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Abstract

The paper deals with the numerical solution of inverse Sturm-Liouville prob-
lems with unknown potential symmetric over the interval [0, π]. The proposed
method is based on the use of a family of Boundary Value Methods, ob-
tained as a generalization of the Numerov scheme, aimed to the computation
of an approximation of the potential belonging to a suitable function space
of finite dimension. The accuracy and stability properties of the resulting
procedure for particular choices of such function space are investigated. The
reported numerical experiments put into evidence the competitiveness of the
new method.

Keywords: Boundary Value Methods, Inverse Sturm-Liouville problems,
Eigenvalues.

1. Introduction

Inverse Sturm-Liouville problems (SLPs) consist of recovering the poten-
tial q(x) ∈ L2[0, π] of the differential problem

−y′′ + q(x)y = λy , x ∈ [0, π], (1)

a1y(0) − a2y
′(0) = 0 , |a1| + |a2| 6= 0 , (2)

b1y(π) − b2y
′(π) = 0 , |b1| + |b2| 6= 0 , (3)
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from the knowledge of suitable spectral data. They play an important role in
several areas such as geophysics, engineering and mathematical-physics. The
research concerning the development of numerical techniques for the approx-
imation of their solution represents therefore a very active and interesting
field of investigation.

The existence and uniqueness of the solution of an inverse SLP has been
proved for several formulations of it among which we quote:

• the two-spectrum problem characterized by the knowledge of two sets
of eigenvalues {λ(j)

k }∞k=1, j = 1, 2, corresponding to two SLPs sharing
the first boundary condition (2) (BC in the sequel) and differing for
the second one (3), [1];

• the spectral function data problem where the input consists of one spec-
trum {λk}∞k=1 and the ratios {‖yk‖2

2/y
2
k(0)}∞k=1 or {‖yk‖2

2/(y
′

k(0))2}∞k=1

in the case a2 6= 0 or a2 = 0, respectively. Here yk denotes the eigen-
function corresponding to λk, [2];

• the endpoint data problem occurring when the spectrum of the SLP
subject to Dirichlet BCs is known together with the terminal velocities
κk = log(|y′k(π)|/|y′k(0)|), k = 1, 2, . . . , [3];

• the symmetric problem for which a potential q satisfying

q(x) = q(π − x) , (4)

for all x ∈ [0, π], has to be reconstructed from the knowledge of one
spectrum corresponding to symmetric BCs (i.e. a1b2 + a2b1 = 0) , [1].

The latter is the problem that we shall consider in this paper. It is known
that, if q ∈ L2[0, π], the kth eigenvalue of (1)-(3) asymptotically behaves as

λk = λk(q) = µk + q + δk(q) (5)

where µk = O(k2) depends only on the BCs of the SLP, q = 1
π

∫ π

0
q(x)dx and

{δk(q)}∞k=1 ∈ ℓ2, [4]. This implies that, in addition to (4), the information
concerning the variation of q for the symmetric problem are contained in the
small terms δk(q).
Obviously, in the practice, the set of known eigenvalues is finite and usually
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consists of the first M ones. The matrix methods are therefore well-suited for
the solution of inverse SLPs and among them the three-point scheme and the
Numerov method are the most popular ones. In general, the matrix methods
are based on the use of finite difference or finite element methods for the
solution of ODEs over an assigned partition of [0, π] frequently composed by

xi = ih , i = 0, 1, . . . , N + 1 , h =
π

N + 1
. (6)

When applied for solving direct SLPs, such methods replace the continuous
problem with a generalized matrix eigenvalue one of the form

A(q)y(h) = λ(h)S(q)y(h) . (7)

Here λ(h) is the approximation of one of the exact eigenvalues, y(h) the cor-
responding numerical eigenfunction and the square matrices A(q) and S(q),
besides the potential q, depend on the particular method and on the BCs of
the SLP. As well-known the accuracy of the approximation λ

(h)
k of λk deteri-

orates significantly for increasing values of the index k so that the discretiza-
tion error of a matrix method inevitably swamps the term δk(q) in (5) with
the exception of the first few indices. The application of the asymptotic (or
algebraic) correction technique, introduced in [5, 6] for the three-point for-
mula and in [7, 8, 9] for the Numerov method, allows to greatly improve such
eigenvalue estimates. It is based on the observation that the leading term in
the discretization error is independent of the potential q. This has suggested
to correct the estimate λ

(h)
k by adding to it the term ǫ

(h)
k = λk,0 − λ

(h)
k,0 where

λk,0 and λ
(h)
k,0 are the kth exact and numerical eigenvalues corresponding to

the potential q(x) ≡ 0, respectively.
A first successful algorithm for the solution of symmetric inverse SLPs

subject to Dirichlet BCs (DBCs from now on) was developed in [10]. It
used the three-point scheme for which the coefficient matrix A(q) in (7) is
symmetric and tridiagonal while S(q) is the identity matrix. The number
of meshpoints N in (6) was set equal to the number M of known eigenval-
ues so that A(q) was of size M . An inverse matrix eigenvalue problem for
a centrosymmetric A(q) was then solved with the vital shrewdness, derived

from the asymptotic correction technique, of taking λk − ǫ
(h)
k as kth refer-

ence eigenvalue instead of simply λk for each k. From the knowledge of A(q)

an approximation q
(h)
in of qin = (q(x1), q(x2), . . . , q(xN))T was then easily

computed. The defect of this method, however, was the use of the entire
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numerical spectrum which even after the application of the asymptotic cor-
rection presents discretization error of order O(1) in the largest eigenvalues.

A more reliable method for the same type of inverse SLP was then pro-
posed in [11] which still used the three-point formula but involved only the
first half of the computed numerical eigenvalues. In this case, in fact, N was
set equal to 2M and the approximation q

(h)
in of qin was computed by solving

the system of nonlinear equations

λ
(h)
k − λk + ǫ

(h)
k = 0, k = 1, 2, . . . ,M, (8)

where λ
(h)
k = λ

(h)
k (q) = λ

(h)
k (q

(h)
in ) represents the kth eigenvalue of A(q). By

virtue of the symmetry condition (4), the constraint q
(h)
in = Ĵq

(h)
in was imposed

on q
(h)
in where Ĵ denotes the anti-identity matrix. The unknowns in (8) were

therefore the first M entries of q
(h)
in and a modified Newton method was used

for solving such system. The convergence properties of the latter method
were also studied in details in [11].

