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∗ Dipartimento di Matematica, Università di Bari, Via Orabona 4, I-70125 Bari (Italy),
felix@dm.uniba.it, fax:+39 080 5460612
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Abstract: The use of symmetric schemes has revealed interesting stability properties for the
long time simulation of conservative, and in particular Hamiltonian systems. By using one
of the simplest symmetric formulae, namely the trapezoidal method, we show that, under
certain circumstances, one can attach to the discrete system a discrete energy function and
therefore obtain a discrete conservative dynamical system.
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1 Introduction

There is a great deal of experimental evidence that symmetric methods display good stability
properties when applied to different classes of dynamical systems that possess a first integral
(generally the energy function)[3, 9]. A systematic analytical study to give a theoretical account
for their good long time behavior is more recent and generally based upon a backward error analysis
approach. This means that one tries to fit a continuous system (the so called modified equation) to
the given numerical method, to an arbitrary order of accuracy, and then retrieves information on
the numerical solution by looking at the continuous problem. This technique has proven successful
for the investigation of symplectic methods and later on it has been extended to the study of
symmetric methods [1, 5, 6].

For many interesting situations, the diagram that displays the energy function evaluated at
the points of the numerical solution versus the time is similar to that reported in Figure 1 where
the trapezoidal method has been applied to solve the nonlinear pendulum equation (H(p, q) =
1/2p2 − cos(q)). The sequence H(pn, qn) undergoes regular bounded oscillations whose amplitude
is proportional to hp, where h is the stepsize of integration and p the order of the method (in [4]
the authors find out a condition symmetric schemes must satisfy in order to share such behavior).
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Figure 1: The trapezoidal method applied to solve the nonlinear pendulum equation nearly pre-
serves the energy of the continuous system (right plot), as a comparison between H(yn) and H(y(t))
reveals. Initial condition: (p0, q0) = (0.5, 0.2); integration time interval: [0, 500]; stepsize h = 0.5.

A more specific issue that one can pose is whether, to the discrete dynamical system obtained
by the application of a given numerical method to a conservative (in particular Hamiltonian)
continuous system, it is possible to attach a term that is exactly preserved by the numerical
solution and may be interpreted as a discrete energy term that is O(hp)-close to the original one.
The present paper focusses on this aspect. In the next section we introduce the discrete line
integral induced by symmetric schemes and the definition of conservative discrete vector fields.
Subsequently we confine our investigation to 2D systems and to the trapezoidal method: this
choice will make the analysis simpler without diminishing the richness of the problem.

2 Discrete conservative vector fields

We consider a continuously differentiable vector field f = [f1(y), f2(y), . . . , fr(y)]T defined on
Ω ⊂ Rr and its projection {f(yi)} onto an orthogonal grid D ⊂ Ω. D is made up of a finite

number of points yi = [y
(1)
i , y

(2)
i , . . . , y

(r)
i ]T defined as the intersection of orthogonal hyperplanes

of dimension r − 1 spanned by r − 1 unit vectors ei = [0, 0, . . . , 1, . . . , 0]T .
The generic cell of the grid is a hypercube identified by its 2r vertices yi +

∑n
j=1 ωjhijej where

hij is the length of the jth edge, and ωj is either 0 or 1 (the left picture of Figure 2 plots a cell in
R3). Two adjacent points on the grid are two points belonging to the same cell, while an oriented
path γ on D will be a sequence of adjacent points: γ = (y1, y2, . . . , yn) (if yn = y1, γ defines a
closed path). γ may also be thought of as a path on Ω by joining each couple of adjacent vertices
(yi, yi+1) by means of a continuous curve which, for the moment, we assume to be the segment
γi(t) = yi + t(yi+1 − yi) (central plot of Figure 2).

As is well known, the line integral of the continuous vector field on the segment γi is defined as

∫

γi

f · dy ≡
∫ 1

0

γ̇i(t)
T f(γi(t))dt =

∫ 1

0

(yi+1 − yi)T f(γi(t))dt, (1)

while the line integral on the path γ (which is indeed a broken line) is retrieved by summing up
the above integrals along the segments γi:

∫

γ

f · dy ≡
n−1∑

i=1

∫

γi

f · dy. (2)

Approximating the integral on the right hand side of (1) by means of a quadrature formula, allows

c© 2006 European Society of Computational Methods in Sciences and Engineering
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us to introduce the definition of discrete line integral on the path γ:

∑

γ

f ·∆y ≡
n−1∑

i=1


(yi+1 − yi)T

∑̀

j=0

Ajf(yi + cj(yi+1 − yi))


 , (3)

where Aj are the weights of the quadrature formula corresponding to the abscissae cj ∈ [0, 1].
One property of (2) we want to be retained by (3) is its reversal symmetry, that is, reversing

the orientation of the path only yields a change of sign in the discrete line integral:

∑

−γ
f ·∆y = −

∑

γ

f ·∆y, (4)

where −γ is the path obtained by reversing the order of the vertices: −γ = (yn, yn−1, . . . , y1). It
is easy to verify that this condition, for a generic vector field, is equivalent to the symmetry of the
quadrature formula:

cj = 1− c`−j , Aj = A`−j , j = 1, . . . , `.

For example the trapezoidal rule yields

∑

−γi
f ·∆y =

1

2
(yi − yi+1)T (f(yi+1) + f(yi)) = −1

2
(yi+1 − yi)T (f(yi) + f(yi+1)) = −

∑

γi

f ·∆y

while the rectangle formula would give

∑

γi

f ·∆y = (yi+1 − yi)T f(yi) and
∑

−γi
f ·∆y = (yi − yi+1)T f(yi+1).

The importance of the above property and the consequent choice of symmetric quadrature formulae
in the definition (3) is well understood by considering the following definition.

Definition 2.1 A discrete vector field is conservative if its circulation vanishes over any closed
path: ∑

γ

f ·∆y = 0, for any closed path γ. (5)

Choosing as a closed path the path σ = γ ∪−γ, we see that a necessary condition for a vector field
to be conservative is that the underlying quadrature formula be symmetric.

