Chapter 6

Notes and References

The approach of using discrete line integrals has been used, at first, by Iavernaro and Trigiante, in connection with the study of the properties of the trapezoidal rule [26, 27, 28].

It has been then extended by Iavernaro and Pace [24], thus providing the first example of conservative methods, basically an extension of the trapezoidal rule, named *s-stage trapezoidal methods*: this is a family of energy-preserving methods of order 2, able to preserve polynomial Hamiltonian functions of arbitrarily high degree.

Later generalizations allowed Iavernaro and Pace [25], and then Iavernaro and Trigiante [29], to derive energy preserving methods of higher order.

The general approach, involving the shifted Legendre polynomial basis, which has allowed a full complete analysis of HBVMs, has been introduced in [6] (see also [5]) and, subsequently, developed in [7].

The Runge-Kutta formulation of HBVMs, along with their connections with collocation methods, has been studied in [9].

The isospectral property of HBVMs has been also studied in [8], where the *blended* implementation of the methods has been also introduced.

Computational aspects, concerning both the computational cost and the efficient numerical implementation of HBVMs, have been studied in [3] and [8].

Relevant examples have been collected in [4], where the potentialities of HB-VMs are clearly outlined, also demonstrating their effectiveness with respect to standard symmetric and symplectic methods.

Blended implicit methods have been studied in a series of papers [2, 10, 11, 12, 13, 14, 15, 16, 30] and have been implemented in the two computational codes BiM and BiMD [32].

Bibliography

- [1] M. Abramovitz, I.A. Stegun. *Handbook of Mathematical Functions*. Dover, 1965.
- [2] L. Brugnano. Blended block BVMs (B₃VMs): A family of economical implicit methods for ODEs. *J. Comput. Appl.Math.* **116** (2000) 41–62.
- [3] L. Brugnano, F. Iavernaro, T. Susca. Hamiltonian BVMs (HBVMs): implementation details and applications. "Proceedings of ICNAAM 2009", *AIP Conf. Proc.* **1168** (2009) 723–726.
- [4] L. Brugnano, F. Iavernaro, T. Susca. Numerical comparisons between Gauss-Legendre methods and Hamiltonian BVMs defined over Gauss points. *Monografias de la Real Academia de Ciencias de Zaragoza*, Special Issue devoted to the 65th birthday of Manuel Calvo, (Submitted) 2010 (arXiv:1002.2727).
- [5] L. Brugnano, F. Iavernaro, D. Trigiante. Hamiltonian BVMs (HBVMs): a family of "drift-free" methods for integrating polynomial Hamiltonian systems. "Proceedings of ICNAAM 2009", AIP Conf. Proc. 1168 (2009) 715– 718.
- [6] L. Brugnano, F. Iavernaro, D. Trigiante. Analisys of Hamiltonian Boundary Value Methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems. *BIT*, submitted for publication (2009) (arXiv:0909.5659).
- [7] L. Brugnano, F. Iavernaro, D. Trigiante. Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods). *Jour. Numer. Anal., Industrial and Appl. Math.*, submitted for publication (2009) (arXiv:0910.3621).
- [8] L. Brugnano, F. Iavernaro, D. Trigiante. Isospectral Property of HBVMs and their Blended Implementation. *BIT*, submitted for publication (2010) (arXiv:1002.1387).

48 BIBLIOGRAPHY

[9] L. Brugnano, F. Iavernaro, D. Trigiante. Isospectral Property of HBVMs and their connections with Runge-Kutta collocation methods. *Preprint*, 2010 (arxiv:1002.4394).

- [10] L. Brugnano, C. Magherini. Blended implementation of block implicit methods for ODEs. *Appl. Numer. Math.* **42** (2002) 29–45.
- [11] L. Brugnano, C. Magherini. The BiM code for the numerical solution of ODEs. *J. Comput. Appl. Math.* **164–165** (2004) 145–158.
- [12] L. Brugnano, C. Magherini. Blended implicit methods for solving ODE and DAE problems, and their extension for second order problems. *J. Comput. Appl. Math.* **205** (2007) 777–790.
- [13] L. Brugnano, C. Magherini. Blended General Linear Methods based on Generalized BDF. *AIP Conf. Proc.* **1048** (2008) 871–874.
- [14] L. Brugnano, C. Magherini. Recent Advances in Linear Analysis of Convergence for Splittings for Solving ODE problems. Appl. Numer. Math. 59 (2009) 542–557.
- [15] L. Brugnano, C. Magherini. Blended General Linear Methods based on Boundary Value Methods in the GBDF family. *Journal of Numerical Analysis, Industrial and Applied Mathematics* **4**, 1-2 (2009) 23–40.
- [16] L Brugnano, C. Magherini, F. Mugnai. Blended implicit methods for the numerical solution of DAE problems. *J. Comput. Appl. Math.* 189 (2006) 34–50.
- [17] L. Brugnano, D. Trigiante. Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, Amsterdam, 1998.
- [18] L. Brugnano, D. Trigiante. Block implicit methods for ODEs, in: D. Trigiante (Ed.), *Recent Trends in Numerical Analysis*. Nova Science Publ. Inc., New York, 2001, pp. 81–105.
- [19] L. Brugnano, D. Trigiante. Energy drift in the numerical integration of Hamiltonian problems. *Journal of Numerical Analysis, Industrial and Applied Mathematics* (to appear).
- [20] E. Faou, E. Hairer, T.-L. Pham. Energy conservation with non-symplectic methods: examples and counter-examples. *BIT Numerical Mathematics* **44** (2004) 699–709.
- [21] E. Hairer, C. Lubich, G. Wanner. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer, Berlin, 2006.
- [22] E. Hairer, G. Wanner. Solving Ordinary Differential Equations I, 2nd ed., Springer, Berlin, 2000.

BIBLIOGRAPHY 49

[23] E. Hairer, G. Wanner. *Solving Ordinary Differential Equations II*, Springer, Berlin, 1991.

- [24] F. Iavernaro, B. Pace. s-Stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type. AIP Conf. Proc. **936** (2007) 603–606.
- [25] F. Iavernaro, B. Pace. Conservative Block-Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008) 888–891.
- [26] F. Iavernaro, D. Trigiante. On some conservation properties of the Trapezoidal Method applied to Hamiltonian systems. *ICNAAM 2005 proceedings*, T.E. Simos, G. Psihoyios, Ch. Tsitouras (Eds.). Wiley-VCH, Weinheim, 2005, pp. 254–257 (ISBN:3527406522).
- [27] F. Iavernaro, D. Trigiante. Discrete conservative vector fields induced by the trapezoidal method. *J. Numer. Anal. Ind. Appl. Math.* **1** (2006) 113–130.
- [28] F. Iavernaro, D. Trigiante. State-dependent symplecticity and area preserving numerical methods. *J. Comput. Appl. Math.* **205** no. 2 (2007) 814–825.
- [29] F. Iavernaro, D. Trigiante. High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. *J. Numer. Anal. Ind. Appl. Math.* **4**,1-2 (2009) 87–101.
- [30] C. Magherini. *Numerical Solution of Stiff ODE-IVPs via Blended Implicit Methods: Theory and Numerics*. PhD thesis, Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, September 2004 (Available at the url [32]).
- [31] J.D. Mireles James. Celestial mechanics notes, Set 1: Introduction to the N-Body Problem. Available at url:

 http://www.math.utexas.edu/users/jjames/celestMech
- [32] Codes BiM/BiMD Homepage: http://www.math.unifi.it/~brugnano/BiM/index.html