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Shooting methods for a PT-symmetric periodic eigenvalue problem.
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Abstract We present a rigorous analysis of the performance of some one-step discretization schemes
for a class of PT-symmetric singular boundary eigenvalue problem which encompasses a number of
different problems whose investigation has been inspired by the 2003 article of Benilov, O’Brien
and Sazonov [3]. These discretization schemes are analyzed as initial value problems rather than as
discrete boundary problems, since this is the setting which ties in most naturally with the formulation
of the problem which one is forced to adopt due to the presence of an interior singularity. We also
devise and analyze a variable step scheme for dealing with the singular points. Numerical results
show better agreement between our results and those obtained from small-ǫ asymptotics than has
been shown in results presented hitherto.
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1 Introduction

Recently, Benilov, O’Brien and Sazonov [3] considered the formal ODE eigenvalue problem

iǫ
d

dx

(

sin(x)
dy

dx

)

+ i
dy

dx
= λy, x ∈ (−π, π), (1)

with periodic boundary conditions. They speculated that the eigenvalues of this problem are purely
real, in spite of the fact that any reasonable definition of the underlying operator is highly non-
selfadjoint. This problem has now been extensively studied, both theoretically and numerically (see
[5], [6], [8]). The fact that its eigenvalues are purely real for 0 < ǫ < 2 has been proved rigorously by
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Weir [11] who used an approach inspired by the complex scaling method for resonances [2] to show
that the eigenvalues coincide with those of an explicitly given selfadjoint Sturm-Liouville operator.
An important aspect of the problem is to understand what precisely is meant by periodic boundary
conditions. It turns out that one means only that y(−π) = y(π), with no restrictions on y′(−π) and
y′(π). This second order problem therefore appears to have just one boundary condition. In fact the
role of second boundary condition is played by the condition that solutions must lie in L2(−π, π),
which restricts their behaviour at x = 0.

A more general version is the following:

iǫ
d

dx

(

f(x)
dy

dx

)

+ i
dy

dx
= λy, x ∈ (−π, π), (2)

in which f is a 2π-periodic odd Lipschitz function, positive on (0, π) with f(0) = 0 = f(π), twice
differentiable on neighbourhoods of integer multiples of π, with non-zero first derivatives at those
points. This version was considered by entirely different methods in [4], where it is also proved that
the eigenvalues are real for all sufficiently small ǫ > 0.

Because of the way that the domain for the operator underlying the equation (2) is defined,
and in particular the interior singularity at 0, it is difficult to devise discretization methods in the
form of matrix pencils. Instead, one is drawn to use a characterization of the eigenvalues as the
zeros of the imaginary part of an analytic function, given in [4] and in Chugunova and Volkmer
[6], see Theorem 1. The calculation of the values of this function requires the solution of initial
value problems. Unfortunately the initial value problems are singular, which is problematic when it
comes to devising a rigorous error analysis. It would be much better if we could devise a discretization
amenable to the approach in [1], where we studied the discretization of singular problems by methods
which yield algebraic eigenvalue problems ANY = λY, in which AN is an N × N matrix. These
often have the nice property that the error in an isolated eigenvalue λ depends only on the quantity
τ = ‖ANy − λy‖, in which the vector y is the discretization-scheme-representation of the exact
eigenfunction y. Since eigenfunctions are usually well behaved near singular points this gives an easy
route to understanding why such schemes perform a lot better than one would naively expect from an
error analysis of the underlying initial value problems. In fact the error bounds which usually come
from the analysis of an initial value problem solver tend to be rather poor, because the Lipschitz
constants for the discretized problems blow up as the stepsize tends to zero.

In this paper, however, a study of the initial value problems is inevitable. We avoid as much
of the nastiness as possible by using logarithmic semi-norms (see Proposition 4) and by two-sided
shooting (Theorem 2). We study some one-step schemes, including some Runge-Kutta collocation
methods, and we show that whether or not a scheme exhibits an effective loss of order depends on
several criteria, including

– whether or not a fixed stepsize is used;
– the size of ǫ, with the error being of higher order for smaller ǫ when fixed stepsize is used.

The number of derivatives which eigenfunctions possess at x = ±π turns out to be ⌊(ǫ|f ′(π)|)−1⌋,
so eigenfunctions may not be particularly regular at x = ±π if ǫ is not small. Nevertheless we devise
a variable step grid which avoids loss of order when ǫ is not small.

There is also an unexpected benefit of the shooting approach compared to the ‘large matrix AN ’
approach. The original problem in [3] is actually a time-dependent PDE

ǫ
∂

∂x

(

f(x)
∂y

∂x

)

+
∂y

∂x
=
∂y

∂t
, x ∈ (−π, π), t > 0, (3)

for the special case f(x) = sin(x). A microlocal analysis shows that for x < 0 it behaves like a
backward heat equation and all solutions blow up instantly. Coupled with the fact that the eigenval-
ues are all real, this immediately establishes that the eigen- and associated functions cannot form a
Riesz basis. This argument appears in Chugunova, Karabash and Pyatkov [7] for f(x) = sin(x) and
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can clearly be generalized1 to a much wider class of coefficients. The failure of Riesz basisness of the
eigen- and associated functions is generally associated with ill-conditioning of the spectrum and wild
pseudospectral behaviour, due to the angles between eigenfunctions not being bounded away from
zero. This would make any argument on eigenvalue approximation based on the measurement of lo-
cal truncation errors ANy−λy invalid. However the shooting approach, which reduces the problem
to one half of the interval, namely (0, π), seems to capture enough of the structure of the problem
to avoid these issues; our error analysis gives an indirect proof of this. Of course the fact that the
spectrum of (1) reveals nothing of the (in)stability of the PDE (3) does mean that the accurate cal-
culation of eigenvalues and eigenfunctions is an academic exercise. Nevertheless our demonstration
that it is possible gives a rare example of a problem where one can realize a characterization of the
eigenvalues which allows their accurate computation, despite the presence of unruly pseudospectra.