We remark that, apart from the trapezoidal rule (for which ` = 1, c0 = 0, c1 = 1), (3) requires
the evaluation of f at points yi + cj(yi+1 − yi) not belonging to D, located over the segment

(yi, yi+1). Such extra points give rise to a finer grid D̃ which is embedded in the coarser grid D:
they are solely used as a tool to retrieve a more accurate approximation in the quadrature formula.

Of course, generalizations of the discrete line integral (3) are easily obtained by acting on
either the choice of the curve γi or the specific quadrature formulae. For example, one possibility
is to allow the points of the internal grid D̃ not to be aligned and to take γi as the broken line
joining such points (see the right plot of Figure 2). Another important consequence of property (4)
(independent of whether or not the vector field is conservative) is that the circulation along any
arbitrary closed path may be seen as a sum of circulations on elementary closed paths made up of
triangles, because all the sides γi that do not belong to the given contour, contribute with both
the terms

∑
γi
f ·∆y and

∑
−γi f ·∆y (see Figure 3). This allows us to confine our investigation

to such elementary contours to verify properties that are valid for any wider contour. To a certain
extent, this is the analogue of what happens in the continuous case when the local character of

c© 2006 European Society of Computational Methods in Sciences and Engineering
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Figure 2: Left plot: a cell in R3. Central plot: a 2-dimensional path on D (dots) and on Ω (broken
line) joining the points A,B ∈ D. Right plot: a triangle with two internal abscissae on each side
(small dots); the solid lines represent the coarse grid D while the dotted lines form the internal
grid D̃.

the vector field (its divergence, curl, etc.), is used to investigate its behaviour over a given finite
region. Even better, the classical approach (see for example [2]) is that of first computing the flow
(or the circulation) over infinitesimal regions (contours) where the vector field may be assumed
of constant value and then obtaining its local properties as the limit of a certain discretization
parameter that makes the region shrink to a point.

In addition, the circulation over an arbitrary triangle in Rr, r > 2, may be computed as sums
of circulations of triangles in Rr−1. This is a useful tool also to extend properties proven in a given
dimension (in the simplest case in R2), to a higher dimension simply using an inductive procedure
as the following example shows.

Example 2.2 Let us compute the circulation of a three-dimensional vector field f = [f1(p, q, s),
f2(p, q, s), f3(p, q, s)]T over the triangle ABC of Figure 3 (right plot). As already remarked, we
could work separately on the triangles OBC, OCA and OAB and then sum up the three contri-
butions. In any case, assuming O(p, q, s), A(p, q, s + ∆s), B(p + ∆p, q, s), C(p, q + ∆q, s), we
get

∑

γ

f ·∆y =
∆q∆s

2

[
∆qf3

∆q
− ∆sf2

∆s

]
+

∆p∆s

2

[
∆sf1

∆s
− ∆pf3

∆p

]
+

∆p∆q

2

[
∆pf2

∆p
− ∆qf1

∆q

]
,

which we recognize to be the discrete analogue of Stokes’ theorem after defining the discrete curl
vector of a three-dimensional discrete vector field F = [F1, F2, F3]T on the grid D as the vector
with orthogonal components:

(curlF )p =
∆qF3

∆q
− ∆sF2

∆s
, (curlF )q =

∆sF1

∆s
− ∆pF3

∆p
, (curlF )s =

∆pF2

∆p
− ∆qF1

∆q
.

Of course also in this case one has to repeat the computation over all the possible triangles that
may occur in an arbitrary closed path.

The next two subsections show better the closeness between the discrete and continuous ap-
proaches. We confine our study to the trapezoidal formula because it contains all the most impor-
tant features of the other symmetric formulae, allowing an easier understanding of the behaviour

c© 2006 European Society of Computational Methods in Sciences and Engineering
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Figure 3: Adding up the individual circulations of suitable triangles, results in a net circulation
over a given contour. In the right picture the circulation over the triangle ABC, embedded in R3

is computed as the sum of the circulations of three triangles embedded in R2: OAB, OBC and
OCA.

of the associated discrete vector field. For this method, (3) reads

∑

γ

f ·∆y =
1

2

n−1∑

i=1

(yi+1 − yi)T (f(yi) + f(yi+1)). (6)

3 Two dimensional vector fields

Let us compute the circulation of a two-dimensional vector field f = [f1(p, q), f2(p, q)]T over the
generic triangle T1 having a contour γ1 = (y0, y1, y2, y0) with vertices y0 = (p, q), y1 = (p+ ∆p, q),
y2 = (p, q + ∆q) (see Figure 4). Applying formula (6) yields

∑

γ1

f ·∆y =
1

2
[∆p(f1(y0) + f1(y1))−∆p(f1(y1) + f1(y2))+

∆q(f2(y1) + f2(y2))−∆q(f2(y2) + f2(y0))]

=
∆p∆q

2

[
∆pf2

∆p
− ∆qf1

∆q

]
,

where ∆pf(p, q) = f(p+ ∆p, q)− f(p, q) and ∆qf(p, q) = f(p, q+ ∆q)− f(p, q) are the increments
of f along the orthogonal directions p and q evaluated at y0, respectively.

We have obtained the analogue of the divergence (or Gauss) theorem for continuous vector
fields. This may be understood by considering that the scalar product f · ∆y coincides with
F · ∆n where F ≡ [F1, F2]T = [−f2, f1]T and ∆n = [−∆y2,∆y1]T are orthogonal to f and ∆y
respectively and therefore ∆n lies in the orthogonal direction of the path (we can assume that it
defines an outward direction with respect to the closed oriented curve γ because, otherwise, we
simply need to change the signs of ∆n and F ). Therefore, by defining the net normal flow of a
discrete 2-dimensional vector field F (p, q) through the region S bounded by a closed path γ as:

∑

γ

F ·∆n ≡
∑

γ

JF ·∆s, J =

(
0 1
−1 0

)
, (7)

c© 2006 European Society of Computational Methods in Sciences and Engineering
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that is as the circulation of the vector JF along the path γ, for the triangle of this example we
arrive at ∑

γ

F ·∆n =
∆p∆q

2

[
∆pF1

∆p
+

∆qF2

∆q

]
,

which coincides with the discrete version of the Gauss theorem, provided that we define the discrete
divergence operator on the grid D as:

divF =
∆pF1

∆p
+

∆qF2

∆q
.

