
Chapter 2

Numerical Tests

We here collect a few numerical tests, in order to put into evidence the potentiali-

ties of HBVMs [4, 6, 7].

Test problem 1

Let us consider the problem characterized by the polynomial Hamiltonian (4.1) in

[19],

H(p, q) =
p3

3
− p

2
+

q6

30
+

q4

4
− q3

3
+

1

6
, (2.1)

havingdegree ν = 6, startingat the initial point y0 ≡ (q(0), p(0))T = (0, 1)T , so
that H(y0) = 0. For such a problem, in [19] it has been experienced a numerical
drift in the discrete Hamiltonian, when usingthe fourth-order Lobatto IIIAmethod

with stepsize h = 0.16, as confirmed by the plot in Figure 2.1. When using
the fourth-order Gauss-Legendre method the drift disappears, even though the

Hamiltonian is not exactly preserved alongthe discrete solution, as is confirmed

by the plot in Figure 2.2. On the other hand, by usingthe fourth-order HBVM(6,2)

with the same stepsize, the Hamiltonian turns out to be preserved up to machine

precision, as shown in Figure 2.3, since such method exactly preserves polynomial

Hamiltonians of degree up to 6. In such a case, accordingto the last item in

Remark7, the numerical solutions obtained by usingthe Lobatto nodes {c0 =
0, c1, . . . , c6 = 1} or the Gauss-Legendre nodes {c1, . . . , c6} are the same. The
fourth-order convergence of the method is numerically verified by the results listed

in Table 2.1.
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Figure 2.1:Fourth-order Lobatto IIIA method, h = 0.16, problem (2.1):drift in
the Hamiltonian.
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Figure 2.2:Fourth-order Gauss-Legendre method, h = 0.16, problem (2.1):H ≈
10−6.
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Figure 2.3:Fourth-order HBVM(6,2) method, h = 0.16, problem (2.1):H ≈
10−16.
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Test problem 2

The second test problem, havinga highly oscillatingsolution, is the Fermi-Pasta-

Ulam problem (see [20, SectionI.5.1]), modellinga chain of 2mmass points con-
nected with alternatingsoft nonlinear and stiff linear springs, and fixed at the end

points. The variables q1, ..., q2m stand for the displacements of the mass points,
and pi = q̇i for their velocities. The correspondingHamiltonian, representingthe
total energy, is

H(p, q) =
1

2

m
∑

i= 1

(

p22i−1 + p22i
)

+
ω2

4

m
∑

i= 1

(q2i − q2i−1)
2+

m
∑

i= 0

(q2i+ 1 − q2i)
4 , (2.2)

with q0 = q2m+ 1 = 0. In our simulation we have used the followingvalues:
m = 3, ω = 50, and startingvector

pi = 0, qi = (i− 1)/10, i = 1, . . . , 6.

In such a case, the Hamiltonian function is a polynomial of degree 4, so that

the fourth-order HBVM(4,2) method, either when usingthe Lobatto nodes or the

Gauss-Legendre nodes, is able to exactly preserve the Hamiltonian, as confirmed

by the plot in Figure 2.6, obtained with stepsize h = 0.05. Conversely, by using
the same stepsize, both the fourth-order Lobatto IIIA and Gauss-Legendre meth-

ods provide only an approximate conservation of the Hamiltonian, as shown in

the plots in Figures 2.4 and 2.5, respectively. The fourth-order convergence of the

HBVM(4,2) method is numerically verified by the results listed in Table 2.2.
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Figure 2.4:Fourth-order Lobatto IIIA method, h = 0.05, problem (2.2):|H −
H0| ≈ 10−3.
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Figure 2.5:Fourth-order Gauss-Legendre method, h = 0.05, problem (2.2):|H−
H0| ≈ 10−3.
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Figure 2.6:Fourth-order HBVM(4,2) method, h = 0.05, problem (2.2):|H −
H0| ≈ 10−14.
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Test problem 3(non-polynomial Hamiltonian)

In the previous examples, the Hamiltonian function was a polynomial. Neverthe-

less, as observed above, also in this case HBVM(k,s) are expected to produce a
practical conservation of the energy when applied to systems defined by a non-

polynomial Hamiltonian function that can be locally well approximated by a poly-

nomial. As an example, we consider the motion of a charged particle in a magnetic

field with Biot-Savart potential.1 It is defined by the Hamiltonian [6]

H(x, y, z, ẋ, ẏ, ż) = (2.3)

1

2m

[

(

ẋ− α
x

%2

)2

+

(

ẏ − α
y

%2

)2

+ (ż + α log(%))2
]

,

with % =
√

x2 + y2, α = eB0, m is the particle mass, e is its charge, and B0 is

the magnetic field intensity. We have used the values

m = 1, e = −1, B0 = 1,

with startingpoint

x = 0.5, y = 10, z = 0, ẋ = −0.1, ẏ = −0.3, ż = 0.

