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1 Introduction

We give a short introduction to the Monte Carlo method and its applications.
In the first section we explain the motivations of the Monte Carlo method, we
present the random number generators and finally we discuss the error which is
made in the Monte Carlo method.

In the second section we present the Brownian motion and the link with
the heat equation. This appears as one of the most important fields in which
the Monte Carlo method is used. In fact it is well known that the Monte
Carlo method represents an alternative to analytical methods (finite differences,
finite elements) for solving numerically Partial Differential Equations in high
dimension. The starting point of such a procedure is the representation of the
solution of a partial differential equation as an expectation related to a diffusion
process (the Feynman-Kac formula). Of course this subject is much to involved
and requires a good knowledge of the stochastic calculus so we are not able to
treat it in a complete way here. But the simple case of the Brownian motion in
relation with the heat equation already represents a good introduction to the
subject and we are able to present it in an elementary frame. We also give in this
section two other algorithms (except for the Monte Carlo method) in order to
solve the heat equation: the finite differences algorithm and the tree algorithm.
So one has a view on the different ways in which the numerical problem may be
solved by analysts or probabilists.

In the third section we give an elementary description of the quantities that
one wants to compute in mathematical finance, essentially the European option
prices. We keep to an extremely superficial level and almost no proves are given.
This is just to mention one field of applications of the Monte Carlo method which
is blowing up in this moment.

Finally in the forth and last section we come back to the Monte Carlo method
itself and discuss some reduction of variance technics: control variables and
importance sampling.



2 General presentation of the Monte Carlo method

2.1 The problem

We consider the following simple problem: compute

/ f(z)dz.
[0,1]

A first deterministic method is to split [0,1] in small intervals and then to
approximate the integral by Riemann sums. Say that one takes x) = %, k=
0,...,n — 1 and one denotes I = [z, z}+1). Then
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If one looks to the error one obtains

/ F(@)dz — Su(f)
[0,1]4

where [f]; is the Lipschiz constant of f, that is |f(z) — f(y)| < [f]1 |z — y]|-

There are two things which has to be noted:

& If f is Lipschiz continuous the evaluation of the error is simple - but if f
is just a measurable function then the error may be very bad. Let us take the
toy example f = 1jg 144 where A is the set of the points in [0, 1] which have
rational coordinates. Then f[o,1]d f(@)dz =1 and S,(f) = 0 for every n (because
(k5 ---, Tk, ) has rational coordinates). So we have even not convergence.

Conclusion: if the function f is not regular there are some troubles with
deterministic methods.

¢ Suppose that we work with a Lipschiz continuous function (so there is no
problem to evaluate the error) and we want to get an error of order ¢ = 0.01.
Then ¢ = % gives n = 100 (say that [f]1 = 1). Suppose also that we are in
large dimension, say d = 30. Then which is the number of points that we have
to use? Answer: n? = 100%° = 10% and this seems rather huge.... Let us put
the problem otherwise. One allows himself to use n = 10° points - say that this
comes from the power of his computer. Then one asks about the precision that
he may obtain. If one wants to cover the interval [0, 1] with these points than
the precision is 1079 and this is fine. Now, if one wants to cover the square
[0,1]? then one obtains a precision v10-6 = 1079/ = 10~ essentially because
one has to cover each of the boards and there are two boards. If one goes on in
R? then one obtains 107%/3 = 10=2 and if one goes further to dimension d = 30

one obtains the error 1076/30 = 10~1/5 = T+ = 0.63. And this is not famous.



Conclusion: in large dimension deterministic methods get in trouble because
the number of points needed in order to cover the unit hypercube growth expo-
nentially with the dimension.

We go on and present the probabilistic approach, that is the Monte Carlo
method. Suppose that on some probability space (2, F, P) we have a sequence of
random variables X,,,n = 1, ... which take values in [0, 1]¢, and are independent
and identically distributed. In order to feet in our previous example we suppose
that they are uniformly distributed, that is P(X,, € [a,b]) = b — a. So the law
is given by the Lebsgue measure and we have E(f(X,)) = f[O,l]d f(z)dz. Then
the strong Law of Large Numbers says that

1 XN
/[0,1]d flz)dz ~ N nX::lf(Xn) a.s.

if N — oo.

So, at soon as we have the sequence X,,,n = 1,..., N the above formula
produces an approximation of our integral. And this is the Monte Carlo
method.

In the previous example we have considered the uniform law because the
integral that we have to compute is with respect to the Lebesgue’ss measure.
But in the general formulation we consider some arbitrary probability measure
i on R and we want to compute [p, f(z)du(z). Then we take the sequence
X,, to have the common law p and we have

1 N
B0 = [ f@dn(@) ~ 53X as

For example, if u is the standard Gaussian law on R then we obtain

/ f(x) L e % dr ~ li\[:f(Xn) a.s.
R1 \/ﬂ N n=1

with X, a sequence of standard Gaussian random variables.

Let us compare this approach with the deterministic one. Take the toy
example f = 1pa_y4. Since the law of X, is the Lebsgue measure, one has
P(X, € A) =0 and so f(X,) = 1 almost surely. Then %ZnNzl f(X,) =1
almost surely and our approximation is perfect. In other words X, avoids to
go in the ”bad” region A just because its law do not ”see” this region. There
is a coherence which does not appear if one chose the discretization grid in an
analytical, objective, way. So one advantage of the Monte Carlo method is that
it works well for functions which are not regular - just measurable functions. Let
us go on to the conver}gence speed. We will prove in the following section that

e f(@)dp(z) — & 3, f(Xp) ~ % in some sense which will be precized
there. And this is true in any dimension, for example for d = 30. So the
speed of convergence is dimension free. This is maybe the main advantage



of the Monte Carlo method. It is a common fact accepted by everyone that in
small dimension (typically d = 1,2 and maybe 3) one may manage to produce
deterministic algorithms which are faster then the Monte Carlo method. But as
the dimension increases, the Monte Carlo method remains the only alternative
- because the analytical methods become to heavy, need to many points... think
for example to dimension 30.

Now there are several natural questions related to the Monte Carlo method:

1. How to produce in practice a sample X1, ..., X5 of independent random
variables of a given law u? Here comes on the random number generators.

2. Which is the speed of convergence? How to measure the speed of conver-
gence? Here comes on the Central Limit Theorem, the Berry Essen theorem,
confidence intervals.

3. How to accelerate the speed of convergence in order to improve the algo-
rithms? Here comes on the reduction of variance technics as control variables,
importance sampelig, anthitetic variables.

4. Which are the typical examples in which the Monte Carlo method is used?
There will be some examples and maybe stochastic calculus and Stochastic
Differential Equations. But anyway something is clear from the beginning: the
quality which we want to compute has to written as an expectation Ef(X)!

2.2 Random numbers generator

The problem we address in this subsection is to produce a sequence of real
numbers 1, ..., xx such that 1 = X3 (w), ..., zn = Xn(w) where X1, ..., Xy is
a sample of a random variable X of given law p. Say for a moment that X has a
Bernoulli law that is P(X = 1) = P(X = —1) = 1. Then one would toast a coin
N times and note the results - and this would be the sequence z,,n =1, ..., N.
But think for a moment that N = 105. Then this takes some time and does not
seem realistic from a practical point of view. Then, what people do is that they
produce the numbers 1, ..., £ using a mathematical formula - which of course
is deterministic and consequently the result is not random. This is why we say
that the numbers z1, ..., 2y are not random numbers but ” pseudo random num-
bers”. They behave in some statistical sense as the authentic random numbers
obtained by toasting a coin, but they are not these real random numbers. But
recall that these numbers will be used in approximation algorithms, and, as we
will see in the sequel, the errors produced in this algorithms are expressed in
probabilistic terms. So the fact that we do not use real random numbers but
only pseudo random numbers produces one more ’statistical error’. The un-
comfortable fact about this is that the systhematic study of this type of error
and of its contribution to the global error seems to be very difficult to achieve
- but this is mathematics! So practicians call for a ”pseudo random number
generator” which is included in the software of their computer, this generator
generates (using of course a deterministic procedure) a sequence 1, ...,zn of
numbers and we believe that these numbers are real random numbers, that is
the result of toasting N times a coin. And we forget about the possible error
because we have more serious problems to deal with!



But there is a second problem that we have to face. There exists an infinity
of possible probability laws and the user of the Monte Carlo method would need
to produce random numbers coming from a law or another. So does the pseudo
number generator contain an infinity of sub-routines each of them corresponding
to a different law? Of course not. So the idea is the following: one is able to
produce random numbers corresponding to the uniform law on [0, 1]. This is the
only law for which we produce random numbers. Then, using some probabilistic
methods one succeed to transform the numbers 1, ..., zx which corespond to
the uniform law in some other numbers y1, ..., yn which correspond to another
law p, say the standard Gaussian law. This is done essentially for the more
important laws which appear in the probability theory: Gaussian, Poisson...
And this is done by the number generator itself, automatically. We may ask to
the random generator to produce Gaussian random numbers for example and
we get what we want - it is the computer which produces the uniform random
numbers first and then achieves the transformation itself and finally gives us
directly Gaussian random numbers. But of course there exists only a finite
number of transformations which may be included in a software so there is only
a finite number of laws for which we may obtain directly the result. What
about other laws which appear naturally in concrete problems? Here comes on
a completely different approach. In fact, when we deal with a concrete problem
a first step consists in giving a mathematical modelisation for this problem
and the model that we produce has to be compatible with an ”algorithmic
approach”. This means that this model has to be described by a finite number
of operations - if not there is no chance to implement an algorithm in order to
solve the problem. So our initial problem may be ”infinite dimensional” or may
describe some ” continuous time evolution”. But the algorithm that we produce
in order to solve numerically this problem has to be finite. So an approximation
procedure is always necessary in order to pass from our initial problem to a
finite model which may be implemented. And one part of this approximation
procedure consists in the approximation of the general laws p coming on in the
initial problem by another law @ which itself is an aggregate of ”standard laws”
for which random numbers are viable. So the chain is the following:

Produce uniformly distributed random numbers
— Produce random numbers for standard laws (Gauss, Poisson...)
— Produce random numbers for Fwhich is an agragate of standard laws

—> Approximate pby Ji.

