order to put into evidene the e�etiveness of the above order varia-tion strategy, in Figure 4.1 the results obtained for the Robertson problem(already introdued in Setion 3.4) have been reported. In the �gure weplot the elapsed time (in seonds) for the solution of the problem versus thenumber of signi�ant orret digits (see (3.79)). As one an see, the plot ofthe variable order method is almost always below those of the �xed orderones, thus on�rming the e�etiveness of the order variation strategy.4.3.1 Order redution reoveryA partiular handling is required in order to get rid of the so alled orderredution phenomenon (see, for example, [59, hapter IV.15℄). Suh a phe-



4.3. STEPSIZE AND ORDER VARIATION 81nomenon ours when, in the test equation (3.1), h! 0 but q = h� is large.In suh a ase, in fat, the expansion (4.11) of the trunation error beomes� = qr+1 vr+1 y0 + qr+2 vr+2 y0 + : : : ;and the loal error is given by (I � qC)�1� . However, the latter expressionadmits di�erent expansions, depending on the \size" of q. In partiular,� when jqj is small, then(I � qC)�1� = qr+1 vr+1 y0 + qr+2 (vr+2 + Cvr+1) y0 + : : : ;and the prinipal term of eah entry behaves like qr+1, with the ex-eption of the last one, whih depends on higher order terms;� when jqj is large, then(I � qC)�1� � �qr C�1vr+1 y0 + : : : : (4.44)In suh a ase, the prinipal term of eah entry behaves like qr, in-luding the last one.The onlusions in the latter ase make evident the fat that jerj (see(4.34)) is no more an estimate for keupk. On the other hand, when q is large,it happens that, see (4.33)-(4.34),kek = jerj; (4.45)i.e., the norm of the last (blok) entry of the vetor de�ned in (4.32). More-over, the latter vetor turns out to be an approximation to the prinipalterm of the expansion (4.44). In onlusion, when the order redution phe-nomenon ours, the strategy for the order variation previously desribed,whih relies on the higher order auray of the last entry of the loal er-ror, may fail. Indeed, this atually happens for the well-known Prothero-Robinson problem (see [89℄). In suh a ase, also the stepsizes stagnate. Inthe ode BiM, the order redution phenomenon is reognized when (4.45)holds true or all the following onditions are satis�ed:order stagnation: the order of the method has not been inreased by theabove mentioned strategy;error stagnation: jerj faterr � kek, where the parameter faterr is ho-sen aording to Table 4.1. When suh a ondition holds true, thismeans that the last entry of the loal error is \not too small", withrespet to the remaining ones. This is, indeed, usually the ase, whenit orretly estimates the error for the next higher-order method. Theparameter faterr is, at the moment, hosen in a heuristi way;



82 CHAPTER 4. THE CODE BIMstepsize stagnation: the ratio between the new stepsize, hnew, and theurrent one, h, belongs to the interval [0:95; 1:05℄;onvergene stagnation: the ratio between the urrent estimated spe-tral radius, � (see (4.8)), and the one of the previous iteration, �old,belongs to the interval [0:95; 1:05℄.One the error redution phenomenon is reognized, it is possible to getrid of it, as explained in the sequel. The basi idea is to obtain an estimatefor keupk in a form similar to (4.33):keupk � vrup1 j
�1Æ(rup)(f)j: (4.46)Indeed, the quantity vrup1 is known. Conerning the seond term, Æ(rup)(f)an be approximated by suitable �rst (in the ase r = 3) or seond (inthe ase r > 3) di�erenes of Æ(r)(f), sine this funtion has already beenomputed at the previous bloks. One the estimate (4.46) is available, theusual formula (4.37) an then be used, in order to predit hup.An additional question needs to be onsidered, at this point, by observingthat, when q is not small, then (3.18) is not valid. The latter approximatedequality, in turn, was used in order to predit �new and �up from the knowl-edge of �, h, hnew, hup (see (4.40)). However, when q is large we know that,see (3.75), �(q) � ~�(1)jqj ;where the values of the parameter ~�(1) are listed in Table 4.1. The previousresult allows us to derive the following estimates for �new and �up, alternativeto (4.40):�new = � log �log �(h=hnew) ; �up = � log �log �(~�(1)up =~�(1))(h=hup) ; (4.47)where ~�(1) is the parameter of the urrent-order method, and ~�(1)up is thatof the next higher-order one.Remark 4.2 It must be stressed that in the estimates (4.47), the ratiosh=hnew and h=hup are exatly reversed, with respet to those used in (4.40).This is due to the use of the approximation (3.75) in plae of (3.18).The estimates (4.47) are then used in the hek (4.39), in order to deidewhether to inrease the order of the method to be used in the subsequentstep, when the order redution phenomenon is diagnosed. Finally, we men-tion that, for robustness, when (4.45) holds true, the order is not inreasedwhen the following two onditions are both ful�lled:



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 83� hup � h;� the estimated spetral radius for the higher order method,�up = � ~�(1)up~�(1) hhup ; (4.48)is larger than the orresponding maximum allowed value, as de�nedby (4.42)-(4.43).Indeed, the �rst ondition ensures that the approximation (4.48), derivedfrom (3.75), is appropriate also for the next higher-order method.4.4 Jaobian evaluation and LU fatorizationIn Setion 4.1 we have already observed that the overall omputational ostfor the solution of the disrete problem generated by a blended impliitmethod approximately amounts to:� the evaluation of J0, the Jaobian matrix at (t0; y0),� the fatorization of the m�m matrix 
 (see (4.4)),� r� funtion evaluations,� 2r� system solvings with the fators of the matrix 
,if � iterations are required to obtain onvergene. Obviously, the relativeomputational ost of the �rst two entries, with respet to the overall om-putational ost, depends on the ontinuous problem and on �. In parti-ular, their relative ost inreases when � dereases. Therefore, when theblended iteration (4.3) onverges rapidly, the overall omputational ost ofthe iteration an be redued signi�antly by means of one of the followingapproximations: J0 � Jold; and=or 
 � 
old; (4.49)where Jold and 
old are the analogues of J0 and 
 at the previous blok ofpoints. It is lear that (see (4.4)) in both ases a perturbation is introduedin the matrix � and, therefore, the spetral radius of the orrespondingiteration matrix turns out to be a�eted. In the following two setions, weshall study this aspet by means of a linear analysis, whih relies on thepartiular struture of the disrete problem.



