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Abstract

Given the integral ∫ a

−a

f(x)ω(x)dx,

with f a continuous function and ω a positive weight, the Golub–Welsch
algorithm [1] is the classical way to compute the knots xi and the weights
wi, i = 1, . . . , n, of the Gaussian quadrature rule

n∑
i=1

f(xi)wi.

In particular, the knots xi are the eigenvalues of a tridiagonal matrix of
order n, called Jacobi matrix, whose nonzero entries are the coefficients of
the three–term recurrence relation of the sequence of orthogonal polynomi-
als associated to ω. Moreover, known xi, i = 1, . . . , n, the corresponding
weight wi can be obtained from the first component of the eigenvector
associated to xi.

If ω is a symmetric function, the knots xi and the weights wi, i =
1, . . . , n, can be obtained by solving a tridiagonal eigenvalue problem of
size n/2 [2].

Exploiting the algorithm proposed in [2], we derive an efficient and
highly accurate method to compute the knots and the weights of Gaussian
quadrature rules corresponding to symmetric weights ω.
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