In the next section we prove some results which give ‘miss distances’, i.e. smooth functions of
the spectral parameter whose zeros are the eigenvalues. We also give various reformulations of the
problem and describe the asymptotic behaviour of solutions near singular points. Section 3 gives a
rigorous error analysis for certain one-step formulae, in particular for those having ‘nice’ properties.
Section 4 presents numerical results; however, since the reader may want to be convinced that
existing library codes with step-size control do find these problems tough, we take the unusual step
of presenting one set of results immediately. Figure 1 compares our approach based on a method
of order 4 with two very respected MATLAB routines, showing the time taken to achieve a given
accuracy for the eigenvalue closest to 4.

0 1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

cpu time (sec)

er
ro

r

method of order 4
ode45
ode15s

Fig. 1 Errors in the estimates of one eigenvalue of (1) with ǫ = 1 versus the cpu time for their computation.

2 Eigenvalues and initial value problems

Proposition 1 Suppose that f is twice differentiable in a neighbourhood of x = 0. Then there exist
solutions ψ1(x, λ) and ψ2(x, λ) having the asymptotic behaviours

ψ1(x, λ) ∼ 1, ψ2(x, λ) ∼ x−ν , ν = (ǫf ′(0))−1,

1 One needs to know that the eigen- and associated functions are complete before even considering basisness!
Completeness is established in [7] for f(x) = sin(x) but in general is still an open problem.
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as x → 0. When f is analytic in a neighbourhood of x = 0 then ψ1 is analytic in a neighbourhood
of x = 0 and the asymptotic expression represents the first term of its Taylor expansion, which is
therefore term-by-term differentiable. When ν is non-integer, ψ2 is of the form x−νg(x, λ) where g
also has a Taylor expansion, and the resulting asymptotic expression is term-by-term differentiable.

⊓⊔

Proposition 2 Suppose that f is twice differentiable in a neighbourhood of x = π. Then there exist
solutions ζ1(x, λ) and ζ2(x, λ) having the asymptotic behaviours

ζ1(x, λ) ∼ (π − x)η, η = −(ǫf ′(π))−1, (4)

ζ2(x, λ) ∼ 1,

as xր π. When f is analytic in a neighbourhood of x = π, ζ1 has the form (π− x)ηg(x, λ) where g
has a Taylor expansion about x = π and the asymptotic formula is term-by-term differentiable. If,
in addition, η is non-integer, then ζ2 is analytic in a neighbourhood of x = π and the asymptotic
formula represents the first term of its Taylor series, and is therefore term-by-term differentiable. ⊓⊔

These results follow by a standard Frobenius-type analysis; alternatively they may be proved
with rigorous error bounds using a change of variables and an application of Levinson’s Theorem,
as in the appendix to [4].

An important observation here is that since f ′(0) > 0 and f ′(π) < 0, there is only one solution
bounded near x = 0, whereas all solutions are bounded near x = π. If 0 < ǫf ′(0) < 2 then there is
only one solution, namely ψ1(x, λ), which lies in L2(−π, π). Any eigenfunction must be a multiple
of this solution, for the corresponding value of λ.

Proposition 2 is not quite sufficient for local truncation error analysis in the case where η =
−(ǫf ′(π))−1 is integer. The standard Frobenius analysis then yields the following.

Proposition 3 If f is analytic in a neighbourhood of π and η = −(ǫf ′(π))−1 ∈ N, then the solution
ζ2(x, λ) has the form

ζ2(x, λ) = ζ̂2(x, λ) + C′ζ1(x, λ) log(π − x),

in which C′ 6= 0 is constant and ζ̂2 is analytic in a neighbourhood of x = π, with ζ̂2(π, λ) = 1. ⊓⊔

Theorem 1 The differential equation (2) has a non-trivial solution y ∈ L2(−π, π) satisfying y(−π) =
y(π) if and only if ψ1(−π, λ) = ψ1(π, λ). Moreover the solution ψ1 has the symmetries

ψ1(−x, λ) = ψ1(x,−λ), ψ1(−x, λ) = ψ1(x, λ) (5)

and so λ is a (real) eigenvalue if and only if

ℑ(ψ1(π, λ)) = 0. (6)

Proof Most of the results in this theorem have appeared in several recent articles including [4] and
[7]. A proof is included here for the convenience of the reader, and applies equally well to the more
general equation

i
d

dx

(

(1 + a g(x))y + ǫf(x)
dy

dx

)

= λy, (7)

in which g is even and f is odd with f > 0 on (0, π), f ′(0) > 0, f and g both 2π-periodic.
Since, up to scalar multiples, ψ1(x, λ) is the only solution of the differential equation in L2(−π, π),

the statement that a non-zero L2-solution y exists with y(−π) = y(π) if and only if ψ1(−π, λ) =
ψ1(π, λ) is obvious.

The symmetries of ψ1 in eqn. (5) are proved in [4] and [6]. The proofs are elementary. For instance,
taking complex conjugates in (2) one immediately proves that ψ1(x, λ) satisfies the same ODE as
ψ1(−x, λ); the fact that these two functions coincide is then immediate from the fact that they both
have the value 1 at x = 0, and the solution determined by this condition is unique.