84 CHAPTER 4. THE CODE BIM4.4.1 The blended iteration with approximate JaobianLet us onsider the appliation of the method, orresponding to the blendediteration (4.3), to the test problem:y0 = �(t)y; y(t0) = y0 2 IR; Re(�(t)) < 0;and let us denote with � the value of �(t) at the initial point of the urrentsub-interval of integration. Then, we an write� = �old(1 + Æ); (4.50)where �old is the orresponding value of � at the previous blok of pointsand Æ 2 C is a suitable parameter. The approximate blended iteration,orresponding to the use of the previous Jaobian, is therefore given byy(i+1) = y(i) � �̂ h�̂ �(I � C�1)y(i) � h(C � I)f (i)�+ �C�1y(i) � hf (i)�� �̂i ; i = 0; 1; : : : ; (4.51)where �̂ � (1� q̂)�1I; q̂ � h�old; (4.52)and (see 3.10), �̂ � �̂(�1 � �2) + �2:We shall onsider the additional �rst order approximation f (i) � �y(i) sothat the iteration (4.51) an be rewritten asy(i+1) = y(i) � �̂ h��̂ �I � C�1 � q(C � I)�+  �C�1 � qI��y(i) � �̂i= y(i) � �̂ h��̂ �I � C�1 � q̂(1 + Æ)(C � I)�+ �C�1 � q̂(1 + Æ)I��y(i) � �̂i ; i = 0; 1; : : : ; (4.53)where (see (4.50) and (4.52)) q � h� = q̂(1 + Æ). The spetral radius of theorresponding iteration matrix depends, therefore, on both q̂ and Æ: let itbe �̂(q̂; Æ). The following result holds true.Theorem 4.2 If jÆj < �Æ with �Æ suÆiently small, then the spetral radius�̂(q̂; Æ) of the ampli�ation matrix, say Z(q̂; Æ), of the iteration (4.53) is suhthat1. when q̂ � 0 �̂(q̂; Æ) � jq̂j ~�(Æ); (4.54)



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 85where ~�(Æ) = 8>><>>: ��� (�1�)2�1 + Æ�1��� ; when Im(Æ) � 0;��� (��1�)2��1 + Æ��1��� ; when Im(Æ) < 0; (4.55)and, see (3.63)-(3.65), �1 is the eigenvalue of C with minimum mod-ulus and positive imaginary part;2. when q̂ !1 �̂(1)(Æ) � limq̂!1 �̂(q̂; Æ) = jÆj: (4.56)Proof The ampli�ation matrix orresponding to (4.53) is given by (see(4.52))Z(q̂; Æ) = I � �̂2 �I � C�1 � q̂(1 + Æ)(C � I) + �̂�1(C�1 � q̂(1 + Æ)I)�= q̂(1� q̂)2C�1 �(C � I)2 + ÆC(C � 2q̂I)� : (4.57)Therefore, sine jÆj is assumed to be bounded, when q̂ � 0 one hasZ(q̂; Æ) � q̂ C�1 �(C � I)2 + ÆC2� ;so that �̂(q̂; Æ) � jq̂j max�2�(C) ����(�� )2� + Æ����� � jq̂j ~�(Æ):We observe that, when � = �old or, equivalently, see (4.50), when Æ = 0,~�(0) oinides with the nonsti� ampli�ation fator orresponding to the\exat" blended iteration (see (3.61)), i.e.~�(0) = ~�: (4.58)From the result in Lemma 3.1, it then follows that, for all Æ 2 C with jÆjsuitably small, ~�(Æ) is obtained in orrespondene of �1 or of the omplexonjugate ��1. In partiular, by onsidering that  = j�1j and Im(�1) > 0,one veri�es that����(�1 � )2�1 + Æ�1���� � ����(��1 � )2��1 + Æ��1���� , Im(Æ) � 0:This ompletes the �rst part of the proof. On the other hand, when jq̂j ! 1,from (4.57) and the hypothesis on jÆj one obtainsZ(q̂; Æ)! �Æ I;



86 CHAPTER 4. THE CODE BIMfrom whih (4.56) easily follows.The previous theorem immediately implies that the blended iteration is nomore L-onvergent. Nevertheless, one is still able, by estimating jÆj, toontrol the onvergene properties of suh iteration when jq̂j � 1. On theother hand, when q̂ � 0 the following result holds true.Theorem 4.3 If q̂ � 0, � > 0 is a suitably small �xed parameter, andjÆj � ~�(0)�(1 + �)~�(0) +  ; (4.59)then �̂(q̂; Æ) . �(q)(1 + �)where �(q) is the spetral radius of the iteration matrix with exat Jaobian.Proof We observe that, sine jÆj is bounded,q̂ � 0 ) q = q̂(1 + Æ) � 0and, therefore, see (3.18) and (4.58)Sk81,Sk86,,�(q) � ~�(0)jqj = ~�(0)jq̂jj1 + Æj:Moreover, when � is suitably small the term on the right-hand side of (4.59)is suÆiently small so that the �rst result of Theorem 4.2 applies. From(3.61), (4.50), (4.54)-(4.59), and by realling that  = j�1j, it then followsthat �̂(q̂; Æ) � jq̂j ~�(Æ) � jq̂j(~�(0) + jÆj) � jq̂j ~�(0) (1 � jÆj)(1 + �)� jq̂jj1 + Æj ~�(0) (1 + �) � �(q)(1 + �):An immediate onsequene of the previous two theorems is that an es-timate of jÆj is needed in order to ontrol the perturbation on the spe-tral radius of the iteration matrix. From (4.50) we obtain Æ = (� ��old)=�old. Consequently, estimates of j� � �oldj and of j�oldj are needed.In general, when we are solving problem (1.2), we will need to estimateÆ = kJ0 � Joldk=kJoldk. By onsidering a suitable vetor � suh thatjj�jj1 = 1, we then evaluate the vetor g = f(t0; y0+ s ��)� f0, with s > 0a suitably small parameter, thus obtaining the following estimates:kJ0k1 � 1skgk1; kJ0 � Joldk1 � 1skg � goldk1:



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 87We observe that, for the linear autonomous equation y0 = J y, one obtainskg � goldk1 = 0, so that the re-evaluation of the Jaobian is not needed, inthis ase, as one would expet.Conerning the hoie of the parameter � (see (4.59)) made in the odeBiM, if p is the order of the method with bloksize rp (see Table 4.1) thenthe orresponding parameter, say �p, is hosen as follows:�4 = 5 � 10�2; �p = (�p�2) rprp�2 ; p = 6; 8; 10; 12; 14:The previous riterion is applied only when, at the previous blok ofpoints, (4.45) does not hold true and the blended iteration has been suf-�iently \fast" onvergent. In partiular, by denoting with �old and �oldthe spetral radius of the iteration matrix and the number iterations at theprevious blok of points, respetively, in the ode BiM a fast onvergene isassumed when �old < 5 � 10�2 or �old < 4: (4.60)On the other hand, when (4.45) is satis�ed, we assume jqj � 1 and theJaobian is not re-evaluated provided that (4.60) holds true andjÆj � �Æ(1);where the value of �Æ(1) depends on the order of the method, as spei�ed inTable 4.2.The previous analysis, requiring an additional funtion evaluation to getthe estimate of Æ, is atually applied provided that m > 5 (i.e., the size ofthe ontinuous problem is not very small). Moreover, an additional lassialontrol, used in many odes to deide whether the Jaobian should be notevaluated, is also used in the ode BiM. In more detail, the Jaobian is notevaluated when the blended iteration for the previous blok of points turnsout to be \very fast" onvergent. This is reognized when the followingondition is satis�ed: �old < �J or �old < 3;where �J depends on the order of the method, aording to the values listedin Table 4.2.4.4.2 The blended iteration with approximate fatorizationWe now study the ase where the following approximation is onsidered
 � 
old; (4.61)