A similar approach for solving symmetric inverse SLPs has been consid-
ered in [12, 13] where the Numerov method has been used in place of the
three-point formula. Moreover, in [13] the treatment of the Neumann bound-
ary conditions (NBCs in the sequel) has been discussed. It must be said that
while this extension is straightforward for the three-point method, the same
definitely does not happen for the Numerov one.

As final reference for the currently available numerical techniques for the
problem under consideration, we mention the one recently proposed in [14].
In this case the continuous problem is reformulated as a system of first order
ODEs and a family of Boundary Value Methods obtained from the Obrechkoff
formulas in conjunction with the asymptotic correction technique is applied
for the solution of the direct problem (see also [15, 16]). The resulting gen-
eralized eigenvalue problem (7) has size 4M − 4 with N = 2M − 3 and the
modified Newton method is used for solving (8).

In this paper, for the solution of the symmetric inverse problem, we con-
sider the application of the Boundary Value Methods (BVMs) introduced in
[17, 18] for the direct one. These schemes are obtained as a generalization
of the Numerov method and provide competitive results with respect to the
latter improved with the asymptotic correction technique. Moreover, in [18]
a compact formulation of the corresponding generalized eigenvalue problem
(7) is given which covers all possible types of BCs (2)-(3). With respect
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to the methods in [11, 12, 13, 14], a relevant difference of our procedure is
constituted by the fact that we look for an approximation of the unknown
potential of the form q(h)(x) = φ(x, c(h)) where, for any c = (c1, c2, . . . , cL)T ,
φ(x, c) =

∑L
j=1 cjφj(x) being {φj(x)}L

j=1 a set of symmetric linearly inde-
pendent functions. The chosen value of L usually depends on the number
of known eigenvalues while the number of meshpoints N in (6) is left free.
A system of nonlinear equations analogous to (8) is formulated where now

λ
(h)
k = λ

(h)
k (φ(·, c)). This is solved by means of the modified Newton method

if L = M or in the least square sense if L < M, i.e. c(h) is determined so that
∑M

k=1

(

λ
(h)
k (φ(·, c)) − λk + ǫ

(h)
k

)2

is minimized. We observe that the previous

summation represents a numerical version of the functional introduced by
Röhrl in [19] and already used in [20].

The paper is organized as follows. In Section 2 we recall the main facts
concerning the BVMs introduced in [17, 18] for the solution of direct SLPs
with general BCs. In Section 3 the procedure for the reconstruction of the
unknown potential is described and the properties of the method used with
M = L are discussed for some function spaces. In Section 4 an upper bound
for the error ‖q− q(h)‖2 is derived which separates the contribute due to the
discretization operated through the BVMs from the one due to the chosen
function space. Finally, in Section 5 some numerical results are reported
which proves the effectiveness of the new method.

2. Boundary Value Methods for the direct problem

Recently a family of BVMs has been proposed for the approximation of
the eigenvalues of regular SLPs subject to general BCs [17, 18]. According
to the usual structure of BVMs, the considered 2ν-step (ν ≥ 1) scheme
approximates a second order differential equation of special type

y′′ = f(x, y) , x ∈ [0, π] ,

over the mesh (6) by using the following set of Linear Multistep Formulas

ys−1 − 2ys + ys+1

h2
=

2ν
∑

i=0

β
(s)
i fi , s = 1, 2, . . . , ν − 1, (9)

yn−1 − 2yn + yn+1

h2
=

2ν
∑

i=0

β
(ν)
i fn+i−ν , (10)
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n = ν, ν + 1, . . . , N + 1 − ν,

ym−1 − 2ym + ym+1

h2
=

2ν
∑

i=0

β
(s)
i fm−s+i, s = ν + 1, . . . , 2ν − 1, (11)

m = N + 1 + s− 2ν,

where yi ≈ y(xi) and fi = f(xi, yi). The formula in (10) is named main
method while those in (9) and (11) are called initial and final additional

methods, respectively, [15]. For each s = 1, 2, . . . , 2ν − 1, the coefficients β
(s)
i

are uniquely determined by imposing the s-th formula to have order at least
2ν + 1. As proved in [17], the so-obtained composite scheme (9)-(11) turns

out to be symmetric, namely β
(s)
i = β

(2ν−s)
2ν−i , i = 0, 1, . . . , 2ν, s = 1, 2, . . . , ν.

In particular, the main formula, which is the one corresponding to s = ν,
is a symmetric Linear Multistep Formula and this implies that its order of
accuracy is actually p = 2ν + 2 since it must be even and not less than
2ν + 1 by construction. In the sequel, when speaking about the order of
the composite scheme we will refer to the order p of its main formula. It is
important to remark that when ν = 1 the proposed scheme reduces to the
Numerov method.
When applied to (1), the equations (9)-(11) can be written in matrix form
as

Ã(q) ỹ(h) ≡
(

− 1

h2
T̃ + B̃(ν)Q̃

)

ỹ(h) = λ(h)B̃(ν)ỹ(h) , (12)

where λ(h) represents the approximation of an exact eigenvalue, ỹ(h) = (y0, y1, . . . , yN+1)
T

and, by denoting with Ĵ the anti-identity matrix of size N, with e
(N)
1 the first

unit vector in RN and by posing qi = q(xi) for each i, the matrices T̃ and Q̃
are given by

T̃ =
(

e
(N)
1 | T | Ĵe

(N)
1

)

=















1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1















∈ RN×(N+2) ,

Q̃ =





q0
Q

qN+1



 , Q = diag (q1, . . . , qN) .
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Finally, the matrix B̃(ν) is defined as

B̃(ν) =
(

β
(ν)
0

∣

∣B(ν)
∣

∣ Ĵβ
(ν)
0

)

∈ RN×(N+2) , β
(ν)
0 ∈ RN ,

with

β
(ν)
0 =

(

β
(1)
0 , β

(2)
0 , . . . , β

(ν)
0 , 0, . . . , 0

)T

∈ RN ,

B(ν) =













































β
(1)
1 · · · β

(1)
ν · · · β

(1)
2ν−1 β

(1)
2ν

...
...

...
...

β
(ν−1)
1 · · · β

(ν−1)
ν · · · β

(ν−1)
2ν−1 β

(ν−1)
2ν

β
(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

. . .
. . .

. . .
. . .

. . .