Finally, the condition (6) follows by combining the eigenvalue condition ψ1(−π, λ) = ψ1(π, λ)
with the fact that eigenvalues are real (λ = λ) and the symmetry ψ1(−π, λ) = ψ1(π, λ), to obtain
ψ1(π, λ) = ψ1(π, λ). ⊓⊔
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Theorem 1 is good if one is able to solve the eigenvalue problem by forward shooting. Starting from
(asymptotic) initial conditions given by Proposition 1 one integrates forward and, if the integration
method is exact, one finds, by Proposition 2, a finite value ψ1(π, λ). The eigenvalues are then the
roots of the equation (6). However if one wishes to use two-sided shooting with a matching point
inside the interval of integration, a different miss distance is required.

Theorem 2 Let ζ1(x, λ) be the solution of (2) determined by Proposition 2. Let q be any positive
function which satisfies the ODE

d

dx
log(q/f) = 1/(ǫf). (8)

Then λ is an eigenvalue if and only if ℑ(W (x, λ)) = 0, where

W (x, λ) =

∣

∣

∣

∣

ψ1(x, λ) ζ1(x, λ)
q(x)ψ′

1(x, λ) q(x)ζ
′
1(x, λ)

∣

∣

∣

∣

=W (λ) (9)

is, in fact, independent of x.

Proof A direct calculation shows that if q satisfies (8) then the differential equation (2) is equivalent
to −(q(x)y′)′ = (iλq/(ǫf))y and standard calculations then show that the q-weighted Wronskian
W (x, λ) of any two solutions is, in fact, independent of x. Thus, for the particular solutions ψ1 and
ζ1, we have W (x, λ) = limtրπW (t, λ). We know the asymptotic behaviour of ζ1 near x = π, but we
also need to know the behaviour of q. Since f(x) ∼ −f ′(π)(π − x) for x ր π, an integration of (8)
shows that

q(x) ∼ C(π − x)1−η, (10)

for some real constant C which we may take to be 1. Now the definition of W gives immediately

−W = qζ21

(

ψ1

ζ1

)′

, and so using the asymptotics

ζ1(x) ∼ (π − x)η[1 + . . . ], q(x) ∼ (π − x)1−η,

we obtain
(

ψ1

ζ1

)′

∼ −
W

(π − x)1+η [1 + . . . ]
.

This yields, upon integrating,

ψ1

ζ1
∼

1

η
W (π − x)−η[1 + . . . ] + d,

where d is a constant of integration. Multiplying by ζ1 and letting xր π gives

ψ1(π, λ) =
1

η
W.

Thus ℑ(ψ1(π, λ)) = 0 if and only if ℑW (λ) = 0, and, from the characterization of eigenvalues in
Theorem 1, the result is proved. ⊓⊔

3 Error evolution for one-step discretization schemes

We observe first that the differential equation (2) can be cast in the form of a first order system

y′(x) = J(x)y(x), (11)

where

y(x) =

(

y
ǫfy′

)

, J(x) =

(

0 1
ǫf(x)

−iλ − 1
ǫf(x)

)

. (12)

This is the form in which we shall integrate the differential equation. It is also worth noting that
Propositions 1, 2 and 3 give corresponding asymptotic information on the solutions of (11), which
may also be found in [4], and which we shall use later.
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3.1 Forward shooting with one-step methods and fixed stepsize

This section is devoted to the analysis of convergence of a one-step method used for solving (11)
subject to y(0) = (1, 0)T over the uniform grid

xn = nh, n = 0, 1, . . . , N, h =
π

N
.

This forward integration is required for each trial value of λ involved in the forward shooting pro-
cedure. The analysis is performed by considering the local error of the formula and its propagation
across the integration steps. In particular, a careful study of both these aspects is required near the
singularities at x = 0, π.

The proof that the error propagation does not cause an order reduction of the formula can be
deduced from the following result.

Proposition 4 For any x̄ ∈ (0, π), let y(x; x̄, ȳ) and z(x; x̄, z̄) be the solution of (11)-(12) with
initial values y(x̄) = ȳ and z(x̄) = z̄, respectively. Then, for any t ∈ [x̄, π),

‖y(t; x̄, ȳ)− z(t; x̄, z̄)‖ ≤ e|λ|π‖ȳ − z̄‖.

Proof Let I2 be the identity matrix of size 2. Since J(x) is continuous in [x̄, π) and since the
logarithmic semi-norm

µ1(J(x)) = lim
θ→0+

‖I2 + θJ(x)‖1 − 1

θ
= |λ|

for each x, the result follows immediately from Theorem 11.1 in [10, page 64]. ⊓⊔

The immediate consequence of this Proposition is that if we denote by en the local error at the
n-th integration step, defined by

en = y(xn;xn−1,yn−1)− yn, (13)

then

‖y(xN ;x0,y0)− yN‖ ≤ e|λ|π
N
∑

n=1

‖en‖, (14)

where, we recall, y0 = (1, 0)T . The discussion of the behaviour of the local errors is closely related
to the method used. In the sequel we shall consider the case where the one-step scheme is an s-stage
Runge-Kutta method which, when applied to solve (11)-(12), leads to the discrete problem

yn+1 = yn + h
(

bT ⊗ I2
)

DnYn, (15)

Yn = E⊗ yn + h (A⊗ I2)DnYn. (16)

Here A ∈ R
s×s and b ∈ R

s are the coefficient matrix and the vector of weights of the method,
respectively; E = (1, 1, . . . , 1)T ∈ R

s; and Yn ∈ R
2s contains the internal stages of the method.