The first two steps are achieved automatically and the computer does it. The
last two steps represent the job of the guy who modelize and implement the
algorithm. And this is specific to each particular problem at hand.

We give now an idea about the two first steps. How to obtain uniformly
distributed random numbers? One employes the following congruential method.
Four numbers Uy, a, b, m are given. Uy represents the starting point, a and b
define an affine transformation and m is the order of the congruence. So we



define recursively
Upt1 =aU, +b (modm).

Then ,in order to obtain numbers in [0, 1] one takes z, = %Un. Note that once
Up,a,b,m are given, the procedure is completely deterministic and this is why
we get "pseudo” random numbers. Note also that the sequence U, is periodic,
that is: there exists a number Ny such that U, = Uny4n,n = 1,..., Ng. This
gives the following problem: if one needs a very large sample - N is huge - then
one would exhaust the number generator. This means that if IV is larger then
Ny then the random numbers begin to behave as a periodic sequence and this
is completely different from the behavior of a really random sample from the
uniform law. So the problem of the adequacy of the pseudo random numbers
becomes serious. In practice people take care to use a number generator which
is sufficiently powerful in order to treat their problem - the length of the sample
is significantly smaller then the period of the number generator. Typically
N = 10 up to 10° and the period of the generator may be 2'¢ ~ 65000 or,
for powerful computers, 232 ~ 10°. There exists also some technics which use
a combination of congruencies as the one presented above and which permit to
obtain a period of order 26!,

Let us now present some standard transformations which produce random
numbers for other laws. We begin with the standard normal law which is

the law on R of density
1 22

T) = —F—€ 2.
p(z) Wor
We use the following identity of laws result (Box-Muller’ method): If U and V/
are two independent random variables which have uniform law on [0, 1] then

X v/ —2log U sin(27V)
Y = +/—2logU cos(27V)

are independent random variables with normal law.

Once we know this we proceed as follows. Suppose that we need a sample of
size N. We call a number generator which produces a sequences a,,,n = 1...,2N
of numbers which correspond to a sample of size 2N of independent random vari-
ables of uniform law. Then we put u, = ay,n =1,..., N and v, = anqp,n =
1,...,N. So the sequences U, = up,n =1,....,N and V,, = v,,n = 1,..., N are
independent each other and inside each sequence, the random variables are in-
dependent also. We conclude that the sequence (U, V,,) = (un,vn),n =1,.... N
represent a sample of the random variables (U, V') which are independent and
uniformly distributed. We define now

x, = +/—2loguy,sin(2nv,)
yn = /—2loguy, cos(2wvy,)

and obtain in this way a sample for the random variable (X,Y") with X and YV
independent Gaussian random variables. In particular z,,,n = 1,..., N are the
random numbers corresponding to the Gaussian random variable X.



The same idea produces random numbers corresponding to a d—dimensional
Gaussian vector (X, ..., X,) (so X;,i = 1,..., N are independent and standard
normal distributed). The components of such a vector are uncorelated, that
is BE(X;X;) = E(X;)E(X;) = 0. If we want to produce random numbers for
a Gaussian vectors with non null correlations (that is E(X;X;) = ¢) then
we have to use some diagonalization of matrix procedure so there are some
formulas from linear algebra comming on. Suppose that we want to simulate a
Gaussian random variable X which has mean a and variance . Then it suffices
to note that, if H is a standard normal distributed random variable (mean
zero and variance 1) then X = a + oH has the law we need. So we produce
hp,n =1,..., N using the above procedure and then take z,, = a+och,,. What is
important to note here is that our problem concerns just the law of the random
variable at hand and so the manipulations involving law identities are welcomed.

We have seen that everything is OK as long as we work with Gaussian
random variables, but the method presented in that case is very particular. We
present now another method, based on the repartition function and which
is much more general. Given a random variable X the repartition function is
defined by

F(z) = P(X < ).

We assume that the law of X has a continuous strictly positive density px so
that .

F(x) = / px (y)dy
and this is a strictly increasing function taking values in (0, 1). So this function
is invertible. We denote by F~! its inverse. Then we take U a random variable
which has an uniform law on (0, 1) and define H = F~1(U). One has

F(x)
PH<z)=P(F'(U)<z)=PU<F(z)) = / ldy = F(z).
0

Since H has the same repartition function as X their laws coincide. So, if we
know the repartition function of X, we proceed as follows. We produce the
sequence of random numbers u,,n = 1,..., N using the generator of uniform
distributed random numbers and then we put x, = F~!(uy).

Let us give an example: the exponential law which is given by the density
function

px(z) = /\e”‘“”l[opo) (z)

and its repartition function is F((z) = 1 — e**. It is easy to see that F~1(y) =
—1 log(1—y) and so, if U is uniformly distributed then X = —{log(1—U) has
an exponential law of parameter \.

Note that in the repartition function method one is supposed to know the
repartition function of the random variable at hand and to be able to invert it.
If one wants to use this method in order to simulate a Gaussian law for example,
then a problem appears because there is no explicit formula for the repartition
function of this law. So one may not use directly this method but has first to



approximate the repartition function by some polynomials and then to put the
machinery to work. This si why people prefer the simpler Box-Muller method.

Consider now a discrete law, that is a law on {a1, ..., a, } of discrete density
{p1, .., pn}. This does not enter in the above frame because this law is not abso-
lutely continuous with respect to the Lebesgue’s measure, but the construction
is analogous. We denote Fy = 0 and Fy = p; + ... + pi, k = 1, ...,n and, having
at hand an uniform distributed random variable U we define

n—1

X = Zakl(Fk7Fk+1](U)‘
k=0

Then X takes values in {ay, ..., a,} and
P(X = ak) = P(U € (Fk,Fk+1]) = Fk+1 — Fy, = pg-

So we have our random variable. Then we produce the sequence of random
numbers u,,n = 1,..., N and we put z,, = Zz;é arl(p,, oy (Un)-

Bibliography: A very complete discussion about random number generation
is to be found in [Dev85]. See also [Nie95] for a survey paper. Web site devoted
to Monte Carlo simulation: http://random.mat.sbg.ac.at/links/.

2.3 Error analysis

The aim of this section is to evaluate the error
en=E(X)- <) X

Now on we forget the fact that in practice one works with pseudo random
numbers and we assume that X; = X;(w) are really random variables on some
probability space (Q, F, P) and this random variables are independent and have
the same law as X. We also assume that E |X|2 is finite. In fact we will not be
very careful about the precise hypothesis that are needed but will give the main
ideas and avoid technicalities.

The specificity of our problem is that the error exy = en(w) is not a con-
stant (as in deterministic algorithms) but a random variable - because X,, =
X,(w),n =1,...,N are random variables. So the meaning of the requirement
”the error has to be small” has to be understood in a probabilistic sense and
this sense is not clear and has to be carefully precised. In fact they are several
ways to say that the error is small. The first important fact which represents the
foundation of the Monte Carlo method is the Strong Law of Large numbers
which guarantees that ey (w) — 0 for almost every w. We recall that the weak
law of large numbers says that we have convergence in probability, or maybe in

square mean, that is

2
2

E |6N| =F

E(X) - — 0.

2=

N
>,
i=1




But this is not sufficient for the foundation of the Monte Carlo method be-
cause what we have is just a sequence of numbers z, = X, (w),n = 1,.... N
which represent a particular fixed realization of the sequence of random vari-
ables X,,,n =1, ..., N. So we have not access to expectations but just to specific
realizations. In other words, we have a fixed w and we hope that this is a good
one, that is, for this precise w the convergence exn(w) — 0 holds true. The
strong law of large numbers says that the probability to be wrong is null.

So the strong law of large numbers guarantees that the error vanishes when
N — oo. The speed of convergence in the law of large numbers is given by the
Central Limit Theorem which asserts that

1 N
(CLT) N ;(Xn - E(X)) = Z.

The convergence is in law and Z is a Gaussian random variable with zero mean
. 2 . -
and variance 0> = E|X — EX|”. This may be interpreted as

N

1 A
CLT") EX)=~ — Xn+—=
(OLT) B~ 5> Xnt 7

so that

(CLT") en= Z

N N

This is a rather loosely equality because (CLT') does not give an equality for
a fixed value of N, but only an asymptotic result, as N — oc. This is why we
employ the notation "~ 7 and not "= "7 in (CLT"). But in order to be more
precise one has to employ a more sophisticated result, the Berry Essen theorem
-we discuss this further on. For the moment we note that practiciens consider
that (CLT") gives a sufficient accurate idea about the error and this is the basis
of all the error analysis which is usually done.

Let us focus on the expression of the error given in (CLT") and ask about
its significance. Note first that Z is a random variable and this random variable
may take any real value. Think for example that N is very large, say N = 106,
but we have bad lack and Z = 107. Then ex = 10 and this is not a small error.

But 2 2x7
< 1 1
P(Z>10") = / exp(—x—)da: < exp(— 0

107 O 27‘[‘ 20’2

)

and this number is astronomically small. So the probability to have such a
bad lack is almost null. But not null. So the Central Limit Theorem does not
provide a deterministic evaluation but is just a way of saying that except for
a really bad lack (which occurs with a small probability) the error is of order
zZ/ VN and Z has reasonable size. This is all it says, but people feel already
safe with this. So this is not a real problem in practice.