88 CHAPTER 4. THE CODE BIMTable 4.2: Parameters of the methods used in the ode BiM.p r �Æ(1) �J x1 x2 dmin dmax4 3 5 � 10�2 5 � 10�3 -1.4487 2.3593 0.90 1.106 4 4 � 10�2 4 � 10�3 -1.4983 3.1163 0.91 1.098 6 3 � 10�2 3 � 10�3 -1.4662 3.5197 0.92 1.0810 8 2 � 10�2 2 � 10�3 -1.4290 3.7538 0.93 1.0712 10 1 � 10�2 1 � 10�3 -1.3964 3.9104 0.94 1.0614 12 9 � 10�3 9 � 10�4 -1.3689 4.0240 0.95 1.05(see (4.3)-(4.4)), in order not to evaluate the new fatorization. First of all,it must be stressed that the previous approximation is allowed only whenthe Jaobian has not been evaluated sine, otherwise, suh evaluation wouldresult to be useless. Consequently, we assume that only the stepsize hashanged, from the previous iteration. We shall, therefore, resort to a linearanalysis of onvergene, by applying the method to the test problem (3.1).In suh a ase, the blended iteration (4.3), with the approximation (4.61),beomesy(i+1) = y(i) � �old ���old �I � C�1 � q(C � I)�+ �C�1 � qI��y(i) � ��i= y(i) � �old ���old �I � C�1 � qold d (C � I)�+ �C�1 � qold dI��y(i) � ��i ; i = 0; 1; : : : ; (4.62)where hold is the stepsize used for the previous blok of points, qold = hold�,�old = (1� qold)�1I; q � h� = � hhold� qold � d qold; (4.63)and (see 3.10), �� � �old(�1 � �2) + �2:Therefore, the spetral radius, say ��(qold; d), of the orresponding iterationmatrix will now depend on both qold and d. The following theorem holdstrue.Theorem 4.4 If jd� 1j is suÆiently small, then the spetral radius of theiteration matrix of (4.62) is suh that1. when qold � 0, ��(qold; d) � jqoldj ~�(d� 1); (4.64)where ~�(�) is de�ned aording to (4.55);



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 892. when qold !1, ��(1)(d) � limqold!1 ��(qold; d) = jd� 1j: (4.65)Proof We observe that the iteration (4.62) formally oinides with the it-eration (4.52)-(4.53) with the substitutions q̂  qold and Æ  d� 1. Conse-quently, from Theorem 4.2, one immediately obtains ��(qold; d) = �̂(qold; d �1), and, hene, the thesis follows.From the previous theorem, one immediately obtains that d 2 (0; 2) is aneessary requirement for a satisfatory behaviour of the iteration for sti�problems. More preisely, when (4.45) holds true, so that we may assumejqoldj � 1, re-fatorization is avoided provided that, see Table 4.2,jd� 1j � �Æ(1):Let now suppose qold � 0. The following analysis is devoted to pro-vide an estimate of the number, say ��, of iterations in (4.62), depending onthe number of iterations � that would have been required without the ap-proximation (4.61). The latter number an be estimated from the iterationparameters as disussed in Setion 4.3 (see (4.40)). In order to derive theriterion used in the ode BiM, we shall look for values of d (see (4.63)) suhthat �� � ��; � = 1 +m(6r�)�1; (4.66)where r is the bloksize of the blended impliit method and m is the sizeof the ontinuous problem. Indeed, for suh value of the parameter �, oneveri�es that the ost of the linear algebra involved in the blended iterationwith the approximation (4.61) is less than or equal to the ost of the exatiteration plus the ost to fator 
 (evidently, for sake of simpliity, the ostof funtion and Jaobian evaluations has been negleted). Moreover, weobserve that if the stepsize has not been hanged, i.e. h = hold, than, see(4.63), d = 1 and q = qold. In this ase, from Theorem 4.4 and (4.58), oneimmediately obtains ��(q; 1) = �(q);where �(q) is the spetral radius of the \exat" blended iteration. By as-suming that the same stopping riterion has to be satis�ed, we then obtain��(qold; d)�� = ��(q; 1)� and, therefore,�� = � log ��(q; 1)log ��(qold; d) :Consequently, the inequality in (4.66) an be written as��(qold; d)���(q; 1) � 1: (4.67)



90 CHAPTER 4. THE CODE BIMWe observe that (see (4.63)), sine d is bounded, then qold � 0 implies q � 0as well. Therefore (see (4.55)), by setting �old the spetral radius of theiteration matrix at the previous integration step, one obtains,��(qold; d) � jqoldj~�(d� 1) � � �old~�(0)� ~�(d� 1); (4.68)��(q; 1) � jqj ~�(0) � �old d:From (4.67)-(4.68), it follows then that d must satisfy~�(d� 1)�d � �old� ~�(0)�old �� : (4.69)Moreover, sine d� 1 is real, from (4.55) one obtains that (see (4.2))~�(d� 1) � ���� (�1 � )2�1 + (d� 1)�1���� = (d2 + 2x1d+ x2) 12 ; (4.70)where x1 = 2��(�� � 1)� 1; x2 = 1 + 4��:The values of x1 and x2 for the methods implemented in the ode BiM arelisted in Table 4.2. From (4.69) and (4.70), it follows that the stepsize ratiod must satisfy (d2 + 2x1d+ x2)�2d � �old� ~�(0)�old�� : (4.71)Only one of the following two ases may then our:1. d � 1;2. d < 1.In the �rst ase, i.e. when the stepsize has been inreased, from Ta-ble 4.2 it is possible to verify that the inequality (4.71) is satis�ed for � = 1and d 2 [1; 2). Clearly, from (4.66) one obtains that this will hold true forall � � 1. Consequently, (see (4.63)) in the ode BiM we don't re-fatorize,when the stepsize has been inreased, unless d > dmax (see Table 4.2), wherethe last inequality is aimed to guarantee fast onvergene for sti� problemsand the �rst result in Theorem 4.4 to hold true.In the seond ase, i.e. when the stepsize has been dereased, we anassume 1 > d � dmin, for a �xed dmin > 0 (see Table 4.2, for the values used