Finally, (see (12))

Dn = blockdiag(J(xn + c1h), . . . , J(xn + csh)), (17)

c1, . . . , cs being the abscissae of the scheme.
We shall assume that the Runge-Kutta method is a collocation method of order p satisfying the

simplifying assumptions C(s) and B(p), with p ≥ s (see, for example, [10]). In this case, if we insert
y(xn+1;xn,yn) and

Y(xn,yn) =
(

y(xn + c1h;xn,yn)
T , . . . ,y(xn + csh;xn,yn)

T
)T
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into (15)-(16), we get

y(xn+1;xn,yn) = yn + h
(

bT ⊗ I2
)

DnY(xn,yn) + δ(h, n),

Y(xn,yn) = E⊗ yn + h (A⊗ I2)DnY(xn,yn) +∆(h, n),

where, if γj (j = 0, 1, . . . , s) are the principal error coefficients of the formula, then

δ(h, n) = γ0 h
p+1 y(p+1)(ϑn0

;xn,yn), (18)

∆(h, n) = hs+1







γ1 y
(s+1)(ϑn1

;xn,yn)
...

γs y
(s+1)(ϑns

;xn,yn)






, (19)

for suitable ϑnj
∈ [xn, xn+1], j = 0, 1, . . . , s. By virtue of this fact, from (15)-(16) and (18)-(19), one

easily obtains (see (13))

en+1 = h
(

bT ⊗ I2
)

Dn (I2s − h (A⊗ I2)Dn)
−1
∆(h, n) + δ(h, n). (20)

The classical theory of convergence for Runge-Kutta methods applies away from the singularities.
Near the singular points a careful analysis of the behaviours of Dn, ∆(h, n) and δ(h, n) is needed.

By using (12) and (17) it is not difficult to verify that Dn = O
(

(f ′(0) (n+ 1)h)−1
)

, if (n+1)h is

sufficiently small. In particular this implies that ‖ (I2s − h (A⊗ I2)Dn)
−1

‖ is bounded with respect
to h for each n.

Recalling the solutions ψ1 and ψ2 introduced in Proposition 1, we can represent the local solution
y(x;xn,yn) as a linear combination

y(x;xn,yn) = (1 − ξ1,n)Ψ1(x) − ξ2,nΨ2(x) (21)

where ξ1,n and ξ2,n are suitable coefficients and

Ψj(x) =

(

ψj(x, λ)
ǫf(x)ψ′

j(x, λ)

)

, j = 1, 2.

When n = 0, the fact that y0 = (1, 0)T implies that ξ1,0 = ξ2,0 = 0 so that y(x; 0,y0) is analytic,
∆(h, 0) = O(hs+1), δ(h, 0) = O(hp+1) and, consequently e1 = O(hs+1).

Proposition 5 The coefficients ξ1,n and ξ2,n in (21) satisfy bounds

ξ1,n = O
(

hs+1 log(n+ 1)
)

, ξ2,n = O(hs+1(nh)ν),

while the local error en+1 satisfies

en+1 = O

(

hs+1

n+ 1

)

, (22)

for n = 0, . . . , n̄, where n̄h = O(1).

Proof The proof is by induction. The initial case n = 0 has already been checked, so we need only
verify that the results hold for n+ 1 if they hold for n. Recall that, by definition, see (13) and (21),

yn = −en + y(xn;xn−1,yn−1)

= O

(

hs+1

n

)

+ (1− ξ1,n−1)Ψ1(xn)− ξ2,n−1Ψ2(xn)

= (1− ξ1,n)Ψ1(xn)− ξ2,nΨ2(xn),
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where the second equality uses (22) with n replaced by n − 1, and the third equality is immediate
from the definitions of the coefficients ξ1,n and ξ2,n. We subtract the third equation from the second
to obtain an equation for the differences of the coefficients:

(Ψ1(xn);Ψ2(xn))

(

ξ1,n − ξ1,n−1

ξ2,n − ξ2,n−1

)

=
hs+1

n
w, (23)

where w is a vector whose norm is O(1) uniformly in h and n. We now invert the matrix on the left
hand side of (23); to do this we require its determinant. Recall from (9) that if q is the coefficient given

by (8) then the determinant

∣

∣

∣

∣

ψ1 ψ2

qψ′
1 qψ

′
2

∣

∣

∣

∣

is constant, for any solutions ψ1 and ψ2 of the differential

equation; in particular, for the solutions which we use here. We may therefore assume without loss
of generality that det (Ψ1(xn);Ψ2(xn)) = ǫf(xn)/q(xn). A simple Frobenius analysis shows that in a
neighbourhood of the origin,

q(x) ∼ x1+ν ,
ǫf(x)

q(x)
∼ ν−1x−ν . (24)

Solving the linear system (23) we obtain
(

ξ1,n − ξ1,n−1

ξ2,n − ξ2,n−1

)

=
hs+1

n

q(xn)

ǫf(xn)

(

ǫf(xn)ψ
′
2(xn) −ψ2(xn)

−ǫf(xn)ψ
′
1(xn) ψ1(xn)

)

w. (25)

We shall now estimate the sizes of all the terms using the information on ξ1,n−1 and ξ2,n−1 from the
previous step, together with the known asymptotic behaviours of the solutions ψ1 and ψ2 and the
estimate of the determinant in (24).