Of course, one obtains the formulation of

(p, q)

∆p∆p−

∆q

∆q−

T1T2

T3 T4

Figure 4: The four shapes of a triangle.

the Gauss theorem corresponding to an arbi-
trary region enclosed in a given contour, by
just summing up the individual flows through
all the triangles that form a partition of the
region itself and canceling out all the terms re-
lated to the internal segments. To this end, we
notice that any region interior to a grid, may
be partitioned into triangles whose shapes are
like those of the triangles Ti, i = 1, . . . , 4 in
Figure 4. Repeating the computation of the
circulation on the boundaries γi of Ti, i =
2, 3, 4, we arrive at the following four formu-

las pertaining a generic point (p, q) of the grid:

∑

γ1

f ·∆y =
∆p∆q

2

[
∆pf2

∆p
− ∆qf1

∆q

]
,

∑

γ2

f ·∆y =
∆p−∆q

2

[
∆−p f2

∆p−
− ∆qf1

∆q

]
,

∑

γ3

f ·∆y =
∆p−∆q−

2

[
∆−p f2

∆p−
− ∆−q f1

∆q−

]
,

∑

γ4

f ·∆y =
∆p∆q−

2

[
∆pf2

∆p
− ∆−q f1

∆q−

]
,

where, for example, ∆−p f2(p, q) = f2(p, q) − f2(p − ∆p−, q). Conservativity of the vector field is
then equivalent to the relations

∆pf2

∆p
=

∆qf1

∆q
,

∆−p f2

∆p−
=

∆qf1

∆q
,

∆pf2

∆p
=

∆−q f1

∆q−
,

∆pf2

∆p
=

∆−q f1

∆q−
,

which, in turn, lead to the following characterization of two-dimensional conservative vector fields.

Theorem 3.1 A vector field f = [f1(p, q), f2(p, q)]T is conservative with respect to the grid D if
it satisfies

(a)
∆qf1

∆q
=

∆pf2

∆p
,

(b)
∆qf1

∆q
=

∆−q f1

∆q−
and

∆pf2

∆p
=

∆−p f2

∆p−
,

for each point (p, q) ∈ D for which the above operations are well-defined (internal grid points).

Condition (b) requires that the left and right increments of f1 and f2 along the q and p directions
respectively are the same, while condition (a) is the discrete analogue of ∂f1/∂q = ∂f2/∂p which

c© 2006 European Society of Computational Methods in Sciences and Engineering
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corresponds to the closeness of the differential form f1(p, q)dp + f2(p, q)dq (provided f is of class
C1). Hereafter we gather a number of properties valid for regular conservative continuous vector
fields, and then we determine their discrete counterpart (see Theorem 3.2). Our aim is to state
that, as is the case for the continuous setting, a conservative discrete vector field always comes
from a suitable potential function.

A closed first-order differential form with domain an open, simply connected set Ω ⊂ R2 is
exact, that is its circulation vanishes over any closed oriented curve γ ⊂ Ω. In particular, the four
following conditions are equivalent (here and in the sequel we assume regularity of f ; ∇ denotes
the gradient operator):

(i)
∂f1

∂q
=
∂f2

∂p
;

(ii)

∫

γ

(
f1(p, q)dp+ f2(p, q)dq

)
= 0 for every closed oriented curve γ ⊂ Ω;

(iii) there exists a scalar function H(p, q) defined on Ω such that

∇TH(p, q) = [f1(p, q), f2(p, q)];

(iv) there exists a scalar function H(p, q) defined on Ω such that

H(p+ ∆p, q)−H(p, q)

∆p
=

∫ 1

0

f1(p+ t∆ p, q)dt,

and
H(p, q + ∆q)−H(p, q)

∆q
=

∫ 1

0

f2(p, q + t∆ q)dt,

for every ∆p, ∆q such that (p+ ∆p, q + ∆q) ∈ Ω.

Properties (ii)–(iv) are three equivalent ways to express exactness of a differential form. The
usefulness of the equivalence between (iii) and (iv) will be clear hereafter. It is an easy matter to
find out the corresponding equivalences valid for the discrete case (we analyze the two dimensional
case here even if the generalization to higher dimensions is straightforward). We begin with defining
a difference form as a function with domain which is a grid D ⊂ Ω and a range which is the set of
linear transformations from R2 to R, that we denote by f1(p, q)∆p+ f2(p, q)∆q. Defining the line
integral of a difference form (induced by the trapezoidal rule) like in (6), closeness as the conditions
(a) and (b) of Theorem 3.1, we arrive at the following result.