Let us look once again to this error. We have

|2_E|Z|2_02
- N N’

E|6N



Take once again N = 10° but think that o = 10% also. Then El|ey|* =
which means that ey ~ 1 and this error is not small. And this is a real problem
which represents one of the main difficulties that people working in concrete
implementation of the Monte Carlo method have to face. And they have to do
a lot of tricks in order to arrange things in such a way that the variance of the
random variables they work with remains reasonably small, and if they do not
succeed then the whole algorithm may fail. We will discuss this problem further
on when dealing with the so called "reduction of variance methods”.

Let us see another way of reading the information given in the Central Limit
Theorem, by means of confidence intervals. Take some a < b. Then using
(CLT") one gets

N
(CI) Pl < %;Xn—E(me):P(asENsw
VN 22
~ Pla< \/—_5 o\/ﬂ/ exp( ﬁ)dm.

We look to [a,b] as to a ’confidence interval’ in which we want that the error
lies. For example one decides to trust the result of the Monte Carlo algorithm
if the approximative value % Zgil X, lies in an interval of radius 0.01 around
the true value E(X). But, since the result produced by the Monte Carlo method
is a random variable, this will not happen for sure, and one has to accept a risk.
For example one accepts a risk of 0.001. This means that one asks that

N
P(% > Xn ¢ [E(X) - 0.01,E(X) +0.01]) < 0.001.

Then one asks the question: how large we have to take IV in order to achieve
this? In view of (CI) this amounts to

—0.01vVN z2
exp(——=)dz =
- ’_27r xp(—53)
0.01vVN
2 [T 2 2 001\/_
— exp(——)dz =P < 0.001.
v p(= e = B(————) <

Here @ is the repartition function of the standard normal distribution
1
d(z) = — / ez
(z) el A

which is tabulated. So we look in the tables and find 7 such that 2®&(—n) < 0.001

and then we take N such that 0'0;—2\/N =7 that is N = 100n%0*. Once again it
appears that if o is large then we have to take a very large N. This is the way
of computing confidence intervals.

10



Note that we still have ~ in (CI) which means that this represents a loosely
evaluation. We present now the theorem which gives the speed of convergence
in the Central Limit Theorem and so permits to obtain rigorous equalities for
the confidence intervals (even if practiciants does not really bother obout this).
In order to simply the notation we suppose that E(X) = 0 (if this is not true
then we replace X by YV = X — E(X)).

Theorem 1 (Berry-Essen) Suppose that E|X |’ < oo and Ef(X) = 0. Then

CE|X)?

X1+ ...+ Xn
B—E) 6n:= P <z)— <
( ) N sup ( ‘T) ((E) = O'\/OW

TER vV oN o
and 0.398 < C < 0.8.

The CLT says that the sequence % converge in law to the standard
normal distribution and this is equivalent to the fact that the repartition func-
tions converge to ®. The above theorem gives a precise evaluation of the speed
of convergence. Let us now see how to use this information for evaluations con-
cerning confidence intervals. So we come back to (CI) and write it (recall that
we suppose that F(X) = 0)

P~ X, € [ah) ZX ag,%b

- <Z"1X bf) p(Zaafn VN,
VoN = Ve VoN = Vo

_ bW'N B av' N

= o) - + iy

where Ry is a remainder which satisfies

20E |X?
oVoN .

The new point is that this evaluation holds true for every fixed N and not
only in a loosely asymptotic sense. What is also important to note is that the

evaluation in (B — E) is uniform with respect to z. In our case we have used this

evaluation for the values x = % and z = % And these two points "move”

|RN| < 26Ny =

as N — oo. So, if the evaluation was not uniform (”the same for all z's”) then
we would have bad surprises for large N. Just to illustrate what a bad surprise
we would have, suppose for a moment that the evaluation is not uniform. For
example we replace (B — E) by the weaker inequality

PN <) ()| <

_celxp

T € R.
— e <l

11



Then we use this inequality for our two points and we obtain

Ry < CE|X)? y b VN N CE|X)? y lal VN _ CE|X|3(|a| )
STovoN  VE | oveN e o2 ‘
And this inequality does even not say that limy Ry = 0! So the fact that (B—E)
is an uniform evaluation is a key point.

We conclude this section with a discussion on the empirical variation.
The key constant which appears in all the error evaluations presented before is
02 = E|X — E(X)?. It is clear that this constant influences on the theoretical
bounds of the error, but what practice proves is that, bond any theoretical
preoccupations, a big variance of X has a concrete influence on the algorithm
itself. So having an idea about the size of ¢ is not a theoretical preoccupation
only but a crucial point for practical implementation as well. And generally a
theoretical accurate evaluation of o is difficult to obtain in concrete examples.
So all the theory turns around a quantity that one does not really know! But
one may construct an estimator for o :

1 N 1 N
_ 2 . _
oN = T n§:1(xn ~Xn)* with Xy = n§:1Xn.

So the algorithm itself permits to obtain in the same time an estimation of the
variance and this estimator o may be used in order to measure the error by
means of the CLT or confidence intervals. Of course, from a theoretical point
of view there are some troubles because one does not know how precise this
estimator is - in order to bound the error concerning o we have to use some
evaluations CLT type and there ¢ appears again, so we come back to the starting
point. But the important think is that oy already gives a ”good” idea about
the size of o and from a practical point of view this is sufficient. And this is
considered as a very good point for the Monte Carlo method.

3 Brownian motion, heat equation and mathe-
matical finance problems

3.1 The Brownian motion

I begin with some terminology. We are given a probability space (2, F, P) and
a family of random variables X; : @ — R,t € [0,00). This is a stochastic
process. You have to think to the evolution in time (this is why ¢ appears) of
some random phenomenons. Long time ago (19’th century) a biologist (called
Brown - this is just a coincidence) observed the evolution of a particle of pollen
on the surface of very quiet water. And the particle evaluates in a completely
unreasonable way - now we would say, in a "random” way. In our notation X;
is the position of the particle at time ¢. Let us give the key properties of such a
process. We say that the process is continuous if for almost every w € Q, ¢t —

12



Xi(w) is a continuous function. We say that the process has independent
increments if for every 0 = t9 < t; < ... < t,, the random variables X;, —
Xty -y X, — Xy, _, are independent, this means that for 44, ..., A,, C R which
are measurable,

P(Xy, — Xt € Ay, Xy — X, € 4p) =
P(Xy, — X3, € A1) X .. X P(X;, — Xy, _, € Ap).

From an intuitive point of view X;, — Xy, _, says how the process moved from
Xi, , to Xy, so describes the dynamics of the process between ¢,_; and ¢;.
And this is independent of all he has done before. We say that the process is
homogenous if X;,;, — X; has the same law for every ¢, in particular the same
law as X — Xg. So he is doing all the time the ”same type” of things - but
not the same think - because X;, — X; has the same law as X, — X but they
are not equal (they are even independent, if the process is with independent
increments). The dynamics of the pollen particle from the 19’th century had all
these properties and this is why people called it Brownian motion. In fact the
definition of the Brownian motion is the following:

A process (X¢)¢>0 is called standard Brownian motion if it is continuous,
Xo = 0 and for every 0 = tg < t; < ... < t, the random vector (X;, —
Xtoy ooy Xt, — Xt ;) is Gaussian with zero mean and covariance

E(Xy, = Xy, )E(Xy, = Xyy_,) = 0 if i#)
= t;—t;1 Zf ’L:]

Note that, according to the above definition a Brownian motion has all the
above properties: it has independent increments because uncorelated Gaussian
random variables are independent, and it is homogenous because the Gaussian
random variables X, — X; and X} — Xy have both zero mean and the same
variance h, so they have the same law.

One may wonder how Brown has succeed to find the Brownian motion just
looking to a pollen particle moving on a quiet water surface... I may admit
that he observed that the small movements of the particle seem independent
each another and I can also admit that he observed that the particle does
similar things all the time. This means that he observed that the dynamics of
the particle corresponds to a continuous process with homogenous independent
increments - but how can he see appearing the density \/% exp(—””;) which is
specific to the normal distribution, just looking a particle in quiet water? This
seems a miracle - but the explanation of this miracle is to be found in the Central
Limit Theorem. In order to precise things I will give a precise statement:

Proposition 1 Suppose that X;,t > 0, is a continuous stochastic process which
is homogeneous and has independent increments. Suppose also that E |Xt|2 <
00,Vt > 0. Then there exists some constants zg,0,b such that

Xy =x9+ 0By + bt

where By, t > 0 is a standard Brownian motion.
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Remark 1 A process X; of the previous for is called a generalized Brownian
motion in contrast with the standard Brownian motion for which xg = b = 0
and o = 1.

Before giving the proof let us note that xg is the ”initial value” because
By = 0 and so, for t = 0 we have Xg = zg + 0 x 0 + b x 0. Note also that
EX; = xo + bt. This is because B; is a centered Gaussian variable so that
EB; = 0. If you thing that B; describes the ”disorder” - the movement of the
pollen particle - then you may see the dynamics of X in the following way:
There is a ”principal movement” which is described by the deterministic curve
t — xo+bt. And this movement is perturbed by a "noise” B; and o is a coefficient
which describes the intensity of this noise: for a large ¢ we have much noise and
for small o we have few noise. In mathematical finance o is called the volatility.
The deterministic movement zy + bt represents the mean of X;.