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1

β
(ν−1)
2ν β

(ν−1)
2ν−1 · · · β

(ν−1)
ν · · · β

(ν−1)
1

...
...

...
...

β
(1)
2ν β

(1)
2ν−1 · · · β

(1)
ν · · · β

(1)
1













































N×N

.

Concerning the discretization of the BC (2), the (2ν + 2)-step Forward Dif-
ferentiation Formula of order 2ν + 2 and coefficients {αi}2ν+2

i=0 is used for the
approximation of y′(0), i.e.

2ν+2
∑

i=0

αiy(xi) = hy′(0) + τL , τL = O
(

h2ν+3
)

.

By neglecting τL, the following approximation of the first BC is therefore
obtained

a2 =
2ν+2
∑

i=0

αiyi = ha1y0 ⇐⇒ y0 =
a2

ha1 − a2α0

2ν+2
∑

i=1

αiyi = γLαTy(h),

(13)
where y(h) = (y1, y2, . . . , yN)T ,

γL =
a2

ha1 − a2α0
and α = (α1, α2, . . . , α2ν+2, 0, . . . , 0)T ∈ RN .
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Similarly, the (2ν+2)-step Backward Differentiation Formula of order 2ν+2
and coefficients α̂i = −α2ν+2−i, i = 0, 1, . . . , 2ν+2, is applied for discretizing
the BC (3) thus getting

yN+1 = −γR

(

αT Ĵ
)

y(h) , γR =
b2

hb1 + b2α0
. (14)

Now, combining (12) with (13) and (14), after some computation one obtains
that the coefficient matrices A(q) and S(q) = S of the generalized eigenvalue
problem (7) the considered BVM generates for the solution of the direct SLP
(1)-(3) are given by

A(q) = − 1

h2
T +B(ν)Q+ γL

(

− 1

h2
e

(N)
1 + q0β

(ν)
0

)

αT

(15)

−γRĴ

(

− 1

h2
e

(N)
1 + qN+1β

(ν)
0

)

αT Ĵ ,

S = B(ν) + γLβ
(ν)
0 αT − γRĴβ

(ν)
0 αT Ĵ , (16)

respectively. Concerning the convergence of the so-obtained approximations
for the kth eigenvalue, in [17, 18] it has been proved that if kh is “sufficiently
small” and ν > 1 one has

|λk − λ
(h)
k | ∼ O(kp+1hp− 1

2 ) +O(kp+2hp) , p = 2ν + 2 . (17)

By virtue of this result the proposed BVMs are able to provide substantially
more accurate estimates of the eigenvalues λk with respect to those given by
the corrected Numerov method at least for the lowest indexes k. Moreover
there is numerical evidence that the asymptotic correction is successful in
improving the eigenvalue approximations provided by the former methods
and this extends the range of values of k for which they are competitive with
the latter one.
In the sequel, in order to better emphasize the dependence of λk, λ

(h)
k and of

y
(h)
k on the potential q, we shall denote them as λk(q), λ

(h)
k (q) and y

(h)
k (q),

respectively.

Remark 1. For later reference, we observe that if the potential is shifted by
a constant ϑ, i.e. q(x) is replaced with q(x) + ϑ, the matrix S does not vary
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while A(q(x) +ϑ) = A(q(x)) +ϑS. This implies that, analogously to the con-

tinuous problem, λ
(h)
k (q(x)+ϑ) = λ

(h)
k (q(x))+ϑ with the same corresponding

eigenvector, see (7).

Remark 2. A drawback of the proposed schemes is constituted by the fact
that when the order p of the method increases the spectrum of the matrix pen-
cil (A(q), S) may contain some few couples of complex conjugate eigenvalues.
This is in contrast with the peculiarity of a regular SLP with a real-valued
potential q of having a real spectrum. A possible strategy for overcoming such
incongruity consists in taking a finer mesh near the extremes of the interval
of integration, namely in discretizing the interval [0, π] as follows:

x0 = 0 , xi = xi−1 + hi , i = 1, 2, . . . , N + 1 , xN+1 = π ,

where










h1 ≤ h2 ≤ · · · ≤ hη ,

hi = hη , i = η + 1, . . . , N − η + 1 ,

hi = hN−i+2 , i = N − η + 2, . . . , N + 1.

The choice of the nonuniformly distributed nodes can be made in several ways.
For example, they can be derived starting from the zeros of suitable orthog-
onal polynomials of degree 2η + 1, or arranged with a geometric progression
distribution (see [17, 18] for further details).

3. Reconstruction of symmetric potentials

The first step of the numerical procedure we have studied for solving the
inverse SLP (1)-(3) consists in selecting a linear function space Φ composed
by symmetric functions and of finite dimension L inside of which we look for
an approximation of the exact potential q(x). In particular, Φ is chosen so
that the constant functions belong to it since a reasonable basic property a
“good” method for inverse SLPs must satisfy is that of allowing the exact
reconstruction of constant potentials. As a matter of fact, all matrix methods
improved with the asymptotic correction technique solve exactly direct SLPs
with such potentials.
The outline of our method is the following. Let us denote with

Λ = (λ1, λ2, . . . , λM)T
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the vector containing the input data of the problem and, for each φ ∈ Φ, let
us collect into

Λ(φ) = (λ1(φ), λ2(φ), . . . , λM(φ))T , (18)

the exact eigenvalues of the SLP (1)-(3) with potential φ and into

Λ(h)(φ) = (λ
(h)
1 (φ), λ

(h)
2 (φ), . . . , λ

(h)
M (φ))T , (19)

the corresponding numerical approximations provided by the (2ν)-step BVM

with ν a priori fixed. In addition, let E(h) =
(

ǫ
(h)
1 , ǫ

(h)
2 , . . . , ǫ

(h)
M

)T

be the vec-

tor containing the correction terms in (8) associated to the selected BVM
and to the BCs of the SLP. We then take as approximation of the exact po-
tential the function q(h) ∈ Φ for which the corresponding corrected numerical
eigenvalues better approximate in the least-square sense the reference ones,
i.e.

q(h)(x) = arg min
φ∈Φ

G(h)(φ)

where G(h)(φ) =
∥

∥Λ(h)(φ) − Λ + E(h)
∥

∥

2

2
. We observe that, as hց 0, G(h)(φ)

approaches the Röhrl functional ‖Λ(φ) − Λ‖2
2 introduced and analyzed in

[19].
By considering that the linear space Φ is chosen of finite dimension L, in
practice we fix a suitable basis for Φ, say

B = {φ1(x), φ2(x), . . . , φL(x)} (20)

with Φ = span(B) , and we compute the coefficients of the representation of
q(h)(x) with respect to such basis. This means that if we define

φ(x, c) =

L
∑

j=1

cjφj(x) ,

F (h)(c,Ω) = Λ(h)(φ(x, c)) − Ω , (21)

for each c = (c1, c2, . . . , cL)T and each Ω ∈ RM , then

q(h)(x) = φ(x, c(h)), (22)

where c(h) solves in the least-square sense the system of M nonlinear equa-
tions, analogous to that in (8),

F (h)(c,Λ − E(h)) = Λ(h)(φ(x, c)) − Λ + E(h) = 0 , (23)
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being from now on 0 the zero vector of suitable size depending on the context.