Consider the first row in (25). We know from Proposition 1 that |ǫf(xn)ψ
′
2(xn)| + |ψ2(xn)| ≤

C(nh)−ν ; also, (24) gives q(xn)
ǫf(xn)

∼ ν(nh)ν . Thus we obtain ξ1,n − ξ1,n−1 = O
(

hs+1/n
)

, with initial

condition ξ1,0 = 0. This gives the estimate ξ1,n = O(hs+1 log(n+ 1)) in the usual way.
Next consider the second row in (25). We know from Proposition 1 that |ǫf(xn)ψ

′
1(xn)| +

|ψ1(xn)| = O(1), uniformly in n, and we still have q(xn)
ǫf(xn)

∼ ν(nh)ν . Combining these yields

ξ2,n − ξ2,n−1 = O
(

(nh)ν h
s+1

n

)

= O
(

hs+ν+1nν−1
)

. Using the fact that
∑n

j=1 j
ν−1 = O(nν) we

obtain ξ2,n = O(hs+1(nh)ν), as required.
Finally, we estimate the local error en+1. This estimate comes from (20) using the estimates of

∆(h, n) and δ(h, n) in equations (18)-(19) in terms of the derivatives of the local solution y(x;xn,yn)
in whose representation (21) we now have the necessary estimates for the coefficients ξ1,n and ξ2,n.
Observe first that the term hDn in (20) yields a factor O(h/((n+ 1)h)) = O(1/(n+ 1)). The factor
hs+1 is clear in (19); in (18) we have a smaller factor of hp+1 since p ≥ s. It remains only to estimate
the size of the derivatives of y(x;xn,yn). From (21) we have

y(s+1)(x;xn,yn) = (1− ξ1,n)Ψ
(s+1)
1 (x) − ξ2,nΨ

(s+1)
2 (x).

The factors ξ1,n are bounded, as are the derivatives of the analytic solution Ψ1. The singular solution

Ψ2 has the property that Ψ
(s+1)
2 (xn) ∼ x−ν−s−1

n = (nh)−ν−s−1, which cancels the factor of hs+1(nh)ν

in the coefficient ξ2,n leaving just a factor of n−s−1. For small n this is O(1), while for larger n the

dominant term in the estimate of y(s+1)(x;xn,yn) is thus Ψ
(s+1)
1 (x), which is bounded.

To deal with δ(h, n) we need to take derivatives up to order p+1. In this case the regular solution

Ψ1 contributes an O(1) term to y(p+1)(x;xn,yn). The singular term ξ2,nΨ
(p+1)
2 makes a contribution

O((nh)νhs+1(nh)−ν−p−1) = O

(

hs+1

np+1hp+1

)

,

which could now be the dominant term for small n. However this term is multiplied by hp+1 (see

(18)) leaving a term which is O
(

hs+1

np+1

)

. This is dominated by the O(hs+1/(n + 1)) term coming

from ∆(h, n) and completes the proof. ⊓⊔



9

Proposition 5 explains why forward integration does not, in general, suffer a catastrophic loss
of order despite the singularity at the origin. Unfortunately pure forward integration with constant
stepsize all the way to the singularity at x = π is not possible without a serious loss of accuracy, as
we shall now argue: in fact, the order of convergence is controlled by the size of η = (ǫ|f ′(π)|)−1.

Suppose that η > 0 is non-integer. In a neighbourhood of x = π, from Proposition 2 and (18)-(19)
one deduces that there exists a constant C such that

‖∆(h, n)‖ ≤ Chs+1
(

(π − xn+ 1
2
)η−s−1 + 1

)

, (26)

‖δ(h, n)‖ ≤ Chp+1
(

(π − xn+ 1
2
)η−p−1 + 1

)

. (27)

Consequently, see (20),

‖en‖ ≤ C̄
(

hs+2
(

(π − xn− 1
2
)η−s−2 + (π − xn− 1

2
)−1
)

+ hp+1
(

(π − xn− 1
2
)η−p−1 + 1

))

, (28)

for a suitable constant C̄. Therefore, if we denote by n1 the step-number such that xn1−1 < π− 1 ≤
xn1

, we obtain

N−1
∑

n=n1

‖en‖ . Ĉhs+1

∫ π−h

π−1

(π − x)η−s−2dx+ Ĉhs+1

∫ π−h

π−1

(π − x)−1dx

+ Ĉhp
∫ π−h

π−1

(π − x)η−p−1dx+O(hp)

= O(hη) +O(hs+1 log h) +O(hp), (29)

since p ≥ s, where again Ĉ is a suitable constant.

In the case where η is integer, the behaviour of solution derivatives near x = π is different, and
is given in Proposition 3. Eqn.s (26) and (27) must be modified accordingly. Observe that

dℓ

dxℓ
(π − x)η log(π − x) = O

(

Cη,ℓ(π − x)η−ℓ log(π − x) + (π − x)η−ℓ
)

,

in which Cη,ℓ = 0 for ℓ > η. The estimate (28) is now replaced by

‖en‖ ≤ Ĉhs+2Cη,s+1(π − xn− 1
2
)η−s−2| log(π − xn− 1

2
)|

+ Ĉhs+2
(

(π − xn− 1
2
)η−s−2 + (π − xn− 1

2
)−1
)

+ Ĉhp+1Cη,p+1(π − xn− 1
2
)η−p−1| log(π − xn− 1

2
)|

+ Ĉhp+1
(

(π − xn− 1
2
)η−p−1 + 1

)

,

in which additional logarithmic terms have now appeared. It follows that in (29) the right hand side
now acquires an additional term, of order

Cη,s+1h
s+1

∫ π−h

π−1

(π − x)η−s−2| log(π − x)|dx + Cη,p+1h
p+1

∫ π−h

π−1

(π − x)η−p−1| log(π − x)|dx.