Sketch of the proof. We will not go in all the technicalities which are
needed in order to give a rigorous proof but we just give the idea which explains
the "miracle”. We assume that except the above hypothesis we also know that
EX; = 0 which amounts to take b = g = 0. Then the assertion is that there
exists o such that X; = 0B; where B is a Brownian motion. The striking fact
is that this means that X; has a Gaussian law. This is what we have to prove
now. In order to simplify even more the notation we will do it for t = 1.

We take some n € N and cut the time interval [0,1] in n equal intervals of
length % Then we write

k=1

Here and in the sequel we denote X(t) for X;. If we put Ay = X(%£) -

n

X(k%),k = 1,...,n then these are independent identically distributed ran-
dom variables - this is what our hypothesis say. We also have EA;, = EA; =
EX(%) = 0 because of our supplementary assumption. Note also that, since
they are identically distributed, they have the same variance. Let a2 = E |X(%) |2
be the common variance. Let us see which is the relation between a,, and the

variance of X (1) = 3"}, Ax. We have

> A
k=1

Note that for k& # p, Ay, and A, are independent random variables of zero mean
so that E(AyA,) = E(Ar)E(A,) = 0. We conclude that

e

k=1 p=1

EIX(1))*=E

EIX(]* =Y. E(A}) = nal.
k=1

Denote now 02 = E|X(1)|> - we know from our hypothesis that this quantity
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2

is finite. Then we have 0% = na? so that

o2
ap = —.
n

We are now ready to employ the Central Limit Theorem. Define

U= VA,

a

Then U,k = 1,...,n are independent identically distributed random variables
with zero mean and variance one. We also have

1 1 <& 1 &
~X(1) == Ap = — Us.
U() Ukz::lk \/ﬁkz::lk

The Central Limit Theorem says that ﬁ > i—1 Uy, converges in law to a random
variable which is normal distributed and has variance one (note that for different
values of n the laws of the Uy, k = 1, ..., n are different so the standard CLT does
not work directly - one has to use a slight variant which is the so called CLT
for "triangles” - but such a theorem exists, and so let us admit the fact that the
convergence to the normal law takes place). Then we pass to the limit in the
above equality. The term in the right hand side converges to a standard normal
distributed random variable and the term in the left hand side remains all the
time the same. So we conclude that %X(l) has a standard normal distribution
and so X (1) has a normal distribution of mean zero and variance ¢. O

This is the proof. And so the miracle comes from the fact that matter the
laws of Uy, the renormalzed sum \/Lﬁ > i_y Ui always converge to the normal

law - and this is why the density \/% exp(—g—Q) appears. This is a central fact
which is crucial for probabilistic modelisation. Because Brown may observe
some qalitative properties of movement of the pollen particle but he is not able
to do any computation. But after using the CLT we know the precise law of
the increments of our stochastic process and this is a quantitative information
which permits to start computations!

Before going further I have to stop and to mention that from a mathematical
point of view things are not so simple. For example a mathematical will ask if
the Brownian motion exists. Even the sense in which such a question has to be
asked correctly represents a big theoretical effort, and we live this out. We keep
ourselves to the level of intuition - Brown looking to the pollen particle - it is
there, so it exists.

We present now a discrete version of the Brownian motion - the Random
Walk. This is an original man who toasts a coin in order to decide if he goes
to the right or to the left. We take the time grid t;, = kh where h > 0. At
each moment ¢; the man steps to the right or to the left with a step of size
0 > 0. In order to decide in which direction he will go he toasts a coin and goes
with probability % to the left and with probability % to the right. We denote
by X} the position of the man at time ¢;. Then what we are saying is that the
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sequence of random variables X1 — X are independent and P(X 1 — Xi =
§) = P(Xp41 — X, = —8) = . This is a random walk. Now we would like to
pass to the limit with A — 0 and § — 0 and see what happens. It turns out
that we have to be careful and take the time step h and the space step § in a
certain given echilibrium - if not everything blows up or vanishes. And the right
equilibrium is given once again by the Central Limit Theorem. We have to take
h= % and § = ﬁ so that § = v/h - the space step is the square-root of the time

space. Suppose that this is true and let us see where the man will be at time ¢.

Up to this moment he has done n; = [nt] steps (because @ <t< %) and
0 he will be in X,,, = g:i]l (X — Xk—1) (we suppose that one starts from the

origin, that is Xo = 0). Let us denote Uy, = \/n(Xy — Xj_1) so that

X, e B Y
NG n /]
We have P(Uj, = +1) = P(Uy = —1) =  so that

_ Ui + ---U[nt] _ [nt] U, + ---U[nt}

EUy=0 and EU}=1.

The CLT says that % converges in law to a standard normal distribution.
n

On the other hand @ — v/t and so X,,, = B; in law, where B; is a centred
Gaussian random variable of variance ¢ - that is the Brownian motion. So we
have

Proposition 2 If the time step and the space step of a random walk are in
the relation 6, = \/hy, then the random walk converges in law to the Brownian
motion as n — oQ.

Think once again to Brown’s pollen particle. In fact the motion of this par-
ticle is more like a random walk then like a Brownian motion: at infinitesimal
time intervals the particle moves to the left or to the right, according to in-
finitesimal movements of the water. But the particle has no coin - so this is not
exactly a random walk. Anyway, from a ”statistical point of view”, since the
time step is infinitesimal and the space step is also infinitesimal, the Brownian
motion is a good approximation of the dynamics of the particle. Another think
that one remarks looking to the pollen particle is that it moves all the time but
does not go far away! This is because it does not go in a given direction but
once to the left, two times to the right and so on... The same happens with the
random walk. Think for example that n = 100. Then the time step is h,, = ﬁ
and the space step is §, = %. This means that the space step is huge with
respect to the time step - so one moves very much in a short time interval -
but it does not go to far. This is just disorder. As a consequence one has the
following striking fact about the Brownian path: ¢ — By is continuous but is
never differentiable. This means that it is a very rough line - on can even not
make a precise drawing of it!
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3.2 The heat equation
The heat equation is the following.

Oou o2 8%u
(H) E(t,x) = 7@(

u(©0,2) = f(x)

where o > 0 is a given parameter. The function f is called the initial condition.
One looks for a function u : [0,00) x R — R which is one time differentiable
with respect to the time variable ¢ and two times differentiable with respect to
the space variable z and which verifies the equation given above. The physical
interpretation of this equation is the following. We have a (infinite) bar and z is
a point on this bar. At time ¢t = 0 we have a quantity f(z) of heat in the point
x. So f represents the initial distribution of temperature in the bar. As time
goes this distribution changes (very warm points become less warm and very
cool points become wormer). Then u(t,z),z € R, represents the distribution
of the temperature at time ¢. And this distribution evaluates all the time. The
heat equation describes this evolution.

In order to understand better what is going on we consider a discrete variant
of this equation (as the random walk was a discrete variant of the Brownian
motion). So instead of continous time we consider just a discrete time grid
tr = kh,k € N and instead of a continuous space variable we consider a discrete
grid =, = pd,p € Z. And we look to the function u(ty, z,) which represents the
quantity of heat at time ¢; in the point z, of the bar. Let us write down the
discrete version of the equation (H). In order to do it we have to replace the
derivatives which appear there with some ”discrete versions”. First of all

t,z), t>0,z€R,

8_u(t T ) ~ H(tk + haxp) — H(tkaxp) _ ﬂ(tk+1ﬂxl)) — H(tkaxp)
ot h h '
Moreover the second order derivative is approximated by
o%u g—g(tk,zp+6) — %(tk,xp)
g (o)~ ;
ﬂ(tk,1p+5)fﬂ(tk,1p) _ E(tk,zp)fﬂ(tk,zpfé)
- 5 5
)
_ U(tk, Ty + 5) + ﬂ(tk, Tp — (5) — Qﬂ(tk, CCp)
= 5 .
So we replace the equation (H) by
— ﬂ(thrl , :pr) — ﬂ(tk, .T,‘p) o? ﬂ(tk, Ty + (5) + ﬂ(tk, Ty — (5) — 2ﬂ(tk, l‘p)
(H) = 5 2 ’
h 2 0
u(0,7,) = f(zp).
If we solve the above equation we obtain
_ _ o’h _ _ _
Wtgt1,2p) = U(tr,xp) + == (W(te, zp + 0) + u(ty, xp — §) — 2u(ty, xp))

262
(0,7,) = f(xp).

17



This is a recursive formula which gives us the dynamics of the heat potential.
Note that this produces also an algorithm which permits to solve the equation.
In fact we know the solution at the time level tg = 0 from the initial condition.
Then using the equation we may compute

h
ﬂ(tl, .T,'p) = ﬂ(to, ilfp) + W(ﬂ(to, Tp + (S) + ﬂ(to, Tp — (S) — 2ﬂ(t0, ilfp))

Now we know u(ti,zp),r, € Z and we may use (H) in order to compute
U(ta, xp), xp € Z, and so on. So we have here an approximation scheme. This is
the so called "finite differences” scheme because the derivatives are computed
by a finite difference approximation. It is the simpler analytical approxima-
tion method. More sophisticated methods using ”finite elements” are used in
practice.

We go now further to the probabilistic interpretation of the solution of the
heat equation. We consider a standard Brownian motion B; and we define

u(t,z) = E(f(x + oBy)).
Theorem 2 u(t,z) = E(f(x+0B;)) is the unique solution of the heat equation.