4.4. JACOBIAN EVALUATION AND LU FACTORIZATION 91in the ode BiM). In suh a ase, one derives that a suÆient ondition for(4.71) to be satis�ed is given byd2 + 2x1d+ x3 � 0; (4.72)where x3 = x2 � (dmin�old) 2� (~�(0)=(�old))2 :Consequently, in the ode BiM, re-fatorization is avoided, when the stepsizeis redued, unless (4.72) turns out to be not satis�ed or d < dmin. Weobserve that, beause of (4.65), we have required jdmin � 1j = jdmax � 1j.
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Chapter 5Numerial ExperimentsDuring the development of the ode BiM several numerial experiments ondiÆult sti� test problems, taken from the CWI testset [79℄ (now availableat the University of Bari [73℄) and from the Geneva testset [62℄, have beenperformed and, in the following setions, the most signi�ant results arereported. In addition, in order to put into evidene the e�etiveness of theproposed approah, suh results are ompared with those provided by someof the most eÆient odes urrently available for the numerial solution ofsti� IVPs for ODEs:� DASSL (June 1991) implementing Bakward Di�erentiation Formulaeof orders from 1 through 5 (L. R.Petzold, [11℄);� GAM (November 1999) based on the Generalized Adams Methods oforders 3; 5; 7; 9 (F. Iavernaro and F.Mazzia, [71℄);� MEBDFDAE (November 1998) based on the Modi�ed Extended Bak-ward Di�erentiation Formulae of orders ranging from 1 to 7 (J. Cash,[40℄);� RADAU5 (January 2002) implementing the Radau IIa impliit Runge-Kutta method of order 5 (E.Hairer and G.Wanner, [59℄);� RADAU (January 2002) whih is a variable-order version of RADAU5 im-plementing the Radau IIa impliit Runge-Kutta methods of orders 5; 9and 13 (E. Hairer and G.Wanner, [59℄);All exeutions have been arried out on a dediated AMD Duron 1:3GHzomputer, under Linux, and by using, for eah ode, the same ompileroption �O3 for optimization. Numerial experiments have been performedby using di�erent values for the input parameters onsisting of: the stepsizeh0 to be used for the �rst step (not needed for DASSL) and the presribedabsolute (atol) and relative (rtol) toleranes for the numerial solution.In the following setions, for eah problem, we report:93



94 CHAPTER 5. NUMERICAL EXPERIMENTS� a brief introdution desribing the origin of the problem and the orre-sponding mathematial formulation. The reader interested in furtherdetails may �nd them in the ited referenes;� the run harateristis of some tests performed with the problem.They onsist of the following statistis desribing the numerial in-tegration: steps, providing the total number of steps needed by thesolver (inluding the rejeted steps due to error test failures and/oronvergene test failures); aept, giving the number of aepted steps;f-eval and j-eval representing, respetively, the total number of fun-tion and jaobian evaluations, and LU-de for the total number of LU-deompositions (not available for DASSL). Conerning the latter one,we remark that the values reported in orrespondene of the odesBiM, GAM and MEBDFDAE refers to the fatorizations of matries withthe same dimension m of the ontinuous problem. The RADAU andRADAU5 odes, instead, ount (at most) 1 fatorization per step. Wereall that suh odes require, at eah step, the fatorization of 1 realm � m matrix and (r � 1)=2 m � m omplex ones, where r is thebloksize of the method (see Setion 2.2.1 and [60℄). A omparisonbased on the number of LU-deomposition must, therefore, take areof this fat.In addition, for eah run, we report the elapsed time (in seonds)needed for the integration and the preision of the numerial solutiony with respet to a referene one, say ytrue, at the end of the integrationinterval. The latter is measured both in terms of the signi�ant or-ret digits (sd), already de�ned in Setion 3.4, and of the mixed-errorsigni�ant orret digits (mesd), de�ned asmesd � � log10 (k(y � ytrue):=(artol+ jytruej) k1) ;where artol � atolrtol ( 1 : : : 1)T 2 IRm and := represents the omponen-twise ratio operator.� the Work-Preision Diagrams (WPDs) plotting the \work", measuredin terms of the elapsed-time required for the integration, versus the\preision" measured in terms of both sd and mesd.



5.1. THE ELASTIC BEAM PROBLEM 955.1 The elasti Beam problemThe problem originates from mehanis and desribes the motion of a thinelasti beam of length 1 whih is supposed inextensible. Moreover, it is as-sumed that the beam is lamped at one end and a fore F ats at the freeend. It was originally desribed by a partial di�erential equation subjet toboundary onditions. The semi-disretization in spae of this equation leadsto a sti� system of n nonlinear seond-order di�erential equations whih isrewritten to �rst order form thus providing a sti� system of nonlinear ODEsof size 2n. The eigenvalues of the orresponding Jaobian are purely imag-inary and vary between �6400i and 6400i. A omplete desription of theproblem an be found in [59℄.Numerial experiments on this problem have been done for n = 40 (lead-ing to a system of 80 ODEs). Moreover, the equation has been integrated for0 � t � 5. Table 5.1 and Figure 5.1 present, respetively, the orrespondingrun harateristis and the work-preision diagrams. For the latter ones weused: h0 = atol = rtol = 10�(2+m=8); m = 0; : : : ; 40.We remark the high regularity of the WPDs orresponding to the odesBiM and GAM. The widely haoti behaviour of the ode MEBDFDAE and thehigh ineÆieny of the ode DASSL are mainly due to the lak of A-stabilityof the higher order formulae on whih suh odes are based.Table 5.1: Run harateristis for the Elasti Beam problem (h0 = atol =rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBiM 10�2 1.83 2.18 14 14 289 12 14 4:88 � 10�210�4 2.63 3.45 63 63 1224 58 61 2:18 � 10�110�6 4.08 4.73 332 332 7038 301 312 1:18 � 100DASSL 10�2 0.62 1.45 63 60 101 7 2:26 � 10�210�4 1.57 1.98 28473 28269 30714 276 2:86 � 10010�6 3.36 4.20 53079 52532 58352 650 5:84 � 100GAM 10�2 1.76 2.03 16 15 485 14 16 5:89 � 10�210�4 2.80 3.65 51 49 1793 47 51 2:16 � 10�110�6 3.93 4.92 244 242 8699 237 244 1:04 � 100MEBDFDAE 10�2 1.25 1.52 57 55 740 8 8 2:59 � 10�210�4 2.23 2.49 274 270 2514 26 26 9:45 � 10�210�6 3.19 4.02 4622 4620 30577 303 303 1:25 � 100RADAU 10�2 1.99 2.59 23 20 176 16 23 1:18 � 10�110�4 2.49 3.57 62 55 406 43 61 3:13 � 10�110�6 2.84 3.73 58 58 847 41 55 4:53 � 10�1RADAU5 10�2 1.99 2.59 23 20 176 16 23 1:17 � 10�110�4 2.49 3.57 62 55 406 43 60 3:02 � 10�110�6 2.89 3.77 162 148 1114 95 139 7:31 � 10�1



96 CHAPTER 5. NUMERICAL EXPERIMENTS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−2

10
−1

10
0

10
1

Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

BiM     
DASSL   
GAM     
MEBDFDAE
RADAU   
RADAU5  

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−2

10
−1

10
0

10
1

Mixed−Error Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Figure 5.1: Work-Preision Diagrams for the elasti Beam problem.