Remark 3. If the SLP is subject to DBCs the method in [12] is a particular
instance of our procedure corresponding to the following choices: p = 4,
N = 2M, L = M, and for each i, j = 1, 2, . . . , L, φj(x) is such that φj(xi) = 1
if i = j, N + 1− j, and φj(xi) = 0 otherwise. In this setting, the approach is
that of solving (23) exactly since the number of unknowns M of such system
equals the number L of its nonlinear equations. Similar correspondences can
be found with the methods in [11, 14] via some suitable adjustments.

Concerning the effective computation of c(h) standard nonlinear optimization
methods like the Gauss-Newton or the Levenberg-Marquardt methods with
line search can be used [21, 22, 23].
Alternatively, when M = L, a Newton type method can be applied for solv-
ing (23). In particular, one of the most commonly used is the modified
Newton method due to its relatively low computational cost and to its quite
good convergence properties, [11, 12, 13, 14]. The corresponding recurrence
relation is given by

c
(h)
r+1 = c(h)

r −
(

J (h)(0)
)−1

F (h)
(

c(h)
r ,Λ − E(h)

)

, r = 0, 1, 2, . . . , (24)

with c
(h)
0 a suitable initial approximation and J (h)(0) the jacobian matrix

J (h)(c) =
∂F (h)

(

c,Λ −E(h)
)

∂c
=
∂Λ(h)(φ(x, c))

∂c
(25)

evaluated at c = 0. Clearly, the iteration (24) is well defined provided J (h)(0)
is nonsingular. Now, if we assume that the coefficient matrix S in (16),

which is constant with respect to c, is nonsingular, λ
(h)
k (φ(x, c)) is the kth

eigenvalue of S−1A (φ(x, c)) , see (7), where the matrix A (φ(x, c)) in (15)
can be decomposed as

A (φ(x, c)) = A0 +

L
∑

j=1

cjAj
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with A0 = −h−2
(

T + γLe
(N)
1 αT − γRĴe

(N)
1 αT Ĵ

)

and

Aj = B(ν)







φj(x1)
. . .

φj(xN )






+γLφj(x0)β

(ν)αT−γRφj(xN+1)Ĵβ(ν)αT Ĵ .

As a consequence, see (19), it is not difficult to verify that, for any M and
L, the entries of the jacobian (25) are given by the classical formula

(

J (h)(c)
)

kj
=

〈

v
(h)
k (φ(x, c)) , S−1Ajy

(h)
k (φ(x, c))

〉

〈

v
(h)
k (φ(x, c)) , y

(h)
k (φ(x, c))

〉

being 〈·, ·〉 the standard scalar product and y
(h)
k (φ(x, c)) and v

(h)
k (φ(x, c))

right and left eigenvectors of S−1A(φ(x, c)) corresponding to λ
(h)
k (φ(x, c)),

respectively.

Some considerations have to be made at this point concerning the choice
of the linear space Φ and of its set of basis functions B. With reference
to the former choice, standard arguments from the approximation theory,
like the regularity and the flexibility of the approximating functions, have
been adopted and the accuracy of the obtained approximation q(h)(x) ≈ q(x)
clearly depends on this choice. In determining the performance of the overall
procedure, however, the selection of B turns out to be of no minor relevance.
The jacobian J (h)(c), in fact, depends on B and the properties of such matrix
determine the stability of the method with respect to perturbations on the
input data or perturbations due to the use of the finite precision arithmetic.
A general discussion of such properties, however, is rather difficult. Neverthe-
less, if we assume that the potential to be reconstructed is “sufficiently close”
in some norm to a constant then J (h)(0) represents a “good” model for car-
rying out an analysis of the stability of the method (observe that if φ(x, c̃)

is constant then from Remark 1 one deduces y
(h)
k (φ(x, c̃)) = y

(h)
k (φ(x, 0)),

v
(h)
k (φ(x, c̃)) = v

(h)
k (φ(x, 0)) and, consequently, J (h)(c̃) = J (h)(0)) In addi-

tion, when M = L the convergence properties of the iterative method used
for solving (23) like, for instance, the modified Newton one are strictly re-
lated to the conditioning of J (h)(0).
As the used notation underline, the previous matrix depends on the dis-
cretization stepsize h of the BVM. Nevertheless, unlike the methods in [11,
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12, 13, 14], in our case we have the freedom of choosing h arbitrarily small
independently of the number M of known eigenvalues. We observe that
Λ(h)(φ(x, c)) converges to Λ(φ(x, c)) as hց 0 for any c and from now on we
shall assume that

lim
h→0

J (h)(0) = lim
h→0

∂Λ(h)(φ(x, c)

∂c
=
∂Λ(φ(x, c)

∂c









c=0

≡ J(0) (26)

whose entries are given by [19]

(J(0))kj =

∫ π

0
y2

k(x)φj(x) dx
∫ π

0
y2

k(x) dx
, k = 1, . . .M, j = 1, . . . , L, (27)

being yk(x) the kth exact eigenfunction for the SLP with zero potential and
the same BCs. This assumption is supported by the results of some numeri-
cal experiments we have conducted with the function spaces Φ described in
the following subsections. In the sequel, we will therefore refer to the limit
jacobian J(0) when talking about the stability of the method.