There are two cases to consider.

1. If η < s+1, then we also have η < p+ 1 since p ≥ s. In this case Cη,s+1 = 0 = Cη,p+1 and there
are no new contributions to the error found in (29).
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2. In general we have, for ℓ = s+ 1 or ℓ = p,

hℓ
∫ π−h

π−1

(π − x)η−ℓ−1| log(π − x)|dx = hη
∫ 0

log(h)

te(η−ℓ)tdt

=

{

O
(

hη log2(h)
)

, ℓ = η;
O (hη| log(h)|) +O (hη) +O

(

hℓ
)

, ℓ 6= η.

A careful re-examination of the different cases shows that the error is unchanged from (29) in the
cases η 6= s+ 1 but that in the case η = s+ 1 then we obtain

‖en‖ = O(hs+1 log2(h) + hp). (30)

Theorem 3 Figures 2 and 3 summarize the orders of convergence in different parts of the interval
[0, π] for forward integration.

h    hps+1log(h) hη , h    max(

π

s+1 log(h) , h p )

0

Fig. 2 Orders of convergence for collocation RK formulae for η 6= s+ 1.

h    hps+1log(h) h    

π

, p )max( s+1 log (h)2 h

0

Fig. 3 Orders of convergence for collocation RK formulae for η = s+ 1.

Proof The results follow from the estimates (29) and (30), the observations concerning the behaviour
of the local error near the origin in Proposition 5, and the error propagation estimate (14). ⊓⊔

Clearly a significant order reduction occurs when η is close to 1. For example, if f(x) = sin(x)
and ǫ = 1, then η = 1 and the shooting procedure with constant stepsize has order 1 independently
of s. This is why we consider the alternative approach described in the next section.

3.2 Two-sided shooting: one-step variable stepsize schemes with minimal stability hypotheses

In this section we shall be interested primarily in the analysis of backward integration from the
singular point x = π to compute an estimate of the solution ζ1 given in Proposition 2, as required
by the two-sided shooting procedure (see Theorem 2). We consider only one-step schemes which, for
backward integration, have the form

yn = yn+1 − hnΦn(xn+1, hn,yn+1), hn = xn+1 − xn. (31)

We suppose that the grid is chosen according to the rule

π − xn = e−nh, n ∈ N, (32)

which allows us to integrate backwards as far as π − 1 and not all the way to the singularity at the
origin. This means that the chosen matching point for the two-sided shooting procedure is π−1. The
parameter h > 0 is fixed and determines the resolution of the discretization. Notice that with the
choice (32) an infinite number of gridpoints is required to reach x = π. Obviously, we will integrate
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for a finite number of steps, say N, meaning that we introduce a layer near π.
By inserting the exact solution y(x) of the original problem into the discrete problem (31) we obtain

y(xn) = y(xn+1)− hnΦn(xn+1, hn,y(xn+1))− hnτn, (33)

where τn is the local truncation error of the method used. As mentioned before, backward integration
always aims to estimate the solution ζ1 given in Proposition 2. In other words, we have

y(x) =

(

ζ1(x)
ǫf(x)ζ′1(x)

)

≈ (π − x)η (v +O(π − x)) , xր π, (34)

where v = (1, −1)T . (Estimates of this form are derived more rigorously in [4].) In the sequel we
shall assume that in a neighbourhood of π we have

‖τn‖∞ = O(hpn(π − xn+1)
η−p−1), (35)

p being the “classical order” of the method.
By using the linear differential equation satisfied by y, it is possible to verify, after some computa-
tions, that Runge-Kutta collocation methods satisfy (35) provided hn‖J(xn+1)‖ is sufficiently small.
By (32) this holds in spite of the singularity at x = π.
We make two further important assumptions:

(A1) Φn(xn+1, hn,yn+1) is a linear function of yn+1;
(A2) there exists a constant C > 0, independent of N and h, such that

‖Φn(xn+1, hn,yn+1)‖∞ ≤
L(1 + C(π − xn+1))

π − xn+1
‖yn+1‖∞ (36)

with, see (4),
L = L(h) ≤ η + αh, for some α ≥ 0. (37)

The first hypothesis is natural since our ODE (11) is linear. The second reflects the simple pole
singularity in our system of ODEs at x = π. The restriction on the value of L turns out to be
surprisingly important.
In the sequel we shall denote with en = y(xn)−yn the global error at the nth integration step (note
that en is here renamed since in the previous section it denoted the local error).