5.2. THE BRUSSELATOR WITH 1D DIFFUSION PROBLEM 975.2 The Brusselator with 1D di�usion problemThe problem arises from hemial kinetis. Its mathematial formulation isa reation-di�usion partial di�erential equation. In partiular, the followingone-spatial variable formulation of the problem has been onsidered [59℄:( �u�t = A+ u2v � (B + 1)u+ ��2u�x2 ;�v�t = Bu� u2v + � �2v�x2 ;with 0 � x � 1, 0 � t � 10, A = 1, B = 3, � = 1=50 and boundaryonditions u(0; t) = u(1; t) = 1; v(0; t) = v(1; t) = 3;u(x; 0) = 1 + sin(2�x); v(x; 0) = 3:The equation is transformed into a large sti� system of ODEs by meansof the method of lines applied to the di�usion terms. In partiular, a gridof 500 points has been onsidered for the spae interval, thus leading to anIVP for a system of 1000 ODEs. By onsidering the following ordering forthe omponents of the solutiony � ( u1 v1 u2 v2 : : : )T ;where ui and vi represent the approximations at the i-th spatial grid point,the Jaobian of the resulting system turns out to be banded with upper andlower bandwidth equal to 2.Table 5.2 and Figure 5.2 present, respetively, the run harateristisand the work-preision diagrams of the numerial experiments on this prob-lem. For the diagrams we used: h0 = atol = rtol = 10�(2+m=4); m =0; : : : ; 44. We observe that sine only the omponents with indexes 7k +1; k = 0; : : : ; 142 are provided for the referene solution, the reported sdvalues refer only to them. Moreover, the mesd values have not been om-puted sine this measure of the preision is of interest only when it refers toall the omponents of the numerial solution (see [73℄).



98 CHAPTER 5. NUMERICAL EXPERIMENTSTable 5.2: Run harateristis for the Brusselator 1D problem (h0 = atol =rtol). Solver rtol sd steps aept f-eval j-eval LU-de CPUBIM 10�5 6.36 33 32 663 28 33 2:86 � 10�110�8 9.64 50 50 1268 38 49 5:20 � 10�110�11 12.77 74 73 2501 55 73 1:11 � 100DASSL 10�5 4.13 133 131 161 18 1:04 � 10�110�8 6.79 474 473 550 24 3:60 � 10�110�11 9.68 1442 1440 2014 49 1:16 � 100GAM 10�5 5.41 26 24 847 21 26 4:08 � 10�110�8 8.22 37 36 1392 27 36 7:34 � 10�110�11 11.41 74 72 3055 58 74 1:62 � 100MEBDFDAE 10�5 5.83 121 120 182 19 19 2:79 � 10�110�8 7.68 263 261 380 31 31 6:98 � 10�110�11 11.06 614 614 861 59 59 1:66 � 100RADAU 10�5 5.54 46 44 320 38 46 1:85 � 10�110�8 9.04 43 40 656 29 43 3:32 � 10�110�11 11.59 49 46 1169 28 49 5:60 � 10�1RADAU5 10�5 5.54 46 44 320 38 46 1:81 � 10�110�8 8.15 124 123 846 92 107 4:56 � 10�110�11 10.66 381 381 2637 58 169 1:18 � 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
−1

10
0

Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

BiM     
DASSL   
GAM     
MEBDFDAE
RADAU   
RADAU5  

Figure 5.2: Work-Preision Diagrams for the Brusselator 1D problem.



5.3. THE EMEP PROBLEM 995.3 The Emep problemThe problem is the hemistry part of the EMEP MSC-W ozone hemistrymodel whih is in development at the Norwegian Meteorologial Institute ofOslo, [73, 95, 96, 97℄. About 140 reations with a total of 66 speies are in-volved in the model. The time interval [t0; T ℄ = [3600 � 4; 3600 � (�4+24�5)℄overs 112 hours of simulation (the time is measured in seonds). Moreover,some of the involved speies undergo a disontinuity at sunrise and sunsetorresponding to to t = 3600 (�4 + 24 i) with i = 1; 2; 3; 4.The equation has been solved by subdividing [t0; T ℄ into 9 adjaent sub-intervals determined by the previous disontinuities. Table 5.3 and Fig-ure 5.3 ontain, respetively, the run harateristis and the work-preisiondiagrams for the Emep Problem. Sine omponents y36 and y38 are rel-atively very small and onsidered physially unimportant, they are notinluded in the omputation of the sd values. For the WPDs we used:rtol = 10�(2+m=4); m = 0; : : : ; 36; atol = 1 and h0 = 10�7.We observe that, even thought the odes DASSL and MEBDFDAE turn outto be the most eÆient ones in solving this problem, the ode BiM is ableto provide very regular results (see in partiular the WPD with the mesdon the absissae in Figure 5.3). As a matter of fat, this is not the ase forthe odes GAM, RADAU and RADAU5.Table 5.3: Run harateristis for the Emep problem (atol = 1, h0 = 10�7).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�3 2.13 2.13 368 360 5635 240 364 3:65 � 10�110�6 4.63 4.65 727 669 16960 549 713 1:01 � 10010�9 7.01 7.48 978 859 29064 647 930 1:64 � 100DASSL 10�3 2.40 2.40 1149 1093 2171 189 1:62 � 10�110�6 4.83 4.83 4145 3965 6981 459 4:99 � 10�110�9 7.40 7.68 9022 8770 12811 708 9:11 � 10�1GAM 10�3 3.46 3.46 316 282 11148 210 316 5:15 � 10�110�6 5.97 5.98 444 407 22184 324 432 1:02 � 10010�9 7.25 7.69 758 648 35939 485 697 1:65 � 100MEBDFDAE 10�3 2.35 2.35 1020 960 2247 172 172 1:81 � 10�110�6 5.18 5.18 2887 2728 5343 441 441 4:74 � 10�110�9 7.80 8.24 4962 4731 8107 713 713 7:74 � 10�1RADAU 10�3 2.46 2.46 436 382 3837 277 436 6:89 � 10�110�6 3.60 3.62 463 390 10241 281 463 2:03 � 10010�9 5.47 5.94 651 547 13929 408 650 2:81 � 100RADAU5 10�3 2.46 2.46 436 382 3837 277 436 6:80 � 10�110�6 4.43 4.45 965 905 8026 760 930 1:47 � 10010�9 5.57 6.04 1867 1756 13882 1462 1724 2:68 � 100
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Figure 5.3: Work-Preision Diagrams for the Emep problem.