Proof. Since B; is Gaussian we have

E(f(z + oBy) = / F@)pe( y)dy

with

pr(,y) = —— exp(— 7= oI ).
oV 2nt 202t

We compute the derivatives now

0 ey) = e 2y 1 0 ool
ot o2t 202t 2t Ot 20%t
_ 1 |z =y
- pt(may)( 2t+ 20’2t2 )
and
0 . T —y
a_xpt(zay) - pt(‘ray) 0'2t 3
0? 1 z—y)?
@Pt(iﬂay) = Pt(iﬂay)(m (UTQ))-
So we obtain
o2 02 0
7@1%(37731) = gpt(x,y)

that is the heat equation. O
We have here the simplest form of a very deep result: the Feynman Kac
formula. This formula says that the solution of a Partial Differential Equation
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(in short PDE) may be represented as the expectation of the initial value func-
tion computed on the trajectories of a diffusion process. In our very particular
case we are in dimension one so we have no ”partial derivatives” but just usual
derivatives. We have also the simplest example of diffusion process, that is the
Brownian motion. But the idea is already there: one things that heat is moving
in the bar as the pollen particle moves in water. So there is some dynamics
of an underlying stochastic process which give rise to the deterministic PDE.
And the solution of the deterministic PDF is nothing else then the expectation
(average, behavior in "mean value”) of the underlying process. So we have two
ways of telling the story, in two different languages: the deterministic language
- and then we have PDE’s. And the probabilistic language and then we have
”diffusion processes”. And we pass from the probabilistic point of view to the
deterministic one just by taking expectations.

It is worth to mention that this is also the starting point of the Monte Carlo
method for computing solutions of PDE’s. Because, as told in the beginning,
the basic fact which permits to start an Monte Carlo algorithm is that the
quantity which is to be computed is an expectation. And the F-K formula
produces this representation.

3.3 Algorithms

We already have two algorithms for computing the solution u(t, z).

4 Monte Carlo. We take a sequence A', ..., AV of standard independent
Gaussian random variables. We put B! := 0/tA’. Then Bj will be independent
random variables which have the same law as the Brownian motion underlying
our model. So the Monte Carlo method consists in computing

N
u(t,z) = E(f(z + By)) ~ % Zf(x + VotA™).

¢ Finite differences. We employ the formula (H). What people are doing
usually is to take d = h = % Then one computes recursively
2

(Step 0)  u(0,2p) = f(zp)

1
(Step k) U(tes1,7,) = u(te,zp) + T(ﬂ(tkyxp + E) +
1
u(ty, zp — E) — 2u(ty, zp))

where 2, = £ and t, = L.

It is clear that here we face the "boundary problem”. At the step k& we
have to know the values of w(ty,z,) for infinitely many values of z,, and this is
not possible. In order to solve this difficulty one takes a ”very large” interval
[x — M,z + M] and assumes that the values of u(ty,z,) for =, outside of this
interval does not really meter. So one defines u(ty,z,) = 0 if x, ¢ [-M, M]

- and so one comes back to a finite dimensional problem (a finite number of
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points). Now the question is: how to determine M7 One way of doing it is to
employ the probabilistic representation of the solution. One writes

u(t,z) = E(f(z + By)) =
E(f(z + Bi)lp—me+m)(@ + Br) + E(f (2 + Be)lz— Mzt v (x + By)).

Then one ignores the second term (there where we are far from the starting
point ). Say that we admit an error Then we want to have

M
1
E(f(x + Bi)ljg—marm)e(z + By)) < 1000°
Suppose that | f(y)| < K for every y. We write
E(f(x + Bt)ljg— M ztme (517 + Bt))

Iyl
< By| > M) =2K d
< KP(B [ et M

M/o%t 2 M 1

= QK/OO \/—Q_ﬂ_exp(—%)dy = 2KP(~ ) S Toos.

where @ is the repartition function of the standard normal distribution -which

is tabulated. So we look in the tables for the value of n for which ®(—n) =
1/2000K and take M = otn.

Another point which is to be stressed is the following. We want to compute
the solution u of the heat equation in one point, precisely in (¢, z). If we
perform the analytical algorithm (finite differences for example) we are obliged
to compute, in the intermediary steps, the approximative values of the solution
in the points of a whole time-space grid (tx,z,). This may be considered as
an advantage because we obtain, as a free by-product of the algorithm, the
whole surface of the solution. And this advantage is crucial in some ”non-linear
problems” (we do not discuss here such problems). But in the linear problem
at hand this is "optional” . If we are able to do it, this is great, but we are not
obliged to do it if we want just the value in (¢, ). And this is what the Monte
Carlo method is doing - computing directly the solution in (¢, z) without having
to compute this solution on a whole time-space grid. If we are in dimension
one (z € R) then this advantage is not essential - and anyway in dimension
one everyone will use a deterministic algorithm as finite differences which works
much better then the Monte Carlo method. But if z € R®® then the space grid
will be in dimension 30 and we have seen that in such a grid we need a huge
amounts of points. Consequently the task of computing the solution on the
whole grid becomes out of rich - this is the frame in which one has to give up
the deterministic method and use Monte Carlo. And here the fact that we may
compute directly the solution, without having to use the grid approximation,
becomes crucial.

4 The tree method. This method is closed to the finite differences method.
We think that we have a random walk in the time grid: at time ¢;, we arein z,, we
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toast a coin and we go with probability % in z,—; and with probability % inzpyq.
This may be interpreted as a tree: at time ¢y = 0 we have just one point 2 = z,
at time ¢; = h we have two points (lives) z_1 = x¢ — ¢ and x1 = x¢ + J, at time
to we have the points x_o =21 — 6, 2_1, 20 = 2T_1+0 =21 — 0, 21,25 = 21 + 0
and so on. This is the tree. Now we recall that the condition which is necessary
in order that the random walk converges to the Brownian motion (and so does
not blow up and does not vanish) is that time and space are in a good relation,
namely & = v/h. So if we take h = L we have to take § = % This is different

from the finite differences method in which we take 6 = h = % We denote now

by X (¢1) the random walk. Since the random walk approximates the Brownian
motion we have o
u(t,z) = E(f(z + By)) ~ E(f(X(ta))

where t,, . We compute now the above quantity using the so called Dy-
namical Programing Principle. This principle amounts, in probabilistic
language, to take conditional expectations. Denote

vi(z) = E(f(X(tn) | X (tn-1) = 2).

_ ]
n

Then
B(f(X(tn))) = E(E(f(X(tn) | X(tn-1))) = E(v1(X (tn-1)))-

This means that we have transformed an expectation concerning X (¢,) into
an expectation concerning X (¢, 1). So we make a step down in the tree. The
price is that we have to replace the function vy = f by the function vi(z) =
E(vo(X (tp) | X(tn—1) = x). We will do this n times. So we define recursively

(Aky1) vk (2) = BE(X(tn1) | X (b (41)) = )

and write

E(f(X(t)) = E@o(X(ta)) = E(E(o(X(tn) | X(tamr))) = E(r (X (tn-1))
= BB X (ta1) | X(ta2) = E@a(X(t2)))

= E(va(X(to))) = vn(a0)-

So, if we are able to compute v,(zg) we have in fact computed E(f(X (t,))).
This is done recursively: at step 1 we know the initial condition wvo(zp) =
f(zp),p = —n,...,n and we "compute” vi(z,),p = —(n —1),...,n — 1 according
to (A1). Then we know vy (zp),p = —(n—1),...,n—1 and we compute v1(zp),p =
—(n —2),...,n — 2 according to (4s), and so on.

Now the question is how to perform numerically (A 1). Note that X (t,_z) €
{&_k, ...,z } and note also that if X (t,—j) = z, then we have X (t,_(x41)) =
Zp—1 OF Tpy (One arrives in x, coming from z,_; or zp41). So we have

—
S5
—
=
—
3
~—
=

(A1) ors1 () = B0k (T (tos) | Kt ) = 2)
= S@pe) + oy )
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This is the tree algorithm. As the finite difference method, it is a ”grid
method” and works very well in low dimension, but is useless in high dimension.

The tree method presented above in connection with the random walk is a
good frame in which one may see what a ”diffusion process” represents. Recall
that the pollen particle which is in position z, at time ¢, will move at the
right or at the left with probability % and then, at time ?,4; will be in the
position z, 1 or ,.;. This means that X(t,41) = X (¢,) + A where Ay is a
random variable which is independent of the past - in particular of X(,) and
takes values +§ with probability % We insist on the fact that the movement
described by Ay is independent of the starting point z,. But one may think
that this is not true and in fact the point in which the process is located at time
t, has an influence on the movement - and in fact this is generally the case. For
example there are some regions in which water is more quite and other regions in
which the water moves more - and consequently the impulse given to the pollen
particle will be stronger. As a consequence the amplitude of the movement will
be more important. In order to describe this type of phenomenons one has to
consider a coefficient which multiplies Ay and which represents the amplitude of
the motion which is specific to the point z,. So our dynamics are now described
by the more general equation

Y(tn-‘rl) = Y(tn) + (X (tn)) A

From an analytical point of view this amounts to replace the heat equation with
constant coefficients by an equation which state dependent coefficients:

1) Pm = TDTG 0 is0ser
u(0,2) = f(x).

From a probabilistic point of view this amounts to replace the Brownian
motion by a more complicated process which is called diffusion process. Such
processes appear as solutions of so called Stochastic Differential Equations. We
discuss this in a following section.