3.1. Trigonometric polynomials

It is known that the asymptotic estimates (5) for the Dirichlet and the
Neumann eigenvalues for large k specify to [3]

λk(q) = k2 + q̄ − 1

π

∫ π

0

q(x) cos(2kx)dx+O(1/k)

(28)
≡ ξ

(D)
k (q) +O(1/k) ,

λk(q) = (k − 1)2 + q̄ +
1

π

∫ π

0

q(x) cos(2(k − 1)x)dx+ · · ·
(29)

≡ ξ
(N)
k (q) + · · · ,

respectively, so that, as discussed in [11, 13], the informations in them con-
tained are related to the coefficients of the Fourier cosine series of q. This
suggests to consider the space Φ constituted by the symmetric trigonometric
polynomials with coordinate functions given by

φj(x) = cos(2(j − 1)x), j = 1, 2, . . . , L, (30)

which have been already successfully used in the derivation of the methods
proposed in [24, 25]. Clearly, in this case the best approximation in L2-norm
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of q that we can obtain is represented by its truncated Fourier cosine series.
The limit jacobian (26) associated to (30) have a very simple structure if the
SLP is subject to DBCs or to NBCs. In more details, the eigenfunctions for
the former conditions and q(x) ≡ 0 are yk(x) = sin(kx), k = 1, 2, . . . , so that
from (27) after some computations one verifies that the only nonzero entries
of J(0) are given by

(J(0))k1 = 1, k = 1, 2, . . . ,M,
(31)

(J(0))j−1,j = −1

2
, j = 2, 3, . . . ,min{L,M + 1}.

For the NBCs and zero potential, instead, the eigenfunctions are known to
be yk(x) = cos((k − 1)x), k = 1, 2, . . . , and the jacobian J(0) corresponding
to (30) is lower triangular with nonzero entries given by

(J(0))k1 = 1, k = 1, 2, . . . ,M, (J(0))jj =
1

2
, j = 2, 3, . . . ,min{L,M}.

(32)
In both the previous cases, when M = L there is numerical evidence that
J (h)(0) rapidly approaches J(0) as h goes to zero and the same happens for
their inverses. For the computation of the coefficient vector c(h) in (22) the
very simple structure of the limit matrix J(0) suggests therefore to apply
the modified Newton method in (24) with J (h)(0) replaced by J(0). The
convergence properties of the so-obtained iterative procedure turn out to be
very satisfactory in all our experiments. Moreover, it is not difficult to verify
that the spectral condition number of J(0), say κ(J(0)), grows linearly with
respect to M.
Finally, it is worth to mention that for SLPs subject to more general BCs, the
limit jacobian J(0) corresponding to (30) is not known in closed form since
the same holds for the exact eigenfunctions. Nevertheless, when M = L, the
observed behaviour of κ

(

J (h)(0)
)

is still O(M).

3.2. Algebraic polynomials

A second function space to be considered is surely represented by the
algebraic polynomials symmetric with respect to π

2
and, actually, this has

been our first choice in chronological order. At the time being, however, the
results obtained with this choice are definitely negative in terms of stability
properties of the numerical procedure. When M = L, in fact, the condition
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number of the limit jacobian (26) associated to different sets of basis func-
tions, like the shifted and scaled Legendre and Chebyschev polynomials of
even degree, grows very quickly with M.
In this situation, it is evident that with this function space if we set L = M
then we may get an accurate approximation of the unknown potential only if
the first few eigenvalues contain almost all the information about it and the
given input eigenvalues M is very small. Alternatively, one may set L≪M
and solve (23) in the least-square sense.
Anyway, it must be said that we cannot exclude that there exists a set of basis
functions, which we have not yet considered, such that the stability proper-
ties of the method becomes acceptable, say a linear or at most quadratical
growth with respect to M of the conditioning of the limit jacobian (26) when
M = L. In our opinion, however, the cause of its instability is intrinsic to
the function space since the use of polynomials of very high degree is usually
not recommended. This is the motivation which has led us to consider the
function space described in the following subsection.

3.3. Cubic spline functions

It is well-known that many of the most well established methods for func-
tion approximations are based on the use of cubic spline functions [26]. This
is due to their peculiarity of combining flexibility with almost always suffi-
cient smoothness properties. By virtue of this fact, the third function space
we have considered is constituted by the cubic spline functions symmetric
with respect to π/2. In this context, the most natural choice is surely repre-
sented by the ones defined over a uniform partition ∆ of [0, π] with a set of
symmetric basis functions derived from the B-spline basis.
In more details, the first choice of spline function space of size L that we
have considered is the following. The partition ∆ has been fixed as

∆ : 0 = t0 < t1 < · · · < t2L−4 = π ; (33)

ti = t0 + iht , i = 0, 1, . . . , 2L− 4 , ht =
t2L−4 − t0
2L− 4

,

and, by denoting with {ψi(x)}2L−1
i=1 the B-spline basis of order four for the

knot sequence ti = t0 + iht, i = −3,−2, . . . , 2L − 1, the basis functions in
(20) are set as

φi(x) =
φ̂i(x)

∫ π

0
φ̂i(x)dx

, φ̂i(x) = ψi(x) + ψ2L−i(x) , i = 1, 2, . . . , L . (34)
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Unfortunately, this straightforward approach does not give positive results
from the point of view of the stability of the obtained method. When M = L,
in fact, the condition number of J(0) grows as O(M4) for DBCs and as
O(M2) for NBCs. This behaviour has been observed experimentally and the
obtained estimates for the rate of growth of κ (J(0)) have been reported in
Table 1 where this method has been called “type 1 method”. A direct in-
spection of the entries of J(0) and of its inverse shows that such negative
results are mainly caused by the first two basis functions in (34) which have
a smaller support with respect to the others. This implies that the corre-
sponding coefficients in (22) are kept less under control since the computed
approximation of the unknown potential depends on them only in small in-
tervals near the extremes of [0, π]. In addition, an explanation of the worse
results for the DBCs relies on the fact that the corresponding eigenfunctions
are close to zero near x = 0, π so that the entries in the first columns of
the limit jacobian (26) have a much smaller magnitude with respect to those
corresponding to the NBCs.
A possible remedy for improving the stability of the procedure is therefore
that of enlarging the support of the first basis spline functions. In particular,
the approach that we have considered is the following. For a function space
Φ of size L, the first knot in (33) is taken strictly positive, that is t0 > 0
and, consequently, t2L−4 = π − t0 < π. In the subinterval [t0, t2L−4]  [0, π]
the symmetric cubic splines φ̂j(x) in (34) are defined in the same way as just
described while in [0, t0] and [t2L−4, π] they are obtained by extending the
corresponding polynomials in [t0, t1] and [t2L−5, t2L−4], respectively. In more
details, for each j, φ̂j(x)|[0,t0] and φ̂j(x)|[t2L−4,π] are taken to be the cubic

polynomials φ̂j(x)|[t0,t1] and φ̂j(x)|[t2L−5,t2L−4], respectively. The basis func-
tions φj are finally computed by applying the normalization given in the left
formula in (34). It is not difficult to realize that the so-obtained functions
are symmetric not-a-knot splines with respect to the partition composed by
the 2L− 2 knots

