Tridiagonal matrices and fast and accurate computation of symmetric Gaussian quadrature rules

Teresa Laudadio^{*} <u>Nicola Mastronardi</u>^{*} Paul Van Dooren[†]

Workshop "Donato Trigiante: il matematico, l'uomo, le idee"

Abstract

Given the integral

$$\int_{-a}^{a} f(x)\omega(x)dx,$$

with f a continuous function and ω a positive weight, the Golub–Welsch algorithm [1] is the classical way to compute the knots x_i and the weights w_i , $i = 1, \ldots, n$, of the Gaussian quadrature rule

$$\sum_{i=1}^{n} f(x_i) w_i.$$

In particular, the knots x_i are the eigenvalues of a tridiagonal matrix of order n, called *Jacobi* matrix, whose nonzero entries are the coefficients of the three-term recurrence relation of the sequence of orthogonal polynomials associated to ω . Moreover, known x_i , $i = 1, \ldots, n$, the corresponding weight w_i can be obtained from the first component of the eigenvector associated to x_i .

If ω is a symmetric function, the knots x_i and the weights w_i , $i = 1, \ldots, n$, can be obtained by solving a tridiagonal eigenvalue problem of size n/2 [2].

Exploiting the algorithm proposed in [2], we derive an efficient and highly accurate method to compute the knots and the weights of Gaussian quadrature rules corresponding to symmetric weights ω .

References

1. G.H. Golub, J.H. Welsch. Calculation of Gauss quadrature rules. *Math. Comp.* 23 (1969) 221–230.

2. G. Meurant, A. Sommariva. Fast variants of the Golub and Welsch algorithm for symmetric weight functions in matlab. *Numer. Algor.* 67 (2014) 491–506.

^{*}IAC-CNR, Bari

[†]Catholic University of Louvain