Theorem 3.2 For a difference form ω = f1(p, q)∆p + f2(p, q)∆q defined on a grid D ⊂ Ω, with
Ω simply connected, the following conditions are equivalent:

(i)′ ω is closed;

(ii)′
∑

γ

ω = 0 for every closed path γ ⊂ D;

(iii)′ there exists a scalar function H̃(p, q) defined on the grid D such that

H̃(p+ ∆p, q)− H̃(p, q)

∆p
=

1

2
(f1(p, q) + f1(p+ ∆p, q)) ,

and
H̃(p, q + ∆q)− H̃(p, q)

∆q
=

1

2
(f2(p, q) + f2(p, q + ∆q)) ,

for every (positive or negative) ∆p, ∆q, such that (p+ ∆p, q + ∆q) ∈ D.

c© 2006 European Society of Computational Methods in Sciences and Engineering
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Proof. The equivalence between (i)′ and (ii)′ comes from Theorem 3.1. Fixing a point (p0, q0) ∈
D, the scalar function H̃(p, q) is naturally defined as

H̃(p, q) = C +
∑

γ

ω,

where γ is any path on the grid joining the points (p0, q0) and (p, q) and C is any constant number

(H̃(p, q) is well defined due to (ii)′). Then, considering the segments ρ = [(p, q), (p + ∆p, q)] and
σ = [(p, q), (p, q + ∆q)], we get

H̃(p+ ∆p, q)− H̃(p, q) =
∑

ρ

ω, and H̃(p, q + ∆q)− H̃(p, q) =
∑

σ

ω,

that give, by definition, (iii)′. The implication (iii)′ ⇒ (ii)′ is straightforward.
We remark that (iii)′ may be interpreted as the discrete counterpart of (iv) via the approxi-

mation of the integrals in (iv) by means of the trapezoidal formula. The correspondence between
(iii)′ and (iii) could be settled by defining the discrete gradient operator as the vector containing

the increments of H̃(p, q) along the two axes but this is a more ticklish question since, in general,
such increments would depend upon the signs of ∆p and ∆q as shown by the left hand sides of the
equalities in (iii)′. On the basis of that, we are led to define the four discrete gradient operators
(refer again to Figure 4):

∇T++H̃(p, q) =

[
H̃(p+ ∆p, q)− H̃(p, q)

∆p
,

H̃(p, q + ∆q)− H̃(p, q)

∆q

]
,

∇T−+H̃(p, q) =

[
H̃(p−∆p−, q)− H̃(p, q)

∆p−
,

H̃(p, q + ∆q)− H̃(p, q)

∆q

]
,

∇T−−H̃(p, q) =

[
H̃(p−∆p−, q)− H̃(p, q)

∆p−
,

H̃(p, q −∆q−)− H̃(p, q)

∆q−

]
,

∇T+−H̃(p, q) =

[
H̃(p+ ∆p, q)− H̃(p, q)

∆p
,

H̃(p, q −∆q−)− H̃(p, q)

∆q−

]
.

Which one of the four operators will come into play, will depend upon the direction in which
we are integrating: their role will become clearer starting from the next section.

At least two drawbacks arise when searching for discrete conservativity:

1. in view of Theorem 3.2, the projection of a conservative continuous vector field does not
lead, in general, to a conservative discrete vector field. For example, the difference form
(p2 − q2) ∆p − 2pq∆q, coming from an exact differential form, does not satisfy any of the
conditions for closeness;

2. for discrete vector fields the conservativity property depends, in general, on the choice of the
grid.

Both the above problems disappear for two important classes of vector fields:

- Linear vector fields. If f1 and f2 depend linearly on p and q, (iv) and (iii)′ represent
exactly the same condition, whatever the grid, because the trapezoidal rule is exact for linear
functions. It follows as well that H(p, q) = H̃(p, q) for any point on the grid: they are scalar
quadratic functions in p and q.

c© 2006 European Society of Computational Methods in Sciences and Engineering
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- Separable vector fields. They are of the form f1 = f1(p), f2 = f2(q), that is f1 and f2 do not
depend on q and p respectively. In such a case f satisfies

∂f1

∂q
=
∂f2

∂p
=

∆qf1

∆q
=

∆pf2

∆p
=

∆−q f1

∆q−
=

∆−p f2

∆p−
= 0,

independently of the chosen grid.

In the next section we give a first application of the results presented so far, namely 2D separable
Hamiltonian systems. Although we assume these two restrictions (minimal dimension and separa-
bility), the results we achieve suggest that this new approach can throw new light on the study of
the long time behavior of symmetric methods, because they provide a closer relationship between
the techniques employed to investigate the behavior of continuous and discrete dynamical systems.

4 2D discrete Hamiltonian problems

Hamiltonian systems have even dimension and, when this is two, they are defined by imposing that
the trajectories they generate are always orthogonal to a conservative vector field or, equivalently,
to the gradient of a scalar function (the Hamiltonian function). Such geometric specification applies
to both continuous and discrete vector fields even if, as we will see, in this latter case we need an
extra ingredient.

In the former case we get y′ = J∇H(y), with J defined as in (7) and y = (p, q)T , while to
investigate the latter we suppose that the state vector at times tn and tn+1 is yn = (p, q)T and
yn+1 = (p + ∆p, q + ∆q)T respectively, where the increments ∆p and ∆q may be either positive,
negative or zero. Then yn+1 − yn gives the local direction of the trajectory. By imposing orthog-

onality to the gradient of the discrete Hamiltonian function, we obtain yn+1 − yn = hnJ∇H̃(y)

where ∇H̃(p, q) must be chosen according to the signs of ∆p and ∆q as described in the previ-
ous section (hn is any nonzero real number). Anyway, whatever the signs are, exploiting (iii)′ of
Theorem 3.2, we finally get

yn+1 − yn =
hn
2
J (∇H(yn) +∇H(yn+1)) . (8)

Summarizing, the discrete dynamical system defined (in analogy with the continuous case) by
imposing the trajectories to be orthogonal to the gradient of the discrete Hamiltonian function, is
just the trapezoidal method applied to y′ = J∇H(y). In (8) we have made explicit the dependance
of the stepsize on n to make the approach as general as possible (see the next subsection for
details). Can we say that (8) represents a discrete Hamiltonian system? Unfortunately a delicate
question arises at this point: nothing can a priori assure us that, starting at a point y0 on a
given grid, the subsequent points yn lie on that grid for any n. Of course one could not fix the
grid beforehand, but rather define it as the solution advances in time. But even in this case it is
not guaranteed that a grid, in the sense of the definition we gave at the beginning of the paper,
might exist. To better elucidate this aspect, we consider again the nonlinear pendulum equation
(H(p, q) = 1/2p2−cos(q)+1 and hence H(0, 0) = 0), that from now on will serve as a test problem
to carry out the further steps of our approach.