Theorem 4 Let the method (31) be applied for integrating (11)-(12) away from π over the grid
defined by (32). Assume that the method satisfies (35) and assumptions (A1)-(A2). If we set yN =
(π − xN )η v (see (34)) and αNh2 ≤ 1, then there exists a constant C̄ such that

‖e0‖∞ ≤ C̄
(

e−Nh + Nhp+1
)

. (38)

Proof From (31), (33) and (A1) one immediately gets

en = en+1 − hnΦn(xn+1, hn, en+1)− hnτn

and hence, on taking norms and using (A2),

‖en‖∞ ≤

(

1 + hn
L(1 + C(π − xn+1))

π − xn+1

)

‖en+1‖∞ + hn‖τn‖∞. (39)

Now, from (32) it follows that
hn = (π − xn+1)(e

h − 1), (40)

and so

1 + hn
L(1 + C(π − xn+1))

π − xn+1
≤ eL(1+C(π−xn+1))h,
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the last inequality being valid for L ≥ 1 (and hence, in our equation (37), when the parameter η is
greater than unity). From the previous inequality and (39) we therefore obtain

‖en‖∞ ≤ eL(1+C(π−xn+1))h ‖en+1‖∞ + hn‖τn‖∞. (41)

Define a sequence (χn) by

χ0 = 0, χn+1 − χn = L(1 + C(π − xn+1))h, n = 0, . . . , N − 1,

where N is the total number of steps, i.e. the backward integration starts from xN = π − e−Nh. In
the sequel, we shall use Cj to denote suitable positive constants independent of h and n, for each j.
From (32),

χn =

n−1
∑

j=0

(χj+1 − χj) = Lnh+ LCh

n−1
∑

j=0

(π − xj+1)

= Lnh+ LChe−h
n−1
∑

j=0

e−jh = Lnh+ LCh
e−h

1− e−h
(1− e−nh)

≤ Lnh+ LCh(1− e−nh) ≤ Lnh+ log(C1), (42)

with C1 > 1. Observe that the last inequality holds if, for instance, C1 ≥ eLCπ, since the stepsize h
is always less than π. Multiplying both sides of (41) on the left by eχn we derive

eχn‖en‖∞ ≤ eχn+1 ‖en+1‖∞ + hne
χn‖τn‖∞.

so that, bearing in mind that χ0 = 0, by recursion from (32), (40) and (42) we obtain

‖e0‖∞ ≤ eχN ‖eN‖∞ +
N−1
∑

n=0

hne
χn‖τn‖∞

≤ C1

(

eLNh‖eN‖∞ + (1− e−h)

N−1
∑

n=0

e(L−1)nh‖τn‖∞

)

≤ C1

(

eLNh‖eN‖∞ + h

N−1
∑

n=0

e(L−1)nh‖τn‖∞

)

. (43)

Notice that the initial error eN is substantially magnified in this estimate: in fact, eLNh = (π −
xN )−L.Moreover the local truncation errors τn are also multiplied by exponentially growing factors.
However, from the hypothesis (35) and by virtue of (32) and (40) it follows that

‖τn‖∞ = O(hpn(π − xn+1)
η−p−1) = O(hpe−(n+1)h(η−1)) ≤ C2h

pe−nh(η−1);

substituting back into (43) and using (37) we obtain

‖e0‖∞ ≤ C3

(

eLNh‖eN‖∞ + hp+1
N−1
∑

n=0

e(L−η)nh

)

≤ C3

(

eLNh‖eN‖∞ + hp+1
N−1
∑

n=0

eαnh
2

)

.

Recalling the assumption αNh2 ≤ 1 we deduce that

‖e0‖∞ ≤ C3e
LNh‖eN‖∞ + C4h

p+1N. (44)

In order to complete the proof we need to discuss the behaviour of ‖eN‖∞. From (34), the chosen
initial value at xN , and the variable stepsize used, one gets

‖eN‖∞ ≤ C5(π − xN )η+1 = C5e
−Nh(η+1)

and hence, see (37),

eLNh‖eN‖∞ ≤ C5e
(L−η)Nhe−Nh ≤ C5e

αNh2

e−Nh ≤ (eC5)e
−Nh.

Combining this with (44) and setting C̄ = max(C4, eC3C5) completes the proof. ⊓⊔
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It is important to observe that in this setting the parameters h and N are independent. In order
to obtain a solution with a prescribed accuracy, however, the estimate (38) can be conveniently used
to determine a relationship between them.

Let us now discuss the hypothesis (36)-(37). Is this reasonable for our system? In a neighbourhood
of x = π the system (11) can be written as

y′(x) =
η

π − x
[J−1 + (π − x)J0(x)]y(x) (45)

where η is defined in (4),

J−1 =

(

0 1
0 −1

)

(46)

and J0(x) = O(1). The matrix J−1 is diagonalizable:

J−1 = V D V −1, V =

(

1 1
0 −1

)

D =

(

0 0
0 −1

)

and hence a change of variable z(x) = V −1y(x) brings the system into the form

z′(x) =
η

π − x

[

D + (π − x)V −1J0(x)V
]

z(x).

Observe that for this system the Lipschitz factor near π is asymptotically

η

π − x
(1 +O(π − x))

and so a wide class of discretization schemes may be expected to have the property (36)-(37). In
particular, it is worth mentioning that this is the case for Runge-Kutta methods, as one can verify
with some calculations.

4 Numerical results

We present some numerical results to illustrate the theorems of the previous sections. The one-step
methods used for solving the initial (or final) value problems involved in the shooting are Runge-
Kutta collocation methods whose internal nodes are the roots of scaled and shifted Chebyschev
polynomials. In more detail, the abscissae of the s-stage Runge-Kutta method used are

ci =
1

2

(

cos

(

(2(s− i) + 1)π

2s

)

+ 1

)

, i = 1, . . . , s.