5.4. THE MEDICAL AKZO NOBEL PROBLEM 1015.4 The Medial Akzo Nobel problemThe Medial Akzo Nobel researh laboratories formulated this problem inthe study of the penetration of radio-labeled antibodies into a tissue thathas been infeted by a tumor, [67℄. This study was arried out for diagnostias well as therapeuti purposes.The mathematial formulation of the model leads to a reation di�usionsystem of size 2 in one spatial dimension, (see [73℄ for further details). Theproblem is then transformed into a sti� IVP for a system of 2N ODEs bymeans of the method of lines. The Jaobian of suh system is banded withupper and lower bandwidth equal to 2.Numerial experiments were done in the ase N = 200. Table 5.4 andFigure 5.4 show the run harateristis and the work-preision diagramsrespetively. For the latter ones, we used atol = rtol = 10�(2+m=4); m =0; : : : ; 28, h0 = 10�5 rtol.We remark the ompetitiveness of the results provided by the ode BiM.In addition to this, when ompared to the other variable-order odes, theWPD orresponding to the ode BiM turns out to be the most regular.Table 5.4: Run harateristis for the Medial Akzo Nobel problem (atol =rtol; h0 = 10�5 � rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�3 3.65 3.66 73 73 972 62 73 8:78 � 10�210�6 7.23 7.29 152 152 2967 131 152 3:07 � 10�110�9 9.82 9.83 216 216 5998 194 214 6:36 � 10�1DASSL 10�3 2.34 2.35 254 239 395 50 7:16 � 10�210�6 4.64 4.71 898 873 1272 86 2:39 � 10�110�9 7.61 7.65 2363 2336 2906 120 5:72 � 10�1GAM 10�3 3.89 3.91 61 61 1538 53 61 1:14 � 10�110�6 7.17 7.18 99 99 4034 82 99 3:50 � 10�110�9 9.54 9.55 138 137 8516 114 138 7:95 � 10�1MEBDFDAE 10�3 3.36 3.44 241 230 420 53 53 9:00 � 10�210�6 6.38 6.44 686 667 1005 95 95 2:57 � 10�110�9 8.61 8.67 1342 1312 1911 147 147 5:40 � 10�1RADAU 10�3 3.62 3.68 71 70 598 43 71 5:67 � 10�210�6 6.59 6.65 85 85 1527 49 85 2:35 � 10�110�9 9.11 9.17 142 142 2490 85 141 3:91 � 10�1RADAU5 10�3 3.62 3.68 71 70 598 43 71 5:49 � 10�210�6 5.49 5.50 182 182 1370 124 169 1:29 � 10�110�9 8.31 8.46 522 522 3384 336 401 3:23 � 10�1
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Figure 5.4: Work-Preision Diagrams for the Medial Akzo Nobel problem.



5.5. THE PLATE PROBLEM 1035.5 The Plate problemThe plate problem is a linear non-autonomous problem with onstant oef-�ient matrix arising from the desription of the movement of a retangularplate under the load of a ar passing aross it, [59℄. The mathematialformulation of the problem is:8<: �2u�t2 + ! �u�t + ���u = f(x; y; t); (x; y) 2 
;uj�
 = 0; �uj�
 = 0;u(x; y; 0) = 0; ��tu(x; y; 0) = 0:The domain 
 � [0; 2℄ � [0; 4=3℄, representing the plate, is disretizedon a grid of 8� 5 interior points thus leading to an IVP for a seond-ordersystem of 40 ODEs. This is then transformed into a system of 80 �rst-orderODEs.Numerial experiments for this problem were done for ! = 1000, � = 100and integration interval [t0; T ℄ = [0; 7℄. Table 5.5 and Figure 5.5 ontain,respetively, the run harateristis and the orresponding work-preisiondiagrams. The input parameters used for the diagrams are the following:h0 = atol = rtol = 10�(2+m=4); m = 0; : : : ; 44.As one an see from the values listed in Table 5.5, the implementedstrategy onerning the evaluation of the Jaobian reognize the problem tobe linear with a onstant oeÆient matrix and, onsequently, suh evalu-ation is almost always avoided. Moreover, this is a problem for whih theorder redution phenomenon ours and the reported results prove the ef-fetiveness of the orresponding reovery implemented in the ode BiM (seeSetion 4.3.1).Table 5.5: Run harateristis for the Plate problem (h0 = atol = rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�5 5.41 7.41 21 20 522 3 19 3:99 � 10�210�8 7.40 9.51 38 37 1315 2 31 9:37 � 10�210�11 10.12 12.19 61 60 2728 2 49 1:90 � 10�1DASSL 10�5 2.81 4.95 115 112 181 15 1:76 � 10�210�8 5.62 7.98 524 520 710 26 5:78 � 10�210�11 8.14 10.08 3424 3413 4877 44 3:32 � 10�1GAM 10�5 3.50 5.64 22 20 655 17 22 4:17 � 10�210�8 6.26 8.40 38 35 1561 29 38 9:62 � 10�210�11 9.27 11.41 68 66 3641 59 68 2:09 � 10�1MEBDFDAE 10�5 3.35 5.29 96 91 152 9 9 1:77 � 10�210�8 7.14 9.08 206 202 299 23 23 3:94 � 10�210�11 10.22 12.16 445 442 636 35 35 7:80 � 10�2RADAU 10�5 3.18 5.43 21 19 107 3 18 6:07 � 10�210�8 4.42 6.56 30 29 181 2 25 9:47 � 10�210�11 6.81 8.91 47 44 341 4 37 1:51 � 10�1RADAU5 10�5 3.20 5.34 27 25 117 3 21 6:09 � 10�210�8 5.07 7.18 87 85 394 3 32 1:15 � 10�110�11 6.46 8.50 292 289 1438 4 75 3:34 � 10�1
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Figure 5.5: Work-Preision Diagrams for the Plate problem.



5.6. THE POLLUTION PROBLEM 1055.6 The Pollution problemThe problem is a hemial model onsisting of 25 reations and 20 reatingompounds. It represents the hemial reation part of the air pollutionmodel developed at The Duth National Institute of Publi Health and En-vironmental Protetion (RIVM) and it is desribed by Verwer in [103℄.The mathematial formulation of suh model produe a sti� IVP for asystem of 20 nonlinear ODEs, [73℄. The time interval [0; 60℄ is suÆient toadequately represent the behaviour of the reatants.Numerial experiments for this problem have been done with the follow-ing set of input parameters h0 = atol = rtol = 10�(2+m=2); m = 0; : : : ; 22.The odes RADAU and RADAU5 fail to solve the problem for m = 0 sinethe used stepsize beame too small. The run harateristis and the work-preision diagrams are reported in Table 5.6 and Figure 5.6 respetively.Table 5.6: Run harateristis for the Pollution problem (h0 = atol = rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�4 4.49 6.25 14 14 198 14 14 1:35 � 10�310�7 5.81 9.24 24 24 571 21 24 3:82 � 10�310�10 9.32 12.53 43 43 1241 29 43 8:25 � 10�3DASSL 10�4 1.96 3.89 35 34 55 13 8:43 � 10�410�7 4.13 5.94 135 135 190 22 2:67 � 10�310�10 5.93 9.92 381 378 497 37 6:81 � 10�3GAM 10�4 3.53 5.58 13 12 284 9 13 1:49 � 10�310�7 6.64 8.70 25 24 743 15 24 4:11 � 10�310�10 5.79 12.91 36 36 1463 26 36 8:37 � 10�3MEBDFDAE 10�4 3.15 5.18 37 37 57 10 10 8:73 � 10�410�7 4.74 6.72 123 123 184 19 19 2:72 � 10�310�10 6.98 10.75 247 247 352 34 34 5:45 � 10�3RADAU 10�4 1.23 3.05 22 18 156 15 21 1:70 � 10�310�7 3.78 5.59 32 29 227 21 32 2:48 � 10�310�10 7.75 8.77 35 35 449 21 35 4:09 � 10�3RADAU5 10�4 1.23 3.05 22 18 156 15 21 1:68 � 10�310�7 3.78 5.59 32 29 227 21 32 2:44 � 10�310�10 7.39 8.78 65 65 458 31 46 4:10 � 10�3