∆′ : 0 < t0 < t1 < · · · < t2L−4 < π . (35)

In this general setting, the question to be addressed is the choice of the first
knot t0 and to this regard the adopted criterion has been that of finding a
good compromise between the accuracy of the best approximation in L2-norm
of q over Φ and the stability of the method for inverse SLPs. The first natural
attempt is therefore that of taking (35) to be a uniform partition of [0, π]
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Table 1: Conditioning of the limit jacobian J(0) for some spline function spaces.

Type 1 method Type 2 method Type 3 method

M κ(J(0)) rate κ(J(0)) rate κ(J(0)) rate

Dirichlet boundary conditions

10 8.5509e+02 – 5.1626e+01 – 4.2834e+01 –
20 1.5130e+04 – 1.8275e+02 – 5.8132e+01 –
40 2.7125e+05 4.1642 7.0508e+02 1.9940 8.0754e+01 0.5644
80 4.6571e+06 4.0980 2.8023e+03 2.0054 1.1320e+02 0.5203
160 7.7424e+07 4.0524 1.1219e+04 2.0048 1.5939e+02 0.5094
320 1.2636e+09 4.0269 4.4948e+04 2.0027 2.2493e+02 0.5046

Neumann boundary conditions

10 8.4090e+01 – 2.0469e+01 – 4.5433e+01 –
20 2.9168e+02 – 3.4011e+01 – 9.7890e+01 –
40 1.1214e+03 1.9989 6.3836e+01 1.1392 2.3777e+02 1.4149
80 4.4429e+03 2.0011 1.2417e+02 1.0164 6.0989e+02 1.4117
160 1.7739e+04 2.0011 2.4516e+02 1.0038 1.6266e+03 1.4501
320 7.0943e+04 2.0006 4.8724e+02 1.0007 4.4515e+03 1.4742

and this choice turns out to be successful in improving the stability of the
method which we have called ‘type 2 method.” As shown in Table 1, in fact,
when M = L, κ (J(0)) now grows quadratically with respect to M for DBCs
and linearly for NBCs. Nevertheless, for the former conditions we consider
the behaviour of κ (J(0)) still not satisfactory so that a further enlargement
of the subinterval [0, t0] is operated. In particular, when M = L, a noticeable
improvement of the stability of the method for DBCs is obtained by taking
t0 so that t0 = 2(t1 − t0) and ti − ti−1 = (t1 − t0) for each i = 2, 3, . . . , 2L−4,
see the data in Table 1 corresponding to the “type 3 method”. For complete-
ness, in the same table we have also reported the values of κ (J(0)) for such
method applied to problems with NBCs. As one can see, in this case the use
of the type 3 method is not convenient.
In the case of symmetric inverse SLP subject to general BCs not of Dirich-

let type the most appropriate method to be used seems to be the “type 2
method”. This is because, like in the Neumann case, the value of the corre-
sponding eigenfunctions is surely different from zero for x = 0, π.
By virtue of these results, in the sequel when talking about the use of the
spline function for solving the inverse SLP (1)-(3) we will refer to the “type
3 method” for DBCs and to the “type 2 method” otherwise.
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Remark 4. We would like to underline the fact that with the spline func-
tions the behaviour of κ(J(0)) with respect to M coincides with that of the
methods in [11, 13]. Moreover, for later reference, we mention that with the
normalization (34) it results ‖(J(0))−1‖2 = O(1).

4. Error analysis

The error in the approximation of the unknown potential through the
described methods is here analyzed and discussed. We will consider only
the case where L = M and assume that the coefficient vector c(h) of the
computed approximation q(h)(x) = φ(x, c(h)), see (22), solves exactly the
system of nonlinear equations (23). Moreover, we will concentrate on the
case of inverse problems subject to DBCs and to NBCs. In our opinion,
however, the results obtained for the latter conditions hold also for problems
subject to more general BCs not of Dirichlet type.
As we are going to see, the error in the approximation q(h)(x) ≈ q(x) can
be splitted in three terms all depending on the used function space Φ and
consequently on the number M of known eigenvalues since its size L is set
equal to M. The error due to the discretization of the SLP operated by
applying the described BVMs is present instead in only one term of such
decomposition.
If we denote with φ(x, c∗) the best approximation in L2-norm of the unknown
potential over Φ, namely

c∗ = (c∗1, c
∗

2, . . . , c
∗

M)T = arg min
c∈RM

‖q − φ(·, c)‖2, (36)

then we get

‖q − q(h)‖2 ≤ ‖q − φ(·, c∗)‖2 + ‖φ(·, c∗) − φ(·, c(h))‖2

≤ ‖q − φ(·, c∗)‖2 +
M

∑

j=1

|c∗j − c
(h)
j |‖φj‖2

≤ ‖q − φ(·, c∗)‖2 +

(

max
j=1,2,...,M

‖φj‖2

)

‖c∗ − c(h)‖1. (37)

In order to find an estimate of ‖q − q(h)‖2 we therefore need to study the
behaviour of ‖c∗−c(h)‖1. From (21) and (19), one immediately deduces that
for each h

F (h)
(

c∗,Λ(h) (φ(x, c∗))
)

= 0
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whereas under the assumption we have made

F (h)
(

c(h),Λ − E(h)
)

= 0.

It follows that a first order approximation of c∗ − c(h) is given by

c∗ − c(h) ≃
(

J (h)(c∗)
)−1 (

Λ(h) (φ(x, c∗)) − Λ + E(h)
)

,

where J (h)(c∗) is the jacobian in (25). Consequently

‖c∗ − c(h)‖1 /
∥

∥(J (h)(c∗))−1
∥

∥

1
(‖∆Λ1‖1 + ‖∆Λ2‖1) (38)

with, see (18),

∆Λ1 = Λ(h) (φ(x, c∗)) − Λ (φ(x, c∗)) + E(h) ,
(39)

∆Λ2 = Λ (φ(x, c∗)) − Λ .