Example 4.1 We choose y0 = (p0, q0) = (0.7, 0) as initial value. In the left plot of Figure 5, the
drawback outlined above is shown: the orbit does not lie on a grid unless the stepsize h is suitably
tuned. For example, the right plot of Figure 5 displays a periodic orbit with period 12. In the
case of periodic orbits lying on a grid (and therefore closing after one cycle), the expression for
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Figure 5: Nonlinear pendulum dynamics in the phase space: a grid is consistently defined only for
those stepsizes that produce periodic orbits.

H̃(pn, qn) may be simplified as follows:

H̃(pn, qn) =
1

2
p2
n +

1

2
qn sin(qn) +

1

2

n−1∑

i=0

(qi+1 sin(qi)− qi sin(qi+1)) , (9)

where (p0, q0), (p1, q1), . . . , (pn, qn) is any path on D joining the origin to the point yn (for example

the one shown in the picture). In the present example, H̃(pn, qn) assumes the constant value
0.245, just like the continuous Hamiltonian function H(p(t), q(t)) because we have no error in the
p direction, since the variable p contributes a quadratic term in the expression of H(p, q). Figure 6

(left picture) also reports the function H̃(pn, qn): it acts like a Liapunov function in that it admits
a level curve coinciding with the orbit of the discrete system.

The class of problems we analyze are those having the Hamiltonian function in separable form
H(p, q) = T (p)+U(q) with H(p, q) regular and strictly convex in a domain surrounding the origin.
In particular we assume that f1(p) = T ′(p) and f2(q) = U ′(q) satisfy the following relations in the
rectangle R = {(p, q) ∈ (−rp, rp)× (−rq, rq)}:

f1(p) > 0 for p > 0, f1(−p) = −f1(p), f2(q) > 0 for q > 0, f2(−q) = −f2(q), (10)

that provide closed, marginally stable orbits symmetric with respect to the origin. Problems from
mechanics with a central force, including the nonlinear pendulum equation, fall in this class (T (p)
and U(q) are the kinetic and potential energies respectively). Our aim is to investigate the long time
behaviour in the phase plane of the orbits provided by the trapezoidal method and in particular
to check whether their stability properties can be considered as being of the same kind as those of
the continuous problem. As already observed, in the discrete case periodicity of the solutions does
not arise naturally, but needs additional requirements. We discuss the periodic and non-periodic
cases separately.

5 Periodic orbits

The assumption that the orbit should lie on a grid is exceptional but not impossible as the previous
example shows. As we will see, this may happen under very general assumptions and, more
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Figure 6: Left picture: a plot of H̃(p, q) on the grid D. Right picture: time evolution of the discrete
pendulum (14). The qi’s are the dots joined by the solid line, while the pi’s are the dots joined by
the dashed line.

importantly, without changing the standard techniques that select the stepsize to control the
error. We begin with describing a simple technique to obtain periodic solutions lying on a grid
that contains the equilibrium point O. For simplicity of exposition (but without loss of generality)
we assume, like in the previous example, y0 = (p0, 0) with p0 > 0. Suppose we advance the solution
using a stepsize that may be constant or chosen at every step by any technique for the error control.
In order for the grid to contain the origin we impose the condition that the orbit passes through a
point located on the q axis. As soon as the current state vector yn = (pn, qn) is such that pn < 0,
we reject the last computed stepsize and tune it in order to have pn = 0 (we assume continuity
of yn = yn(h)). If q0 6= 0 we could redo the same procedure using positive and negative times,
until we reconstruct the orbit in the sector that contains y0. At this point, the symmetry of the
vector field and of the method imply that the orbit in the remaining sectors of the phase space is
obtained by a simple reflection of the piece of orbit already computed. For example, in the fourth
sector, by reversing the sequence of stepsizes used to construct the orbit in the first sector (from
y0 = (p0, 0)T to yn = (0, qn)T ) one would get y−m = (p−m, q−m) = (pm,−qm)T in conformity with
the analogous property y(−t) = (p(−t), q(−t))T = (p(t),−q(t))T of the continuous system (with
y(0) = y0).

The success of this procedure, is guaranteed using any stepsize, provided f satisfies some mild
assumptions. Exploiting the symmetry argument, it is enough to restrict our study to the first
sector S1 = {(p, q) : p ≥ 0, q ≥ 0}. We denote by yn = (pn, qn) the solution at time tn provided
by the trapezoidal method applied to the Hamiltonian system y′ = J∇H(y) satisfying (10).

Lemma 5.1 If yn and yn+1 belong to S1, then pn+1 < pn and qn+1 > qn.

Proof. The assertion comes directly from the expression of the trapezoidal method, by exploiting
the positivity of f1 and f2 in the first sector.
This result states the monotonicity of the orbit in each sector which, in turn, assures us that the
technique described above to generate the grid works well provided the solution exists at each step
and includes a point on the p axis and a point on the q axis: the following results are concerned
with these two questions.

Theorem 5.2 Let y0 = [p0, q0]T , y = [p, q]T , with y0, y ∈ S1, and f be a vector field satisfying
(10). The following propositions are equivalent:
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(a) y = y0 +
h

2
J(f(y0) + f(y)), for some stepsize h ∈ R;

(b) (y − y0)T (f(y0) + f(y)) = 0.