Another point which is to be discussed is the ”multi-dimensional” case. In
fact the pollen particle moves in R? and not in R! and so the position is described
by © = (z1,z2). But the random walk and the Brownian motion have been
presented as one dimensional motions. In fact, in the two dimensional case on
has to assume that each component moves as an independent Brownian motion.
So instead of one Brownian motion B; we have two independent Brownian
motions B} and B? and each of the variables x; and z; moves according to
one of these Brownian motions. Since for each fixed ¢, B} and B} are two
independent Gaussian random variables, the couple B; = (B}, B?) € R? is a
two dimensional Gaussian variable so all we said before extends to the multi-
dimensional case. In all generality an d—dimensional Brownian motion is a
process B; = (B},...B{) which takes values in R?, is continuous homogenous
and has independent increments of gaussian law. The components B}, ...Bf are
supposed to be independent. So the density of the law of B; is given by the
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d—dimensional Gaussian density: Now if we consider a general process X; =
(X}, ..., X)) with X} = 2; + 04;B} + b't then the components X!, ..., X7 are
independent and the density of the law of X; is given by

E(f(Xy) = /Rdf(y)pt(a:,y)dx with

d

~ 1 (zi —yi — b'1)°
pt(.’E, y) - (27Tt)d/2Hd 10 eXP( ; 20’121t )
. )

1 x; —y; — bit)?
11 eXp(—( : y,2 : )-
1 \/ﬁ 205t

We have denoted o;; instead of the more natural notation ¢; because general
one considers a process of the form

d
X} =z + Zaing +bit, i=1,...d
j=1

In this case X; is still a Gaussian random variable but the components are
no more independent. We have a Gaussian vector of covariance matrix o =
(03j)ij=1,....a that is E(X{X] — BE(X{)E(X})) = 0y;.

Let us come back (just for notational simplicity) to independent components
and also assume for simplicity that ' = 0. Put X;(z) instead of X; in order to
notice that the starting point is z and denote u(t,z) = E(f(X¢(z)). The same
computations based on the density p;(z,y) as in the one dimensional case show
that u solves the d—dimensional heat equation

ou d o2 8%u
(H) E(t,m) = Z——zt:z: t>0,z €R,
=1 Z
u(0,z) = f(il?)-

Notice that partial derivatives come on here - and this is why such an equation
is called a Partial Derivatives Equation (PDE).

If one goes a step further and make the computations in the more general
frame described above (the covariance matrix o appears and the coefficients
bi,i = 1,...,d are no more null) then one finds that u(t,z) = E(f(X;(z)) solves
the PDE

(H) %(t,x} = Lu(t,xz), t>0,z€ R,
u(0,z) = f(z)
where L is the second order differential operator
d d
1 0*u ; Ou .
Lu(t,z) = 3 ;1 - oz, -(t, @) + ;b oz, (t,z) with
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d
Qi = E Oik0Ojk-
k=1

Computations are a little bit more complicated but of exactly the same nature
as in the one dimensional case. What is to be stressed is that the Brownian
motion o;; B gives rise to second order derivatives in the PDE while the time
bit gives rise to first order derivatives. This is because path of the Brownian
motion ¢ — B} is much more irregular then the standard ”time” ¢ — b't -
but a rigorous development of this idea supposes a much more involved theory
(stochastic calculus).

Finally, in order to obtain the completely general form of the heat equation
one has to assume that ¢ and b depend on the space variable  and the time
variable ¢ so that

d 9 d

——(t,z) + Zbi(t,w)%(t,w).

ZT; :Ifj =1 i

In fact this is the really interesting situation from the point of view of nu-
merical calculus - in the case of constant coefficients we already have the explicit
expression of the density p;(z,y) and this is sufficient in order to compute ex-
plicit solutions of the heat equation. But if the coefficients are not constant
explicit solutions are not known and this is why "numerical solutions” have to
be produced. Note also that in the one dimensional case numerical methods as
the finite differences of the tree method are very simple and so one does not
employ the Monte Carlo method, but if we consider higher dimensions then we
have the grid problems mentioned in the first section and this is why we have
to employ the Monte Carlo method.

3.4 Diffusion Processes

We come back to our initial example of the pollen particle moving on the water
surface. We recall that the dynamics of the particle were produced by the small
movements of the water - but what was specific there was that these movements
were the same does not matter the position of the particle - in other words we
were in an homogenous frame. We consider now the more general situation
when the frame is no more homogeneous: there are some regions in which the
water is very still and then the intensity of its action on the particle is very small
and there are some other regions in which the this intensity is more important.
It is difficult to model this phenomenons directly in continuous time-space, so
we will model it by means of the random walk first. We recall the construction
of the random walk. We fix n and take the time step h = % and the space step
6= \/Lﬁ Then we define recursively

1
Ui,

X" (tpt1) = X" (te) + N
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where t;, = * and U,k = 0,1, ... are independent random variables such that
P(Uy = 1) = P(Uy = —1) = 3. We interpret this as follows: at time #; the
particle is in the position X" (¢;) and then moves to the left or to the right
(U, = £1) with probability 3 and with a step § = \/Lﬁ The ”intensity” of the
action on the particle is here 1. If we want to consider another intensity say o
we have to put ﬁUk and if we want to include some ”drift” action we have to

k
n

add % So we obtain

X"(tr1) = X"(te) + %Uk + %

This random walk will no more converge to the standard Brownian motion but
to the generalized Brownian motion X () = X (0) + 0 B; + bt. The arguments are
the same (the CLT). But we are still in an space-homogenous situation because
the intensity of the action on the particle is described by ¢ and b and these are
constants which does not depend on the position of the particle. If we want to
include the non-homogeneous frame we have to consider instead of a constant o
a function o(x) which represents the intensity in the point . Then our scheme
becomes

X7 (t) = X7(0) + =0 (X )V + LU (00).
This is the random walk which modelize the dynamics of the particle in an
inhomogeneous frame. This is also known as the Euler Scheme based on the
Bernoulli sample Uy, k = 0,..., And this is an approximation for a ”diffusion
process” which is a generalization of the generalized Brownian motion in the
sense that instead of the constants o and b which appear there we will have
some functions - but this generalization has to be done carefully and so in fact,
for the moment we have the approximation but do not have the limit in noway.

I will try now to explain how diffusion processes are constructed (but I do
not go up to the end). First of all I will replace the Bernoulli distributed ran-
dom variables Uy by some standard normal distributed, independent, random
variables V}, so that the new Euler Scheme is now

X" (tear) = X™(t4) + %U(X”(tk))Vk + %b(X”(tk)).
This is known as the Euler scheme based on Normal distributed random vari-
ables. T may legitimate such a new choice by the model hypothesis itself - the
water pushes the particle with a force which is normal distributed instead of
Bernoulli - who may know exactly what water is doing....Another more math-
ematical motivation would be that the limit is the same does not matter the
law of U, - and this comes from the fact that the limit is the same in the Cen-
tral Limit Theorem does not matter the law of the random variables which are
involved. Anyway, now on I take Vj. I consider now a Brownian motion By
and I replace ﬁVk by B(tr+1) — B(tx). Note that these two random variables
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have the same law - they are normal distributed with mean zero and variance
ﬁ. Note also that X™(#;) is a function of Vj,..., Vx_1 - this is true just by
the recursive construction given above. So there exists a complicated function

frx such that X (tx) = fi (Vo, ..., Vk—1). Now if I change Vj by another random
variable which has the same law, the law of the functional remains the same. So
the law of X (¢;) constructed with \/LHV,c or with B(tg+1) — B(tx) is the same.
We conclude that as long as we discuss convergence in law (and this is the case
here) we may define

X"(tpg1) = X" (tr) + o (X" (k) (B(tk1) — B(te)) + %b(Xn(tk))

where By is a given Brownian motion.
This is the first step of our reasoning. In a second stage we use the recurrence
formula and write

k k
X"(01) = X"(10)+ 3 0(X (1) (Bltsa) — B) + 5 3 WX (1)
k k
= @0+ Y o (X" () (Bltirn) = B(t)) + 3 X" (1) (tir — to)

This is known as the Euler Scheme bsed on the Brownian increaments. The
advantage of this way of writing things is that Riemann sums appear. It is clear
that Zf:o b(X™(t;))(tg+1 — tr) is a Riemann sum for fot b(X™(s))ds. For the
first sum things are much less clear. If ¢ — B; is differentiable (but it is not!)
one would have B(t;11) — B(t;) = ftii“ B'(s)ds and then

k t
> o(X" () (Bltiar) = B(t) ~ [ a(Xp)Bids.
i=0

But this is not rigorous. And this also shows that there will be ruther difficult
to give a sense to such an integral. But one may define a new type of integral,
called ”stochastic integral” and then

k t
(X" (1)) (B(tisn) — B(t:)) ~ / o(X1)dB,
i=0 0

where in the right hand side you have the notation for a stochastic integral. If
you accept this you will expect that X;* converges to the solution of

X(t) =z —I-/O (X (s))dBs +/0 b(X (s))ds

where the stochastic integral appears. Note that the Euler scheme was an
”algorithm” in the sense that one computes recursively X" (¢;). But now we
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have an equation because X appears in both sides of the equality - this is a so
called Stochastic Differential Equation. So it is not a priory clear that a solution
of this equation exists and if yes, that it is unique. One may prove that if the
coefficients o and b are Lipschiz continuous then there exists a unique solution
of this equation and such a solution is called Diffusion Process. One is also
able to prove that the two first Euler schemes (based on the Bernoulli random
variables Uy, or on the normal distributed random variables V},) converge in law
to the diffusion process. If we put B(t;+1) — B(t;) in the Euler Scheme then the
convergence is even stronger (in LP for example). There is a huge amount of
work on this topic and you will find it in any book of stochastic calculus under
the title ”approximation of diffusion process”. It is motivated by numerical
applications as we will see in a moment.