With reference to the behaviour of ‖(J (h)(c∗))−1‖1, we shall assume that, if
h is small enough then there exists a coefficient ω = ω(q) independent of M
and h such that

∥

∥(J (h)(c∗))−1
∥

∥

1
≤ ω

∥

∥(J(0))−1
∥

∥

1
(40)

where J(0) is the limit jacobian in (26). This assumption is verified, for
instance, if the unknown potential q is “sufficiently” close to a constant so
that the eigenfunctions of the corresponding SLP are close to those for the
zero potential even for the first indexes k. The numerically observed values
of ω are always of moderate size. For example, for q(x) = sin(x), q(x) =
|x − π/2| and q(x) = x(π − x) it results ω ≈ 1 for DBCs and ω ≤ 2.5 for
NBCs for both the trigonometric polynomials and the spline functions.
By setting

χ(M) = ω

(

max
j=1,2,...,M

‖φj‖2

)

∥

∥(J(0))−1
∥

∥

1
, (41)

from (37), (38) and (40) we therefore obtain

‖q − q(h)‖2 ≤ ‖q − φ(·, c∗)‖2 + χ(M) (‖∆Λ1‖1 + ‖∆Λ2‖1) . (42)

Concerning the behaviour of ‖∆Λ1‖1, from (39), (18) and (19) it is evident
that ∆Λ1 represents the discretization error in the numerical approximations
of the eigenvalues of the SLP (1)-(3) with potential φ(x, c∗) when the selected
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BVM improved with the asymptotic correction technique is applied. As
already underlined in Section 3, such error can be arbitrarily reduced since
the choice of the stepsize h is left free. More precisely, from (17) it follows
that (at least) ‖∆Λ1‖1 = O(hp−1/2) being p the order of accuracy of the
BVM.
The terms χ(M) and ‖∆Λ2‖1 in (42) closely depend on the used function
space Φ and, in particular, for the trigonometric polynomials and the spline
functions the following are the behaviours with respect to M that we have
observed for them.

• Trigonometric polynomials:
it is immediate to verify that χ(M) = O(M) for this function space. In
fact, from (30), (31) and (32) one deduces that maxj=1,2,...,M ‖φj‖2 =√
π and ‖ (J(0))−1 ‖1 = O(M).

Concerning the vector ∆Λ2 defined in (39), it contains the differences
between the first M exact eigenvalues of the SLP (1)-(3) with poten-
tial φ(x, c∗) and q(x). It is well-known that regular SLPs are well-
conditioned with respect to perturbations on their coefficients and a
first estimate of ‖∆Λ2‖1 can be obtained by applying Theorem 2.8
in [27] which gives ‖∆Λ2‖1 ≤ M‖q − φ(·, c∗)‖∞. In all our experi-
ments, however, such upper bound turns out to be definitely crude and
a sharper estimate for the trigonometric polynomials is given by

‖∆Λ2‖1 = O(M−1/2)‖q−φ(·, c∗)‖2 or ‖∆Λ2‖1 = o(M−1)‖q−φ(·, c∗)‖2

if the SLP is subject to DBCs or to NBCs, respectively. These results
can be explained by considering the asymptotic formulae in (28)-(29).

It is in fact clear that the terms ξ
(D)
k and ξ

(N)
k in such equations coin-

cide for q and its Fourier cosine series. Therefore, since φ(x, c∗) rep-

resents such series truncated to the Mth harmonic we have ξ
(D)
k (q) =

ξ
(D)
k (φ(·, c∗)) with k = 1, . . . ,M − 1 and ξ

(N)
k (q) = ξ

(N)
k (φ(·, c∗)) for

k = 1, . . . ,M.

• Spline functions:
in this case, after some computations, one obtains that with the normal-
ization (34) maxj=1,2,...,M ‖φj‖2 = O(

√
M). Concerning the behaviour

of ‖ (J(0))−1 ‖1, from Remark 4 we deduce that it grows at most as
O(

√
M). Nevertheless, the numerically computed values of ‖J−1(0)‖1
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for M ≤ 1500 suggest that such quantity has actually an horizontal
asymptote. From the previous arguments, see (41), we therefore get
that χ(M) = O(

√
M).

With reference to ‖∆Λ2‖1 the estimate obtained from Theorem 2.8 in
[27] is considerably not sharp also for this function space. In fact, the
experiments indicate that

‖∆Λ2‖1 = O(
√
M)‖q − φ(·, c∗)‖2 .

By collecting all the previous considerations, from (42) we finally get

‖q − q(h)‖2 ≤ (1 + σ(M))‖q − φ(·, c∗)‖2 + χ(M)‖∆Λ1‖1 (43)

where for the trigonometric polynomials χ(M) = O(M), while σ(M) =
O(

√
M) and σ(M) = o(1) for SLPs with DBCs and NBCs, respectively.

For the spline functions, instead, χ(M) = O(
√
M) and σ(M) = O(M).

The obtained upper bound for ‖q− q(h)‖2 put into evidence that the con-
vergence properties of our procedure for the solution of symmetric inverse
SLPs are closely related to the behaviour of ‖q − φ(·, c∗)‖2 which, in turn,
depends on the regularity of q, on the number of known eigenvalues and on
the used function space. In this context, the following is an important con-
sideration.

Remark 5. If the unknown potential belongs to the used function space, our
procedure allows to reconstruct it with arbitrarily high accuracy. This hap-
pens even if a fixed and not necessarily large number M of known eigenvalues
is given.

More generally, when q is “sufficiently” regular, the results obtained with
the spline functions are usually more accurate than those obtained with the
trigonometric polynomials in spite of the faster growth of the coefficient σ(M)
in (43) for the former space. The well-known flexibility of the spline func-
tions, in fact, usually allows the best spline approximation φ(·, c∗) to be
much closer to q than its truncated Fourier cosine series is. In particular,
this clearly happens if q′(0) and q′(π) are different from zero since in such case
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the accuracy of the approximation obtained with the trigonometric polyno-
mials inevitably deteriorates near the extremes of [0, π]. On the other hand
the trigonometric polynomials are simpler to be manipulated and, obviously,
they are the functions to be used when the interest is devoted to the knowl-
edge of the harmonics of q instead of its global behaviour.