By usingthe fourth-order Lobatto IIIA method, with stepsize h = 0.1, a drift
is again experienced in the numerical solution, as is shown in Figure 2.7. By

usingthe fourth-order Gauss-Legendre method with the same stepsize, the drift

disappears even though, as shown in Figure 2.8, the value of the Hamiltonian is

preserved within an error of the order of 10−3. On the other hand, when using
the HBVM(6,2) method with the same stepsize, the error in the Hamiltonian de-

creases to an order of 10−15 (see Figure 2.9), thus givinga practical conservation.
Finally, in Table 2.4 we list the maximum absolute difference between the numer-

ical solutions over 103 integration steps, computed by the HBVM(k, 2) methods
based on Lobatto abscissae and on Gauss-Legendre abscissae, as k grows, with
stepsize h = 0.1. We observe that the difference tends to 0, as k increases. Fi-
nally, also in this case, one verifies a fourth-order convergence, as the results listed

in Table 2.3show.

1This kind of motion causes the well known phenomenon of aurora borealis.
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Figure 2.7:Fourth-order Lobatto IIIA method, h = 0.1, problem (2.3):drift in
the Hamiltonian.
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Figure 2.8:Fourth-order Gauss-Legendre method, h = 0.1, problem (2.3):|H −
H0| ≈ 10−3.
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Figure 2.9:Fourth-order HBVM(6,2) method, h = 0.1, problem (2.3):|H −
H0| ≈ 10−15.



21

Table 2.1:Numerical order of convergence for the HBVM(6,2) method, problem

(2.1).
h 0.32 0.16 0.08 0.04 0.02

error 2.288 · 10−2 1.487 · 10−3 9.398 · 10−5 5.890 · 10−6 3.684 · 10−7
order – 3.94 3.98 4.00 4.00

Table 2.2:Numerical order of convergence for the HBVM(4,2) method, problem

(2.2).
h 1.6 · 10−2 8 · 10−3 4 · 10−3 2 · 10−3 10−3

error 3.030 1.967 · 10−1 1.240 · 10−2 7.761 · 10−4 4.853 · 10−5
order – 3.97 3.99 4.00 4.00

Table 2.3:Numerical order of convergence for the HBVM(6,2) method, problem

(2.3).

h 3.2 · 10−2 1.6 · 10−2 8 · 10−3 4 · 10−3 2 · 10−3
error 3.944 · 10−6 2.635 · 10−7 1.729 · 10−8 1.094 · 10−9 6.838 · 10−11
order – 3.90 3.93 3.98 4.00

Table 2.4:Maximum difference between the numerical solutions obtained through

the fourth-order HBVM(k, 2) methods based on Lobatto abscissae and Gauss-
Legendre abscissae for increasingvalues of k, problem (2.3), 103 steps with step-
size h = 0.1.

k h = 0.1
2 3.97 · 10−1
4 2.29 · 10−3
6 2.01 · 10−8
8 1.37 · 10−11
10 5.88 · 10−13
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Test problem 4(Sitnikovproblem)

The main problem in Celestial Mechanics is the so calledN-body problem, i.e. to
describe the motion of N point particles of positive mass movingunder Newton’s

law of gravitation when we know their positions and velocities at a given time.

This problem is described by the Hamiltonian function:

H(q,p) =
1

2

N
∑

i= 1

||pi||22
mi

−G

N
∑

i= 1

mi

i−1
∑

j= 1

mj

||qi − qj ||2
, (2.4)

where qi is the position of the ith particle, with massmi, and pi is its momentum.
The Sitnikov problem is a particular configuration of the 3-body dynamics

(see, e.g., [30]). In this problem two bodies of equal mass (primaries) revolve

about their center of mass, here assumed at the origin, in elliptic orbits in the xy-
plane. A third, and much smaller body (planetoid), is placed on the z-axis with
initial velocity parallel to this axis as well.

The third body is small enough that the two body dynamics of the primaries is

not destroyed. Then, the motion of the third body will be restricted to the z-axis
and oscillatingaround the origin but not necessarily periodic. In fact this problem

has been shown to exhibit a chaotic behavior when the eccentricity of the orbits

of the primaries exceeds a critical value that, for the data set we have used, is

ē ' 0.725 (see Figure 2.10).
We have solved the problem defined by the Hamiltonian function (2.4) by

the Gauss method of order 4 (i.e., HBVM(2,2) at 2 Gaussian nodes) and by

HBVM(18,2) at 18 Gaussian nodes (order 4, 2 fundamental and 16 silent stages),
with the followingset of parameters in (2.4):

N G m1 m2 m3 e d h tmax

3 1 1 1 10−5 0.75 5 0.5 1500

where e is the eccentricity, d is the distance of the apocentres of the primaries
(points at which the two bodies are the furthest), h is the used time-step, and
[0, tmax] is the time integration interval. The eccentricity e and the distance d
may be used to define the initial condition [q0,p0] (see [30] for the details):

q0 = [−5

2
, 0, 0, 5

2
, 0, 0, 0, 0, 10−9]T ,

p0 = [0, − 1

20

√
10, 0, 0, 1

20

√
10, 0, 0, 0, 1

2
]T .