The link between diffusion processes and Partial Differential equations is
the same as in the case of the generalized Brownian motion - but the proof is
more involved now and employes stochastic calculus. Nevertheless the following
result, known as the Faynmann Kac formula, is true. Define

u(t,x) = BE(f(X(t,2))

where X (¢, z) is the diffusion process which starts from x - that is the solution
of the above Stochastic Differential Equation with g = 2. Then u is the unique
solution of the second order differential equation

du 1, 0% du B
Outt,) = 20t @) 22 (40) ) 2 t0) (0,2) = @),

Recall that in the case of the Brownian motion X (¢,z) = 2 + B; and we know
the density of the law of this random variable. This is why we proved very
easily the statement: we just checked that the Gaussian density verifies the
hear equation. But now the density of the law of X (¢, x) is no more known (and
may even not exist) and this is why the previous argument breaks down. This
is also why it is necessary to use numerical methods in order to compute the
solution u - because we have no explicit formula for it.

Now we are really in business with the Monte Carlo method. Let us describe
how this method works in this frame. We want to compute u(t, z) for some fixed
t and z. We proceed as follows:

Step 1. We represent the solution by means of the diffusion process, that is
u(t,z) = E(f(X (t,3)).

Step 2. We have now a quantity which is represented as an expectation so
we may use the Monte Carlo method in order to compute this quantity. In
order to do it we have to simulate a sample of the random variable at hand,
that is of f(X (¢,2)). In order to do it we have to know the law of this random
variable - but we do not know it. In fact, if we knew the law, than we would
also know the mean of the random variable - this appears as rather paradoxal.
But the answer is the following. We approximate the diffusion process by the
Euler Scheme (one of the variants presented above) and so we have

u(t,z) = E(f(X(t,2))) = E(f(X"(t,))) + en
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where ¢, is an error that I will discuss in a moment. Now we will com-
pute E(f(X"(t,x))) instead of E(f(X(t,2))). Since we are able to simulate
F(X"(t,z)) the paradox is now solved.

Step 3. We simulate X"(ty, ),k = 1,...,n in the following way. We want to
produce M independent copies of X"(1, z), that we denote by X™1(1,z), ...., XM (1, ).
We call a random number generator and we produce a long sequence of indepen-
dent random variables V,,,p = 1, .... of standard normal law (or Bernoulli if you
want). Then we re index these random variables as (V', ..., V1), ..., (VM, ..., V.M).

We will use the random variables (V{, ..., V;!) in order to construct X™¢(1,z).
This is done by the recursive algorithm

Xni0,x) =
. . 1 . o1 ;
X (thr) = XoM(t) + —=o (XM (t)) Vi + —b(X™ ().
(tk+1) (k)+\/ﬁa( (tx)) Vi + —b(X™(tk))
Now we have our sample X™!(1,z),...., XM (1, z) and we may compute

M
X" (00) = 57 Y FX(1,2) 46,

where §,, is the error in the Monte Carlo method.

This is the algorithm. Let us make several comments..

First of all: we replace the "unknown” random variable X (¢,z) by some
"known” random variable X™(¢,z). This random variables is known because
it appears as a complex but explicit functional of a finite number of standard
normal distributed random variables - and we are able to simulate such random
variables. So we have the following chain: 1. We produce uniform distributed
random variables by the congruential method. 2. We extend the procedure by
some clever transformation and we produce Gaussian random variables. 3. We
make some complicated puzzles with Gaussian random variables (I mean the
Euler Scheme) and we produce sufficiently accurate approximations of diffusion
processes. This is the chain every time that we want to use the Monte Carlo
method: we have to approximate the random variable at hand (which we can
not simulate because we do not know the law, because if we know the law we also
know the mean value) by some function of a finite number of random variables
which we may simulate.

What about errors? The error d,, is controlled by the Central Limit Theorem
and we will have all the "reduction of variance” problems we mentioned in the

firs section.. The approximation error &, may be of order ﬁ in very bad

situations but under reasonable hypothesis one may see that it is of order %
Finally we discuss the following strange thing. Our initial modelization
was done using the random walk and so our initial model was directly the Euler
scheme. Afterwards we pretended that we may introduce the diffusion processes
by passing to the limit with n — oc, and so we replaced a discrete time model
by a continuous time model. Finally we stressed that we may compute nothing
directly for the continuous time model and so we have to take some discrete
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time approximation (the Euler scheme) in order to perform our computations.
And this introduced an error &,,. But why not using directly the initial Euler
Scheme which we have used for the modelisation? Why are we obliged to pass
through the continuous time model? Just to make pleasure to mathematicians?
This would be a very convenient reason but there is a deeper one. Think once
again to the pollen particle and to water pushing it. What do you think: water
employes Bernoulli random variables or standard normal distributed random
variables in order to push the pollen particle? In other words, which is the
structure of the action which is going on? We do not know. The only think we
know is that the successive actions at times t;, k = 0, ...,n are independent and
identically distributed. Of course this is a model hypothesis but this hypothesis
is common sense while saying that water employes Bernoulli random variables is
non-sense. And the striking thing is that doesn’tt matter the specific structure
(law) of the infinitesimal actions, the limit is has always the same law - this
is the specificity of the Central Limit Theorem which gives a normal law does
not matter the law of the random variables at hand (in our frame the limit law
is the law of the diffusion process which, if the coefficients are not constants,
is not normal. But the phenomenons is the same). We conclude that in our
problem there is not only one approximation but we have two approximations:
We have a physical phenomenons which is in discrete time and which involves a
multitude of infinitesimal actions.. We approximate this discrete phenomenons
by a continuous time phenomenons which is the diffusion process. The diffusion
process does not represent the real phenomenons but just an ideal model for it -
and this ideal model represents somehow an approximation of the very complex
real physical phenomenons.. The reason of being of this approximation is that
we do not know the specific structure of the infinitesimal actions which produce
the real phenomenons and then we have to use the Central Limit Theorem in
order to "forget” this unknown specific structure. Once we have the ideal model
- in continuous time - we produce a second approximation by the Euler scheme.
But this time we know the law of the infinitesimal actions V}, because it is us
who decide on which law we will use in our approximation. So the second Euler
scheme is known and is different from the initial one which was unknown.

3.5 What does people compute in mathematical finance
problems?

An introduction to mathematical finance requires an important investments.
First of all one needs a consistent background concerning stochastic processes,
stochastic calculus and partial differential equations. On the other hand the
understanding of the financial problems themselves take a little bit time. So
a serious introduction in this topic is out of rich in our frame. But on the
other hand mathematical finance provides interesting and concrete problems in
which the Monte Carlo method is intensively used by practicients. So it is very
interesting for us to have an idea about what these people want to compute,
even if the theory which lids to these problems remains beond our control. This
is why I will tell you a story rather then trying the impossible task of honestly
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covering the subject.

A market model is described by two types of assets. First of all a riskless
asset SY which represent the quantity of money you have in the bank. It is
supposed that the bank account has a deterministic rate of return which is
given by a constant and known interest rate > 0. This means that if at time
t = 0 you have a quantity S; = so of money in the bank account then at
time ¢ your bank account is SY = s¢e”’. In fact things are more complicated
and there exists a whole theory of the interest rates but we keep here in the
simplest possible situation (and this is general the frame in which people discuss
the ”option market models”). Except the riskless asset there is a second asset
which is subject to a random evolution and so to risk - for example a given stock
which is quoted in the stock exchange market. Let S; be the price in the market
of the stock at time ¢. Generally one considers a finite number of stocks and not
a single one, but we keep for the moment in the one dimensional setting so .S; is
a real strictly positive number. This is subject to random fluctuations so in fact
we have a random process, and at each fixed time ¢, a random variable S;(w).
The question is now how to modelize the evolution of this process, which is the
natural law that we have to expect for S;7 Saying that S; is just random is too
poor and does not permit to make computations related to the price evolution.
Let us see which are the natural model hypothesis that we may assume. First
of all we assume that the evolution of the price is continuous, so t — S; is
supposed to be a continuous function. The second hypothesis is that if we are
at time ¢ and look to the variation of the price Siyp — St then this variation is
independent of the past evolution of the price, that is of all S;,0 < s < ¢. This
hypothesis may be subject to some objections: for example one would expect
that, if the price is very high then it has a tendency to go down, or someone
else would say that if in the previous month the prices went up, then they
will continue to go up - something as an inertia of the market. Such economic
considerations are beond my competency but one may see in any mathematical
finance book that the independence hypothesis is universally accepted. This is
somehow a minimal hypothesis in order to construct a model which is sufficiently
simple and robust - and consequently permits to ”compute things”. But there
is a more subtle think to be noted. In order to understand this let us think to
a stock which has the price S; = 100 euros at time ¢ and Sy, = 110 euros.
Then the increment is S;1, — Sy = 10 euros. Think now that at time ¢ the price
was S; = 10 euros and at time ¢ + h the price is Syy, = 20 euros. Then the
increment is still Sy, — Sy = 10 euros but in the first case we have a variation
of 10% and in the second case the price is double! And it is more credible that
the price moves with 10% for a short period, say h = one month, then with
100%. And so it appears that the size of the increment Sy, — S; depends on
the size of the price S; - and then it is not independent. We conclude that
there is a problem concerning the independence hypothesis. But the answer
is already in the example: it is not significant to look to the increment of the
price itself, but to the ”relative increment” that is to (Sgyn — St)/St. This is
the quantity which is significant for the performance of the stock, and not the
absolute value of the increment. In the first case 1 euro gives 1.1 euros and
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in the second case 1 euro gives 2 euros, so the performance in not the same.
This lids us to the correct hypothesis: for each tg < t; < ...t, the relative
increments (Sy,,, —St,)/St,i =1,...,n — 1 are independent. So we assume that
t — S; is a process with independent relative increaments. Some simple
considerations show that this is the same thing as t — X; := log S; is a process
with independent increments.. Finally we assume homogeneity and of course
we do it in terms of relative increments also. This amounts to say that given
h >0, (St4n—St)/ St have the same law for every ¢ > 0. Passing to the logarithm
this is equivalent with the fact that X;;, — X; have the same law for every ¢.
So our hypothesis is

(H) The process X; = InS;is a continuous process which is homogenuos

and has independent increaments.