Furthermore, the trapezoidal method will admit a continuous solution curve y(h) = [p(h), q(h)]T ∈
S1, with h ∈ [−h1, h2], satisfying y(0) = yn, p(h2) = 0 and q(−h1) = 0 if

max
0≤p≤p0

1

2
(p0 − p)(f1(p0) + f1(p)) < sup

q0≤q<rq

1

2
(q − q0)(f2(q0) + f2(q)) (11)

and

max
0≤q≤q0

1

2
(q0 − q)(f2(q0) + f2(q)) < sup

q0≤q<rq

1

2
(p− p0)(f1(p0) + f1(p)) (12)

Proof. Both (a) and (b) express orthogonality between y−y0 and f(y0)+f(y). The equivalence
comes from the fact that the latter term never vanishes on S1 \O. Therefore all the solutions of the
trapezoidal method that lie on S1 may be retrieved by equation (b) that, in terms of the unknowns
p and q, reads

(p− p0)((f1(p0) + f1(p)) + (q − q0)(f2(q0) + f2(q)) = 0. (13)

Fix any p̄ ∈ [0, p0]. From Lemma 5.1 a solution (p̄, q̄) ∈ S1 of (13) must satisfy q̄ ≥ q0 and therefore
it will exist if condition (11) is satisfied. Similarly, (12) provides a sufficient condition for a solution
(p̄, q̄) ∈ S1 of (13) to exist when q̄ ∈ [0, q0].
Condition (b) or equivalently equation (13) describe the locus of points in the phase space that
make the discrete line integral on the segment (y0, y) vanish. The minimum period that one can
ask for is four, with y0 and y1 located on the positive p and q axes1. All periodic solutions that
lie on a grid containing O must have period 4(n + 1) since, by symmetry, all the points that are
strictly inside S1 also recur in the other sectors. However, apart from the solution of period 4, one
can obtain infinitely many solutions of a given period (when the period is 4(n+ 1), these are ∞n).

In principle, conditions (11) and (12) should be checked for any point of the piece of orbit
in S1 but, in most cases of interest, the existence of period 4 implies that of any greater period.
For example, one easily realizes that (11) and (12) are satisfied whatever the choice of (p0, q0), if
limp→r−p pf1(p) = limq→r−q qf2(q) = +∞. The following result considers a less restrictive sufficient

condition, that gives account for the dynamics in a neighborhood of the equilibrium point O.

Corollary 5.3 Suppose there exist p̄ > 0 and q̄ > 0 such that p̄f1(p̄) = q̄f2(q̄)(≡M) (condition for
the existence of a solution with period 4). Assume f ′1(p) ≥ 0, f ′′1 (p) ≤ 0 for p ∈ [0, p̄] and f ′2(q) ≥
0, f ′′2 (q) ≤ 0 for q ∈ [0, q̄]. Then, for any point (p0, q0) ∈ S1 such that p0f1(p0) + q0f2(q0) ≤ M ,
conditions (11) and (12) are satisfied.

Proof. The functions g1(p) = (p− p0)(f1(p0) + f1(p)) and g2(q) = (q − q0)(f2(q0) + f2(q)) are
strictly increasing; therefore:

max
0≤p≤p0

(p0 − p)(f1(p0) + f1(p)) = p0f1(p0)

and
max
q0≤q≤q̄

(q − q0)(f2(q0) + f2(q)) = (q̄ − q0)(f2(q0) + f2(q̄)).

Finally,
p0f1(p0) ≤M − q0f2(q0) = q̄f2(q̄)− q0f2(q0) ≤ (q̄ − q0)(f2(q0) + f2(q̄)).

1here we require that the periodic orbit has points on the p and q axes; without this constraint, one can obtain
period 2 for h→∞.
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The last inequality derives from the fact that f2(q) is positive and concave; in fact A1 = (q̄ −
q0)(f2(q0)+f2(q̄)), A2 = q̄f2(q̄) and A3 = q0f2(q0) are obtained by the trapezoidal formula applied
in the intervals [q0, q̄], [0, q̄] and [0, q0] respectively, and therefore they satisfy A2 ≤ A1 +A3. This
proves condition (11). The condition for (12) can be derived in an analogous way.
The nonlinear pendulum equation satisfies the above assumptions with q̄ = π/2 and p̄ =

√
π/2.

This means, for example, that starting at (p0, 0), 0 < p0 ≤ p̄, solutions of period 4(n + 1) may
be retrieved for any n ≥ 0. We emphasize that the stepsize h does not need to remain constant
during the integration: the only constraints required are that the p and q axis contain a point
of the orbit. On the other hand, working with fixed stepsize and exploiting continuity of the
solutions with respect to the parameter h, it is easy to state the existence of infinitely many
periodic orbits defining a grid. More precisely, starting from the stepsize h0 that provides period
four, and decreasing the value of h, one can pick a sequence of stepsizes hn approaching zero and
providing periods 4(n+ 1).

5.1 An application: dynamics on lattices

The fact that only a discrete set of stepsizes is admissible in order to get periodic solutions should
not be viewed as a surprise. This is due to the discrete nature of our solutions. From a physical
point of view we naturally fall into the case described in the previous sections as soon as we let
the space variable q assume values in a discrete set. The analysis of dynamical systems defined on
lattices is now extensively researched both in theoretical and applied physics (see for example [10]
for recent studies on this topic). For example, we may think of the periodic solution in Example
4.1 as the solution of the nonlinear discrete pendulum system





pn+1 = pn −
hn
2

(sin(qn) + sin(qn+1)),

qn+1 = qn +
hn
2

(pn + pn+1),
(14)

where the values of the qn’s locate the positions of adjacent atoms forming a linear lattice. More
precisely, the dynamics of (14) has to be interpreted as follows. Fix a discrete set of admissible
values for the space variable q centred at 0: q ∈ {0,±Q1,±Q2, . . . }. Let the space variable of
the solution (pn, qn) at time tn lie at the point Qs. Then choose the stepsize hn as the minimum
positive value such that, at time tn+1 = tn +hn, qn+1 ∈ {Qs−1, Qs, Qs+1}. Which among Qj , j =
s− 1, s, s + 1 is selected, will depend on the sign of the velocity (pn + pn+1)/2. The right plot in
Figure 6 shows one such solution (we choose Qs = ± 1

4s, s ∈ N and (p0, q0) = (0.7, 0)). It follows
that the transition time from one state to the next one will not remain constant but will be tuned
in order that the transition itself may be realized. For this example we get a solution of period 10
and [h1, . . . h10] ' [0.37, 0.43, 2.07, 0.43, 0.37, 0.37, 0.43, 2.07, 0.43, 0.37].