Before concluding, we must say that even though many of the arguments
used in this section are purely experimental, we think that our approach for
the analysis of the error is valid since it allows to isolate the term due the
discretization operated by the used matrix methods. Moreover, many of the
papers currently available in the literature concerning the solution of inverse
SLP, like [11, 12, 13, 14], do not treat this aspect and are mainly interested
on the analysis of the convergence properties of the iterative procedure used
for solving the system of nonlinear equations (8).

5. Numerical examples

In this section some numerical results obtained with the proposed pro-
cedure, always used with L = M (see Section 3), are reported which put
into evidence its competitiveness with respect to other classical methods. In
particular, the numerical experiments we have conducted suggest that if the
potential q(x) to be recovered is at least continuous then the approximation
provided by our method is globally more accurate than the one provided by
the Numerov method used as described in [13]. On the other hand, if q(x)
is discontinuous then the results given by the two methods are very similar.
This can be explained by considering that in the previous case the main term
in the decomposition of the error (43) is the one involving ‖q− φ(·, c∗)‖2 i.e.
the one associated to the projection of the unknown potential over the func-
tion space Φ.
Finally, the last example is aimed to confirm what observed in Remark 5.
Before proceeding, we mention that in all the following examples the required
reference eigenvalues have been computed by using the matslise software
package [28] while the numerical eigenvalues have been computed with the
routine eig of matlab.

Example 1. Let us consider the SLP (1) with q(x) = sin(x) subject
to DBCs. For solving the corresponding inverse problem we have used the
cubic spline functions defined according to the “type 3 method” described in
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Section 3. The involved direct problems have been solved by applying the
BVM of order p = 8 defined over N = 6M uniformly distributed meshpoints
being M the number of known eigenvalues. The obtained results have been
reported in Fig. 1 where the two subplots correspond to M = 5 and M = 10,
respectively. More precisely, the error |q(x) − q(h)(x)|, x ∈ [0, π], for the cu-
bic spline functions is plotted and compared with the error of the pointwise
approximation given by the Numerov method [13].
It is evident that our procedure provides definitely more accurate approxi-
mations than the one given by the Numerov method and that, with respect
to it, the gain in accuracy of our method as M increases is larger.
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Figure 1: Error in the reconstruction of q(x) = sin(x) for the spline functions (solid line)
and the Numerov method (*).

Example 2. In this second example we have solved the inverse SLP
subject to NBCs with exact potential q(x) =

∣

∣x− π
2

∣

∣ . We have applied the
BVM of order p = 8 defined over a nonuniform mesh with geometrically
distributed stepsize as described in Remark 2 and the used function space Φ
is constituted by the cubic spline functions defined according to the “type 2
method”. The problem has been solved with M = 10 and M = 20 known
eigenvalues and N = 6M meshpoints for the BVM. The corresponding errors
have been reported in Fig. 2 where we have also compared our results with
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that provided by the Numerov method labeled as Method 1 in [13, Section
3].
As one may expect, in a neighbourhood of x = π

2
, where the exact potential

is only continuous, the two errors are quite similar. In the remaining part
of the interval of integration, however, our procedure gives a significantly
more accurate approximation of the unknown potential. In particular, this
happens near the extremes x = 0, π where the accuracy of the approximation
provided by the Numerov method rapidly deteriorates.
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Figure 2: Error in the reconstruction of q(x) =
∣

∣x − π

2

∣

∣ for the spline functions (solid line)
and the Numerov method (*).

Example 3. The potential to be reconstructed in this example is the
step-function

q(x) =

{

1 if π
4
< x < 3π

4
,

−1 if 0 ≤ x ≤ π
4
, 3π

4
≤ x ≤ π ,

(44)

starting from the knowledge of the corresponding Neumann spectrum. In the
first three subplots of Fig. 3, together with the exact potential, the approxi-
mations obtained by using the trigonometric polynomials, the BVM of order
p = 6 with N = 6M geometrically distributed meshpoints andM = 16, 32, 48
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known eigenvalues have been reported, respectively. As one can see at first
sight such approximation improves for increasing values of M ; actually, the
reconstructed potential q(h) more closely constitutes an approximation of the
truncated Fourier cosine series of q limited to the Mth harmonic. This is
shown in the last subplot of Fig. 3 where the errors ‖q − q(h)‖2 (solid line)
and, see (36), ‖φ(·, c∗) − q(h)‖2 (dashed line) computed with M even have
been reported. This result perfectly agrees with the error analysis carried out
in Section 4 and we mention that a similar comparison had been done in [11].

10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

M = 16

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

M = 32

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

M = 48

Figure 3: Reconstruction of the discontinuous potential (44) with trigonometric polyno-
mials and corresponding error in the approximation.

Example 4. In this last example the trigonometric polynomials are
used for the reconstruction of q(x) = cos(6x) with the aim of confirming what
observed in Remark 5. In particular, in Table 2, for the corresponding inverse
SLPs with DBCs and NBCs, we have listed the errors ‖q − q(h)‖2 obtained
with M = 8 by applying the BVMs of order p = 6, 8 with geometrically
distributed variable stepsize for increasing number N of meshpoints. It is
evident that such errors approach zero and that the accuracy increases with
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the order of the method.

Table 2: L2-norm of the errors in the reconstruction of q(x) = cos(6x) with trigonometric
polynomials, M = 8 Dirichlet and Neumann known eigenvalues and increasing number N

of meshpoints.

Dirichlet BC Neumann BC

N order 6 order 8 order 6 order 8

25 6.5937e-03 2.4742e-03 1.0136e-03 2.0918e-04
50 9.3910e-05 2.3805e-06 3.5753e-05 6.4272e-06
75 9.3355e-06 5.6048e-07 2.7278e-06 2.6838e-07
100 1.4209e-06 5.9983e-08 3.8299e-07 2.1873e-08
125 3.1333e-07 8.9742e-09 8.0664e-08 2.9519e-09
150 8.9623e-08 1.7998e-09 2.2294e-08 5.6213e-10

6. Conclusions

The proposed procedure for the solution of symmetric inverse SLPs have
provided positive results. The accuracy of the obtained approximation is
closely related to the regularity of the unknown potential q. In particular,
when q is sufficiently smooth, our method turns out to be very competitive
with respect to the Numerov method used as described in [13]. By virtue of
this fact, an interesting topic for future investigation is the application of the
adopted approach for solving nonsymmetric inverse SLPs.
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