We add to this the more technical and cautionable hypothesis that EX}? < oo -
this just means that we do not expect that prices are too high - and we accept
it.

Now if we make these ”qualitative” hypothesis, the theorem given in a pre-
vious section guarantees that there exists a standard Brownian motion B; and
some constants xg, o, b such that X; = z¢ + 0B; + bt. And consequently

(B — S.Model) S;= eXt = B0t Betbt — g ooBitbt it 5o = 0.

This is the celebrated Black-Scholes model. The miracle here is that we
started with some ”random process” Sy on which nothing was known and, after
making some rather natural calitative hypothesis we find a model in which ev-
erything is computable. Anyway note that there are still two parameters which
are not known: the coefficient ¢ which is called volatility in mathematical fi-
nance and the coefficient b. For reasons that I can not explain here b is not
important - it just disappears in the computations which are done in mathe-
matical finance. At the contrary one needs to know the volatility o and there
is no theoretical way to determine it. In some way one would say that ”it is
the market who determine the volatility” and this means that people trading
in the market have a certain dealing about the fact that the price would move
very fast - and the o will be large - or will be rather stable, and then o is rather
small. But this dealing is difficult to determine and measure and it is not the
dealing of one person but of huge and unknown aggregate of people. So there
is no way to have a clear idea about what o has to be. But people have to
know o if they want to compute something. There is a huge variety of more or
less empirical methods for getting an idea about what a reasonable value of o
may be - and all these methods entered in the so called ”calibration theory”.
But in our frame we assume that ¢ is known and so the law of S; is completely
determined.

Let us come back to history. The first who observed a phenomenons which
was of the ”same nature” as the Brownian motion was Brown. But he did no
computations related to it. The first who is known to have used the Brownian
motion in a physical model and who has done computations with it was Einstein
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in a paper from 1905 - but I do not know more on this paper. But before
Einstein, around 1900 it was Bachelier who used the Brownian motion exactly
in the frame here - to give some market model. Unfortunately his work did
not have much echo. Maybe because the market activity was not sufficiently
developed at that time but for sure because he has done an error - he tried
to model the stock price itself as a Brownian motion and not the logarithm of
the price. And of course this was not satisfactory - in particular the price may
be negative with non-null probability if it is a Brownian motion. It is only in
the years 70’s that Black and Scholes, independently of the work of Bachelier,
introduced the model presented here. Meantime, between the years 30 and 70
a huge amount of work has been done concerning the Brownian motion and
a very consistent theory concerning Markov processes, diffusion processes and
stochastic calculus appeared. So the theoretical basis needed in mathematical
finance already existed at that time. Important contributions to the foundation
of this theory has been done by Winner in the years 30 and this is why the
Brownian motion is also called the Winner process.

Let us make a step further and come to the notion of ”options” and more
precisely ”European options”. It is somehow an insurance contract. Let us give
an example in order to understand what it is. You have an Italian company
which produces cars and these cars will be sold in one year. But the price of
a car may go down and the company wants to insure itself against a very law
price. Say that cars are sold now a day at 10500 euros a price and if the price
will be less then 10000 euros in one year then the company has serious troubles.
So they want an insurance against such an event - this means that they want
that some bank pays what is lost if the price goes beond 10000. In this case
the stock is the price of the car. So So = 10500 today and evolutes according a
stochastic process S;. The company wants to sell the car in one year, say T' =1
year. This is the ”time horizont or the maturity. In one year the price of the
car will be S and this is a random variable and no one knows today this future
price. So the company wants that the bank pays to him the amount 10000 — St
if this sum is positive - which means that the price of a car is lower then 10000.
In the case that Sp > 10000 then there is no problem and nothing happens.
This is called a put option, K := 10000 is called the strike of the option and
(K — St)4+ - which represents the amount of money that the bank pays to the
company at time 7T - is called the payoff or contingent claim. Of course the
company has to pay a certain sum to the bank for this insurance contract and
this is the price of the option. In order to understand why such a contract
is called an option we have to put it other way. The contract says that the
company has the right to sell to the bank a car at time T, at price K = 10000.
If the price St is lower then 10000 the bank is obliged by this contract to buy
the car at this price and this amounts to payment of 10000 — St. If the price
is larger then 10000, say 10020 then the company will not sell the car to the
bank but in the regular market. So the company is not obliged to sell - this is
an ”option”. If Sy < 10000 the company exercises the option and if not, she
does not exercise. Note that the company has the right to exercise (or not) his
option at the time 7" exactly - this restriction is specific to ” European options”.
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If the company has the right to exercise at any time ¢ < T then such an option
is called an ” American option”. In the specific case we present here this is an
European put option and if one may exercise at any moment before 7' this is
an American put option. This gives the right to sell. If the option gives the
right to buy, then we have a call option. For example the company is working
in euros but in six month they have to make a deal in dollars. So they need
to buy one million dollars in six month and they want to insure against a high
price of the dollar. Now the stock is just the dollar. Nowadays one dollar is
0.97 euros and one wants to be sure not to have to pay more then 1 euro for
one dollar. So now the strike is K = 1 and the maturity is 7' = six month. The
payoff is (Sp — K)4 where Sy is the price of a dollar in euros in six month.
Once again this is an option: in six month, if the dollar is 1.01 the company
exercises the option and buys the dollars to the bank for 1 dollar for 1 euro. If
the price is 0.98 they buy the dollar on the market - and so do not exercise the
option. This operations amounts to the fact that the bank pays to the company
the sum (St —1)4 at time T. Of course there is a price for this option - a certain
price that the company pays at time ¢ = 0. And the first problem is to find the
price which will be convenient both for the company and for the bank.

Now the question is the following: how to determine the price of an European
option, and in order to be more specific, of an European call option. So we have
to pay a deterministic sum P, at time ¢ = 0 in order to obtain the stochastic
sum (St — K)4 at time T. Which is the right Py to be payed?

I will not answer to this question - it seems to me that this is too involved
and needs some more detailed discussions concerning the so called arbitrage
theory in mathematical finance. So I just give the formula which is used and
live for a serious mathematical finance course the motivation of this formula.
One has

Py=e"TE*((ST - K)4).

Note that in this formula we consider an expectation with respect to the prob-
ability P* (this is the sense of E*). But who is P*? It is the so called ”risk
neutral probability” which plays a central part in mathematical finance. So
from the beginning we face the following problem: the price of an European
option is computed as an expectation (and this is great because we may use the
Monte Carlo method) but this expectation is not taken with respect to the ”nat-
ural” probability measure but with respect to another probability.... and this
seems bad, because we loose all the advantage we have won by the Black-Scholes
model: in this model we know, up to the constants o and b, the law of Sy but if
we change of probability, then this variable changes of law and so once again we
know nothing. Here comes on the arbitrage theory which not only explains why
the price is computed as an expectation under the ”risk neutral probability”
but also gives the law (dynamics) of the price under this new probability. It is
proved that

. o2
(B — S.Model*) S; = spe”Bi=2t with sq = e
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where B* is a Brownian motion under P*. So the price formula becomes
Py = e_’"TE*((soe”B;_g_zT—K)Jr) =e 7T /00 (soe"y_éT—K)Jr ! e_%dy.
oo V2rT
And so the price is completely known (note that b does not appear in this
formula - it depends just on o). Some elementary computations (exercise) per-
mit to express this integral in terms of the repartition function of the standard
normal distribution:

(B—S.Formula) Py = s0®(d))— Ke "'®(dy) where

S0 o2

g = SBRACEST g =4 —oVT.
oVT
This is the celebrated Black-Scholes formula for the call option price. An ana-
logues formula holds true for the put option price. The success of this formula is
due to its simplicity - once we know the price of the stock at time ¢ = 0, we may
compute the price of the option just using a table for the normal distribution
repartition function. But then what the Monte Carlo may still do here? In the
case of a call option on a single stock, nothing - the formula gives everything.
But in more complicated problems ”closed formulas” are not available and then
one has to use approximation methods. Suppose for example that the payoff is
not ¢(z) = (x — K)4 but a general function ¢. Then the pricing formula is the
same

a2

« > o2 1
Py=e "TE (p(soe”P1 2 1)) = efrT/ P(s0e7 "7 T)

V2rT

but now we have no more closed formula in order to compute this quantity. And
we use the Monte Carlo method.

We finish this section with the link between the pricing formula and DPE's.
You can see that the price Py is a function of the initial value of the price x = sq
and of the maturity 7. So one may write

e*%dy

g2
w(T,s0) = Po = e "TE*(¢(s0e”Pr=2 1)) =

e T /OO o(s e"y*§T) ! efgdy
0 gy .
oo V2rT
Some standard computations (change of variable + the same computations as
in the case of the heat equation) show that u solves the PDED
ou o22? 6%u
— =——(t,x) u(0,2) = ¢(x).
e te) u(0,2) = 6(a)
So in order to compute the price we have to solve a PDFE and this may be
done by the finite differences method or by a tree method as well. In practice,
as long as people work in low dimension (one or two) they employ this type of
methods, but if we are in higher dimension we have to employ the Monte Carlo
method. Here the dimension is the dimension of the stock - up to now we are
in dimension one because we have a single stock, but if we work on the CAC 40
then we will have 40 stocks which are involved in the formula.
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