Looking at the figure, we see that q2 = q3 and q7 = q8. This means that in the time intervals
[t2, t3] and [t7, t8] there are no transitions at all but just a reversal of the velocities: p3 = −p2 and
p8 = −p7. If we assume the additional hypothesis that a transition must necessarily result in a
change of the value of q at each interval time [ti, ti+1], we realize that not all the initial velocities
p0 are allowed, but only those (forming a discrete set) yielding a solution for which the maximum
value of |qi| is reached at a null velocity. From (9) it then follows that only a discrete set of energies
are allowed, which typically is the case in quantum physics.

6 Non-periodic orbits

As already emphasized in the introduction, the study of non-periodic orbits, which represents the
general case if no restriction on the choice of the stepsize h is imposed, has been thoroughly studied
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in the literature and also specified for 2D problems [4]. For the class (10) we wonder if, even in this
case, we can attach to the discrete problem a discrete energy. A number of properties concerning
the qualitative behaviour of the solution over long times may be derived once we state for the
trapezoidal rule a result of measure preservation.

As is well known, a two-dimensional mapping (p1, q1) = Φ(p0, q0) defined on Ω ⊂ R2 is area
preserving iff its Jacobian matrix satisfies the relation

(Φ′(p0, q0))T J Φ′(p0, q0) = J, ∀(p, q) ∈ Ω, with J =

(
0 −1
1 0

)
. (15)

The trapezoidal method is not symplectic but, being conjugate to a symplectic method (the implicit
midpoint formula), it is a Poisson map and therefore it preserves a different (non-Euclidean)
measure. Instead of (15), a 2D Poisson map (p1, q1) = Φ(p0, q0) satisfies

µ(p1, q1) (Φ′(p0, q0))T J Φ′(p0, q0) = µ(p0, q0) J

for some scalar function µ(p, q) (referred to as integrating factor), and hence preserves the measure

M(S) =

∫∫

S

µ(p, q)dp dq, (16)

where S ⊂ Ω is any measurable subset of Ω (we assume that µ is a smooth function on Ω), that
is, M(Φ(S)) = M(S) (in [8] the definition of state dependent symplecticity was introduced as a
generalization of Poisson maps to investigate the behavior of general symmetric one-step methods).
The integrating factor for the trapezoidal method is

µ(p, q) = 1 +
h2

4
f ′1(p)f ′2(q).

Assuming boundedness of the orbits in a region containing the equilibrium point, an immediate
consequence of (16) is the possibility of applying Poincaré recurrence theorem which, in our situa-
tion, states that almost all points (pn, qn) of the orbit are recurrent, namely for each neighborhood
B of (pn, qn) there exists an integer r > 0 such that Φr(pn, qn) ∈ B.

In the non-periodic case the orbit will densely cover a closed (invariant) curve C around the
origin like in the left plot of Figure 1. One way to attack the problem is to exploit Birkhoff’s ergodic
theorem which, again, requires boundedness of the orbits and a measure preserving mapping Φ.
Under these assumptions the theorem says that for any f ∈ L1(µ), the set of µ-integrable functions,
there exists f∗ ∈ L1(µ) such that

lim
n→∞

1

n

n−1∑

k=0

f(Φk(p, q)) = f∗(p, q). (17)

The interest in (17) in relation with the numerical simulation of conservative systems resides in the
following fact: if one can state that there is a smooth quantity f(p, q) which is exactly preserved
by the continuous flow Φ and nearly preserved by the discrete flow Φh = Φ + O(hp) (p = 2 for
the trapezoidal method), then the function f ∗h , defined by Φh through (17), may be assumed as
the discrete counterpart of f because Birkhoff’s theorem also states that f ∗h is Φh-invariant, that
is f∗h ◦ Φh = f∗h (for recent results regarding the use of Birkhoff’s ergodic theorem to Hamiltonian
systems see [11]).

Example 6.1 We consider the solution of the nonlinear pendulum equation reported in Figure 1
and assume f ≡ H(p, q) = 1/2p2−cos(q), the Hamiltonian function of the continuous system. As a
result of (17), the mean value of H(yn) will admit a limit value H∗h(p0, q0) that may be interpreted
as a discrete energy.
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Figure 7: Mean value of H(yn) for tn = nh ∈ [0, 500].

We observe that any other expression which could be interpreted as an energy term would work
in (17) and would lead to a discrete energy. If for example the solution is periodic then, as seen

previously, it is more appropriate to consider as a discrete energy term the one, say H̃h(yn),
introduced in the previous sections which, although on the one hand would differ from the above
defined mean value of H(yn), on the other hand would have the advantage to be an invariant of the
discrete system h2-close to H (see also the next section; of course these energy terms will coincide
when h→ 0).

One remark is in order: the use of the mean value of H(yn) as a discrete energy would indeed
introduce a discontinuity in the argument presented in the above sections. More precisely, fix the
initial point y0 and assume that h ∈ [h, h̄], where h and h̄ are stepsizes giving rise to periodic
solutions lying on a grid and such that in (h, h̄) there are no other periodic solutions on a grid.
Then, exploiting a continuity argument, the value of the discrete energy term to attach to the
solution with stepsize h is expected to be intermediate between the values H̃h and H̃h̄ which,
as seen, are the discrete line integrals on paths joining the origin to any point of the (periodic)
solution.