106 CHAPTER 5. NUMERICAL EXPERIMENTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
−3

10
−2

Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

BiM     
DASSL   
GAM     
MEBDFDAE
RADAU   
RADAU5  

2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
−3

10
−2

Mixed−Error Significant Correct Digits

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Figure 5.6: Work-Preision Diagrams for the Pollution problem.



5.7. THE RING MODULATOR PROBLEM 1075.7 The Ring Modulator problemThe problem originates from eletrial iruit analysis and desribes the be-haviour of the so-alled \ring modulator". The latter is an eletrial iruitwhih produe a mixed signal starting from two input signals: one withlow-frequeny and the seond with high frequeny, [70, 73℄. The appliationof the Kirho� Current and Voltage Laws to eah losed loop present in theiruit yields an IVP for a system of 15 nonlinear ODEs.The type and diÆulty of the problem depends on the value of the a-paity Cs in the iruit. The numerial results here presented refers toCs = 2 � 10�12 farad, for whih the resulting problem is a sti� di�erentialequation. In Table 5.7 and in Figure 5.7 the run harateristis and thework preision diagrams are shown. The input parameters used for the di-agrams are the following h0 = atol = rtol = 10�(4+m=4); m = 0; : : : ; 32.Failed runs due to overow ours when the Radau ode is used to solve theproblem with input toleranes orresponding to m = 0 � 11; 15 � 17. Weremark that, with respet to the soure ode available at [73℄, the ontrolaimed to prevent overow has been omitted.Table 5.7: Run harateristis for the Ring Modulator problem (h0 = atol =rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�4 2.22 2.91 18406 17998 420799 16831 18258 2:41 � 10010�7 6.17 7.11 25741 25091 816709 25077 25733 4:56 � 10010�10 8.83 9.52 29380 28609 1422679 28591 29376 8:13 � 100DASSL 10�4 0.46 1.15 85466 82972 115884 3510 1:26 � 10010�7 2.52 3.21 248615 244982 322234 7720 3:62 � 10010�10 4.93 5.62 749570 743521 1071129 17106 1:11 � 101GAM 10�4 1.73 2.41 13482 11731 475787 11532 13468 2:41 � 10010�7 5.32 6.01 19443 18041 914241 17194 19310 4:74 � 10010�10 7.96 8.65 34488 33218 1763773 30011 33581 9:09 � 100MEBDFDAE 10�4 1.78 2.46 65732 65404 99268 6419 6419 1:17 � 10010�7 4.64 5.33 155991 155293 217989 13796 13796 2:67 � 10010�10 7.28 7.97 348393 347390 464821 25611 25611 5:82 � 100RADAU 10�10 7.83 8.52 19617 16807 454097 7572 17076 2:90 � 100RADAU5 10�4 1.45 2.14 36373 28683 176940 8923 32269 1:49 � 10010�7 3.81 4.49 102504 93116 545239 12302 54807 3:58 � 10010�10 6.12 6.81 288746 279396 1704967 13033 142688 1:04 � 101
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Figure 5.7: Work-Preision Diagrams for the Ring Modulator problem.



5.8. THE ROBERTSON PROBLEM 1095.8 The Robertson problemThe problem desribes the kinetis of an autoatalyti reation given in1966 by Robertson, [90℄. The model involves three hemial speies and theorresponding mathematial formulation is:8<: y01 = �0:04 y1 + 104 y2 y3;y02 = 0:04 y1 � 104 y2 y3 � 3 � 107y22;y03 = 3 � 107y22 ;where t 2 [0; T ℄ and initial value y0 = (1; 0; 0)T .Numerial experiments for this problem have been done for T = 4 � 106.Table 5.9 and Figure 5.8 show respetively the run harateristis and theorresponding work-preision diagrams. For the diagrams we used h0 =atol = rtol = 10�(2+m=4); m = 0; : : : ; 44. In Table 5.8, we list the failedruns ourred during the experiments.We observe that, when high auray is required for the numerial solu-tion, the odes BiM and RADAU are the most eÆient ones.Table 5.8: Failed runs for the Robertson problem.Solver m reasonDASSL 1,2 error test failed repeatedlyMEBDFDAE 3,4,5 hmin redued by a fator of 1010RADAU and RADAU5 0-8 stepsize too smallTable 5.9: Run harateristis for the Robertson problem (h0 = atol = rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�5 5.50 8.79 59 59 1038 59 59 7:28 � 10�410�8 8.28 11.57 58 57 2213 53 58 1:53 � 10�310�11 11.39 14.48 93 92 3960 86 93 2:77 � 10�3DASSL 10�5 2.13 5.99 226 219 341 40 8:72 � 10�410�8 4.56 8.49 776 752 1116 75 2:86 � 10�310�11 7.29 10.94 1855 1817 2526 113 6:34 � 10�3GAM 10�5 4.92 8.21 51 43 1726 39 49 1:09 � 10�310�8 6.66 10.36 55 55 2989 45 55 2:03 � 10�310�11 9.65 13.03 101 101 5719 89 101 3:89 � 10�3MEBDFDAE 10�5 4.11 7.40 213 212 305 39 39 6:68 � 10�410�8 7.35 10.65 500 496 747 63 63 1:62 � 10�310�11 9.37 12.66 991 988 1446 114 114 3:19 � 10�3RADAU 10�5 3.93 7.22 61 59 488 56 61 4:57 � 10�410�8 6.83 10.12 147 145 1057 139 147 9:88 � 10�410�11 8.88 12.16 104 103 1952 91 104 1:42 � 10�3RADAU5 10�5 3.93 7.22 61 59 488 56 61 3:94 � 10�410�8 6.83 10.12 147 145 1057 139 147 8:82 � 10�410�11 8.49 11.78 416 415 2914 217 229 2:12 � 10�3



110 CHAPTER 5. NUMERICAL EXPERIMENTS

0 1 2 3 4 5 6 7 8 9 10 11 12

10
−3

10
−2

Significant Correct Digits

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

BiM     
DASSL   
GAM     
MEBDFDAE
RADAU   
RADAU5  

3 4 5 6 7 8 9 10 11 12 13 14 15

10
−3

10
−2

Mixed−Error Significant Correct Digits

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Figure 5.8: Work-Preision Diagrams for the Robertson problem.



