Matrix-Oriented Discretization Methods for Evolutionary Problems

Maria Chiara D'Autilia * Massimo Frittelli *

Ivonne Sgura^{*} Valeria Simoncini[†]

Workshop "Donato Trigiante: il matematico, l'uomo, le idee"

Abstract

An interesting class of PDE evolutionary problems is given by reactiondiffusion systems where the coupling between diffusion and nonlinear kinetics can lead to the so-called Turing instability. In this case, a variety of spatial patterns can be attained as stationary solutions for longtime integration. To capture the morphological peculiarities of the Turing patterns, a very fine space discretization may be required, limiting the use of standard (vector-based) ODE solvers in time because of excessive computational costs.

We show that the structure of the diffusion matrix can be exploited to build matrix-based versions of some classical time integrators, such as Implicit-Explicit (IMEX) schemes. In particular, we consider finite differences on square domains and classical Lagrangian FEM of order k =1,..., 4 on x-normal domains and even on special surfaces. In the first case, the discrete problem is then reformulated as a sequence of Sylvester matrix equations, that we solve by the *reduced approach* in the associated spectral space [1,3]. On general domains, at each time step, *multiterm Sylvester matrix equations* must be solved, where the additional terms account for the geometric contribution of the domain shape. In this case, we solve the matrix equations by the matrix-oriented form of the Preconditioned Conjugate Gradient (MO-PCG) method [2].

We illustrate our findings by applying the IMEX Euler method for: i) the semilinear heat equation and ii) the approximation of Turing patterns in the reaction-diffusion DIB model describing metal growth during battery charging processes. Encouraging results justify the matrix approach in terms of execution times and memory storage.

References

1. M.C. D'Autilia, I. Sgura, V. Simoncini. Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications. *Comput. Math. Appl.* 79 (2020) 2067–2085.

2. M. Frittelli, I. Sgura. Matrix-oriented FEM discretization for stationary and timedependent PDEs on *x*-normal domains. *submitted* (2021).

3. V. Simoncini. Computational methods for linear matrix equations. *SIAM Rev.* 58, no. 3 (2016) 377–441.

^{*}Università del Salento

[†]Università di Bologna