The above point would therefore lead us to prefer an expression for the discrete energy term H̃h,
which reduces to the one already considered in the previous section in the case where the solution
lies on a grid. Stated differently, the discrete energy function H̃h is already known for all the values
of h leading to a solution lying on a grid (these are indeed infinite and admit zero as a limit point),
and the problem is how to reconstruct it for all other values of h. It would not be erroneous to
use any kind of interpolation procedure, the simplest ones being a piecewise constant polynomial
or a linear spline. In the particular case where the Hamiltonian function depends quadratically on
p (that is f1(p) = 1/2p2), as is the case for the nonlinear pendulum, it would be quite natural to
take the value of the discrete energy equal to 1/2p̄2, where p̄ is the intersection of the curve C with
the p-axis: this is because the discrete line integral along the p axis would be the same whatever
the decomposition of the path used, due to the fact that (6) is exact for quadratic vector fields.

7 Order of approximation

Starting from the trapezoidal rule and the continuous (conservative) vector field ∇H(y), we have

derived a discrete conservative vector field∇H̃(yn) defined on an arbitrary orthogonal grid. In both
cases conservativity means that the line integral vanishes on circuits. The key point here is that the
symmetry of the formula has allowed us to deduce the conservative property of the discrete vector
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field as soon as we replace the continuous line integral by its discrete approximation. Another
relevant question is to investigate the order of approximation, namely to obtain an estimation
of H(yn) − H̃(yn), where yn is any point on the considered grid. More precisely, since our final
goal is the study of the behaviour of the numerical solution yn generated by a symmetric scheme
(assuming by now that it lies on a certain grid), the error H(yn)−H̃(yn) (H̃(yn) is indeed constant)
is useful to get information about the displacement of the numerical solution from the manifold
that contains the dynamics of the continuous one. The result may be trivially obtained by looking
at the error in the quadrature formula (we assume again H(0) = 0). Let σn = (y0, y1, . . . , yn) be a
path on the grid, joining the origin (y0 = 0) with the point yn. The restriction of σn to the edge
(yi, yi+1) may be parameterized as follows:

σn(s) = yi + s(yi+1 − yi), with s ∈ [0, 1].

Its derivative in that segment is σ̇n(s) = yi+1 − yi, and therefore

H(yn) =

∫

σn

∇H ds =

n−1∑

i=0

[
(yi+1 − yi)T

∫ 1

0

∇H (yi + s(yi+1 − yi)) ds
]
,

while, by definition,

H̃(yn) =
∑

σn

∇H ∆y =
1

2

n−1∑

i=0

(yi+1 − yi)T (∇H(yi) +∇H(yi+1)) .

Subtracting these two expressions and considering that the latter one is obtained by solving the
integral in the former one by means of the trapezoidal rule, yields

H(yn)− H̃(yn) = − 1

12

n−1∑

i=0

(yi+1 − yi)T f̄ ′′i (ξi), (18)

where fi(s) = ∇H (yi + s(yi+1 − yi)) , i = 0, . . . , n − 1, and the bar over f means that actually
the value of ξi generally changes along the components of the vector function fi, namely

f̄ ′′i (ξi) =

[
d2f

(1)
i

ds2
(ξ

(1)
i ),

d2f
(2)
i

ds2
(ξ

(2)
i ), . . . ,

d2f
(2m)
i

ds2
(ξ

(2m)
i )

]T
.

From the definition of fi, the jth component of f̄ ′′i (ξi) takes the form

d2f
(j)
i

ds2
(ξ

(j)
i ) = (yi+1 − yi)T · J∇H(j)(yi + ξ

(j)
i (yi+1 − yi)) · (yi+1 − yi), (19)

where J∇H(j)(yi + ξ
(j)
i (yi+1 − yi)) is the Jacobian of the jth component of ∇H evaluated at a

suitable point of the segment (yi, yi+1). Once again, either from (18) or (19), we see that for
quadratic Hamiltonians the error vanishes in accordance with the fact that the trapezium method
is exact for linear functions.

Let M be an upper bound for ||J∇H(j)(y)||, j = 1, . . . , 2m, for any y belonging to a given
domain D containing the origin, the points yn we are interested in and, of course, the paths σn.
From (19) we deduce the bound

||d
2f

(j)
i

ds2
(ξ

(j)
i )|| ≤M ||yi+1 − yi||2,
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that inserted in (18) yields

|H(yn)− H̃(yn)| ≤ M

12

n−1∑

i=0

||yi+1 − yi||3. (20)

Introducing the size of the grid on the domain D as h̄ = maxyi∈D ||yi+1 − yi||, if the domain is

bounded, from (20) we steadily get H(yn) = H̃(yn) + O(h̄2). In particular, if the grid is deduced
by the numerical solution, as in Example 4.1, we can assume h̄ = h where h is the stepsize of
integration.

8 Conclusions

The use of symmetric methods to approximate the line integral of a continuous conservative vector
field, allowed us to define discrete vector fields having the special feature of maintaining a con-
servative character which, analogously to the continuous case, was expressed in terms of discrete
line integral over a (discrete) closed path. Each p-order symmetric method yields a corresponding
O(hp)-close approximation of the original continuous field. By using, for simplicity, the trapezoidal
method, we introduced the discrete counterpart of a number of operators, like the divergence, the
gradient and the curl operators, which turn out to be very useful to describe the properties of
conservative vector fields. In particular, the definition of closed difference forms was introduced
and exploited in Theorem 3.2 to state that a conservative discrete vector field is nothing but the
discrete gradient of a suitable scalar potential function.

We exploited such result to introduce discrete Hamiltonian systems, by simply imposing or-
thogonality between the discrete velocity and the (discrete) gradient of the field itself (provided
the solution lies on a grid). Confining the analysis to 2D dimensional fields, two scenarios may
occur in the phase space, according to whether the numerical solution lies on a grid or otherwise.
In the former case, which includes the dynamics on lattices, we obtain an explicit expression of
the discrete energy, that is a quantity approximating the continuous energy up to the order of
the method and which remains exactly constant along a numerical solution. In the latter case,
we exploited the measure preservation property of the trapezoidal method to obtain the discrete
energy function via Birkhoff’s ergodic theorem.
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