First of all, we consider the two pictures in Figure 2.11 reportingthe rela-

tive errors in the Hamiltonian function and in the angular momentum evaluated

alongthe numerical solutions computed by the two methods. We know that the
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HBVM(18,2) precisely conserves Hamiltonian polynomial functions of degree at

most 18. This accuracy is high enough to guarantee that the nonlinear Hamilto-
nian function (2.4) is as well conserved up to the machine precision (see the upper

picture):from a geometrical point of view this means that a local approximation

of the level curves of (2.4) by a polynomial of degree 18 leads to a negligible er-
ror. The Gauss method exhibits a certain error in the Hamiltonian function while,

beingthis formula symplectic, it precisely conserves the angular momentum, as

is confirmed by lookingat the down picture of Figure 2.11. The error in the

numerical angular momentum associated with the HBVM(18,2) undergoes some

bounded periodic-like oscillations.

Figures 2.12 and 2.13show the numerical solution computed by the Gauss

method and HBVM(18,2), respectively. Since the methods leave the xy-plane
invariant for the motion of the primaries and the z-axis invariant for the motion of
the planetoid, we have just reported the motion of the primaries in the xy-phase
plane (upper pictures) and the space-time diagram of the planetoid (down picture).

We observe that, for the Gauss method, the orbits of the primaries are irregular

in character so that the third body, after performingsome oscillations around the

origin, will eventually escape the system (see the down picture of Figure 2.12).

On the contrary (see the upper picture of Figure 2.13), the HBVM(18,2) method

generates a quite regular phase portrait. Due to the large stepsize h used, a sham
rotation of the xy-plane appears which, however, does not destroy the global sym-
metry of the dynamics, as testified by the bounded oscillations of the planetoid

(down picture of Figure 2.13) which lookvery similar to the reference ones in

Figure 2.10. This aspect is also confirmed by the pictures in Figure 2.14 display-

ingthe distance of the primaries as a function of the time. We see that the distance

of the apocentres (correspondingto the maxima in the plots), as the two bodies

wheel around the origin, are preserved by the HBVM(18,2) (down picture) while

the same is not true for the Gauss method (upper picture).
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Figure 2.10:The upper picture displays the configuration of 3-bodies in the Sit-
nikov problem. To an eccentricity of the orbits of the primaries e = 0.75, there
correspond bounded chaotic oscillations of the planetoid as is argued by looking

at the space-time diagram in the down picture.



25

0 500 1000 1500
10

−20

10
−15

10
−10

10
−5

10
0

HBVM(18,2)

Gauss

0 500 1000 1500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

HBVM(18,2)

Gauss

Figure 2.11:Upper picture:relative error |H(yn)−H(y0)|/|H(y0)| of the Hamil-
tonian function evaluated alongthe numerical solution of the HBVM(18,2) and
the Gauss method. Down picture:relative error |M(yn)−M(y0)|/|M(y0)| of the
angular momentum evaluated alongthe numerical solution of the HBVM(18,2)
and the Gauss method.
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Figure 2.12:The Sitnikov problem solved by the Gauss method of order 4, with

stepsize h = 0.5, in the time interval [0, 1500]. The trajectories of the primaries
in the xy-plane (upper picture) exhibit a very irregular behavior which causes the
planetoid to eventually escape the system, as illustrated by the space-time diagram

in the down picture.
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Figure 2.13:The Sitnikov problem solved by the HBVM(18,2) method (order 4),

with stepsize h = 0.5, in the time interval [0, 1500]. Upper picture:the trajecto-
ries of the primaries are ellipse shape. The discretization introduces a fictitious

uniform rotation of the xy-plane which however does not alter the global symme-
try of the system. Down picture:the space-time diagram of the planetoid on the

z-axis displayed (for clearness) on the time interval [0, 350] shows that, although
a large value of the stepsize h has been used, the overall behavior of the dynamics
is well reproduced (compare with the down picture in Figure 2.10).



28 CHAPTER2. NUMERICAL TESTS

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Figure 2.14:Distance between the two primaries as a function of the time, related

to the numerical solutions generated by the Gauss method (upper picture) and

HBVM(18,2) (down picture). The maxima correspond to the distance of apoc-

entres. These are conserved by HBVM(18,2) while the Gauss method introduces

patchy oscillations that destroy the overall symmetry of the system.