5.9. THE VAN DER POL PROBLEM 1115.9 The van der Pol problemThe van der Pol problem originates from eletronis and desribes the be-haviour of a nonlinear vauum tube iruit, [59℄. The standard mathematialformulation of the problem is:z00 + �(z2 � 1)z0 + z = 0; � > 0:This equation has two periodi solutions: the onstant solution z(t) � 0,that is unstable, and the nontrivial periodi solution (orresponding to theinitial onditions z(0) = 2; z0(0) = 0), whih it is an attrative limit yle,sine all the other nontrivial solutions approah it, as t!1.Numerial experiments on this problem have been done by performingthe lassial transformation into a �rst-order system of 2 ODEs, and on-sidering the initial value (2; 0)T , Finally, we onsider the value � = 1000and the integration interval [0; �℄. In Table 5.10 and Figure 5.9, the runharateristis and the work-preision diagrams are shown. For the latterones, we used h0 = atol = rtol = 10�(2+m=4); m = 0; : : : ; 44.Table 5.10: Run harateristis for the van der Pol problem (h0 = atol =rtol).Solver rtol sd mesd steps aept f-eval j-eval LU-de CPUBIM 10�5 6.15 6.40 79 69 1848 66 79 9:32 � 10�410�8 8.97 9.66 123 117 3940 108 123 1:93 � 10�310�11 11.96 13.71 157 157 6397 144 157 3:12 � 10�3DASSL 10�5 4.10 4.49 354 335 574 64 1:06 � 10�310�8 6.09 6.54 973 959 1537 74 2:93 � 10�310�11 8.89 9.34 3275 3251 4861 116 9:33 � 10�3GAM 10�5 6.15 6.34 66 50 2751 42 66 1:25 � 10�310�8 7.73 7.94 101 87 5988 62 101 2:73 � 10�310�11 10.35 10.75 126 118 7743 63 117 3:54 � 10�3MEBDFDAE 10�5 3.77 4.21 336 313 562 48 48 8:67 � 10�410�8 7.07 7.47 668 647 1090 74 74 1:74 � 10�310�11 9.99 10.58 1560 1544 2337 160 160 3:98 � 10�3RADAU 10�5 4.33 5.88 127 113 1116 93 125 7:49 � 10�410�8 6.47 7.92 137 134 1877 106 133 1:12 � 10�310�11 10.95 11.14 143 135 3403 98 138 1:77 � 10�3RADAU5 10�5 5.22 6.04 146 131 1133 93 134 6:57 � 10�410�8 7.48 7.92 373 368 2813 181 306 1:63 � 10�310�11 9.46 9.95 1147 1146 8394 243 854 4:70 � 10�3
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Figure 5.9: Work-Preision Diagrams for the van der Pol problem.



5.10. FINAL REMARKS 1135.10 Final RemarksThe previous results prove that the ode BiM turns out to be a robust andreliable one. We think that suh peuliarities are mainly due to the resultsobtained with the linear analysis of onvergene for the blended iterationwhih have allowed to onstrut a ode with a very little heuristis inside.Moreover , we think that, in evaluating the usability of a numerial software,the apability of providing regular and robust results has to be taken intofull aount.In terms of eÆieny, the new ode turns out to be ompetitive withrespet to some of the best odes urrently available. In partiular, weremark that the ode BiM always well ompare with respet to the odeGAM. This omparison turns out to be of partiular interest beause of thefollowing onsiderations:� both odes make use of a nonlinear splitting for the solution of the dis-rete problem generated by the implemented blok impliit methods;� the nonlinear iteration used in BiM requires the solution of twie linearsystems per iteration with respet to the one used in GAM, for methodswith the same bloksize r.As a onsequene, the obtained results prove the high eÆieny of the pro-posed blended implementation in terms of onvergene properties of theorresponding nonlinear iteration.The ode BiM is urrently available at the WEB site:http://www.math.unifi.it/~brugnano/BiM/The page ontains the Fortran77 soure �les of the ode. Moreover, theresults obtained in several numerial experiments, among whih the oneshere reported, are also available on that page. In addition, for eah testproblem, a orresponding Fortran77 soure ode is available . The latterontains the routines for the funtion and jaobian evaluations, the de�nitionof the initial value and of the integration interval and, �nally, the referenesolution with respet to whih the preision of the numerial solution hasbeen omputed.



114 CHAPTER 5. NUMERICAL EXPERIMENTS5.11 Future ResearhSeveral diretions for future researhes onerning blended impliit methodsan be foreseen. Among them, we quote the following ones:� The researh for the implementation on parallel omputer of the odeBiM . As already observed, the diagonal splitting used in the odeBiM determines a perfet degree of parallelism of the blended iter-ation, for what onerns the system solvings and the funtion eval-uations. An implementation on parallel omputer of suh methodsseems, therefore, to be promising. Obviously, a neessary requirementfor the e�etiveness of the parallel ode, at least for small/medium sizeproblems, is a \reasonable" balane between the peak performane ofthe proessor elements of the parallel omputer and the ost for theinterproessor ommuniations. When large size problems have to besolved, instead, the use of an algorithm for a parallel deompositionis mandatory. The previous onsiderations refers to a general-purposeIVP parallel solver. However, when the ontinuous problem is of largesize and has a sparse Jaobian matrix (as it happens, for example,for the ODEs arising from the appliation of the method of lines toreation-di�usion PDEs in more than 1 dimension), the use of itera-tive methods for linear systems, in plae of diret ones, may be moreonvenient. In solving this kind of problems, a parallel version of theode BiM seems to have great potentialities;� The extension of the ode BiM for the solution of linearly impliitDAEs, M y0(t) = f(t; y); (5.1)with onstant mass matrixM and index lower or equal to 3, is a furtherimportant argument of future researh. In this ontext, the hoie ofthe weight funtion � in (4.4) has to be adapted. Then, a linear analysisof onvergene of the obtained iteration is required. Moreover, theproblem of the loal error estimates needed for the variation of boththe stepsize and the order of the method has to be investigated;� Finally, the searh for di�erent Blended Impliit Methods, with re-spet to the ones implemented in the ode BiM, represents an interest-ing subjet of further investigation. As an example, the use of basiblok impliit methods with non uniformly distributed internal absis-sae may result in an improvement of the onditioning of the oeÆientmatrix C of the method and, onsequently, of the disrete problem.
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