Chapter 6

Notes and References

The approach of using discrete line integrals has been used, at first, by [avernaro
and Trigiante, in connection with the study of the properties of the trapezoidal rule
[26, 27, 28].

It has been then extended by Iavernaro and Pace [24], thus providing the first
example of conservative methods, basically an extension of the trapezoidal rule,
named s-stage trapezoidal methods: this is a family of energy-preserving methods
of order 2, able to preserve polynomial Hamiltonian functions of arbitrarily high
degree.

Later generalizations allowed lavernaro and Pace [25], and then Iavernaro and
Trigiante [29], to derive energy preserving methods of higher order.

The general approach, involving the shifted Legendre polynomial basis, which
has allowed a full complete analysis of HBVMs, has been introduced in [6] (see
also [5]) and, subsequently, developed in [7].

The Runge-Kutta formulation of HBVMs, along with their connections with
collocation methods, has been studied in [9].

The isospectral property of HBVMs has been also studied in [8], where the
blended implementation of the methods has been also introduced.

Computational aspects, concerning both the computational cost and the effi-
cient numerical implementation of HBVMs, have been studied in [3] and [8].

Relevant examples have been collected in [4], where the potentialities of HB-
VMs are clearly outlined, also demonstrating their effectiveness with respect to
standard symmetric and symplectic methods.

Blended implicit methods have been studied in a series of papers [2, 10, 11,
12,13, 14, 15, 16, 30] and have been implemented in the two computational codes
BiM and BiMD [32].
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