The coefficient matrix A and the vector of weights b of the scheme are then determined by imposing
the simplifying conditions C(s) and B(s), respectively (see [10]). These methods are of order p = s
if s is even or p = s + 1 if s is odd. By virtue of this fact, the schemes we have actually used are
those with an odd number of stages. As an example, when applied to forward integration of (11)
over a uniform grid with stepsize h = π/N the method corresponding to s = 1 reads

yn+1 = yn +
h

2
J(xn+ 1

2
) (yn + yn+1) , n = 0, 1, . . . , N − 1,

which coincides with the second order Gauss Runge-Kutta method. The forward shooting uses the
secant method to find the zeroes of the miss-distance (6) starting from an input guess λ(0) and
using λ(1) = λ(0) +0.1 as a second approximation of the eigenvalue. Table 1 lists the experimentally
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Table 1 Order of convergence in the eigenvalue estimates obtained with forward shooting.

method of order p = 2 (s = 1)

ǫ = 1 ǫ = 2/3 ǫ = 1/4 ǫ = 1/10

N δλ(N) order δλ(N) order δλ(N) order δλ(N) order

1600 2.9820 · 10−3 − 2.4793 · 10−4 − 9.7357 · 10−6 − 1.8400 · 10−5 −
3200 1.4977 · 10−3 0.99 8.8393 · 10−5 1.49 2.4326 · 10−6 2.00 4.5999 · 10−6 2.00
6400 7.5059 · 10−4 1.00 3.1411 · 10−5 1.49 6.0804 · 10−7 2.00 1.1500 · 10−6 2.00

method of order p = 4 (s = 3)

ǫ = 1 ǫ = 2/3 ǫ = 1/4 ǫ = 1/10

N δλ(N) order δλ(N) order δλ(N) order δλ(N) order

400 1.3385 · 10−3 − 6.6978 · 10−5 − 3.9559 · 10−8 − 9.9663 · 10−10 −
800 6.6911 · 10−4 1.00 2.3602 · 10−5 1.50 3.0671 · 10−9 3.69 6.3151 · 10−11 3.98
1600 3.3452 · 10−4 1.00 8.3298 · 10−6 1.50 2.2833 · 10−10 3.75 3.9755 · 10−12 3.99

method of order p = 6 (s = 5)

ǫ = 1 ǫ = 2/3 ǫ = 1/4 ǫ = 1/10

N δλ(N) order δλ(N) order δλ(N) order δλ(N) order

100 1.9278 · 10−3 − 1.1376 · 10−4 − 3.9346 · 10−8 − 5.2220 · 10−11 −
200 9.6366 · 10−4 1.00 4.0075 · 10−5 1.51 2.3736 · 10−9 4.05 8.4288 · 10−13 5.95
400 4.8174 · 10−4 1.00 1.4141 · 10−5 1.50 1.4375 · 10−10 4.05 1.3323 · 10−14 5.98

observed orders of convergence for the eigenvalue estimates obtained for various values of the pa-
rameter ǫ and various orders of the method. We used the 2π-periodic function f(x) whose restriction
to [−π, π] is

f(x) =
x(π2 − x2)(cos x+ 2)

2π2
. (47)

In every case we chose λ(0) = 5 as initial guess. The order of convergence was computed using the
classical formula: if we denote the eigenvalue approximation obtained with N gridpoints by λ(N)
and let δλ(N) = |λ(N)− λ(2N)|, then the order r of the method is estimated by

r = log2(δλ(N)/δλ(2N)). (48)

Table 1 shows that for ǫ = 1 and ǫ = 2/3, the order of convergence is always 1 or 3/2 respectively,
regardless of the classical order p of the Runge-Kutta method used. This agrees with Theorem 3
since for two such values of ǫ using the function (47) we have η = −1/(ǫf ′(π)) = 1 and η = 3/2,
respectively.
When ǫ = 1/4, on the other hand, the observed order r depends on the method. In fact:

– with the 1-stage method it coincides with its classical order p = 2 (the formula (48) is too
unsophisticated to perceive the factor log(h), see Theorem 3);

– with the 3-stage method of order p = 4, the values of r obtained are less stable even though they
approach p as N increases (we think that this is due to the presence of the factor log2(h));

– with the method of order p = 6, r ≈ η = 4 as expected.

Finally, for ǫ = 1/10, the numerics confirm that r ≈ p < η for each method.
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In order to better contrast the clearly unsatisfactory results obtained with forward shooting
for small values of η with the good performance of forward shooting when η is large, in Figure 4,
we have plotted the errors in the eigenvalue estimates obtained for the function f(x) in (47) and
ǫ = 1, 2/3, 1/10 versus the number of gridpoints. The errors have been evaluated with respect to
reference eigenvalues computed with two-sided shooting used as described later. The results reported
corresponding to ǫ = 1, 2/3 show that the rates at which the errors decrease are the same for each
method so that the differences in the magnitudes of the errors can only be attributed to the principal
error coefficient of the formula. On the other hand, when ǫ = 1/10 the results obtained are good,
in particular for the method of order 6, especially considering that with the chosen initial guess
for the root-finding procedure we obtain approximations to higher index eigenvalues than the ones
computed for the other two values of ǫ.

Motivated by these observations, we applied the two-sided shooting procedure when η is small.
In this case, the miss-distance used was

ℑ
(

Ŵ (π − 1, λ)
)

= 0 with Ŵ (x, λ) =

∣

∣

∣

∣

ψ1(x, λ) ζ1(x, λ)
ǫf(x)ψ′

1(x, λ) ǫf(x)ζ
′
1(x, λ)

∣

∣

∣

∣

. (49)

Observe that Ŵ (x, λ) = ǫf(x)
q(x) W (λ) with W (λ) defined in (9). The approximations to ψ1(x, λ) are

obtained by applying the relevant Runge-Kutta methods with constant stepsize for integrating (11)
over [0, π − 1], with initial value y(0) = (1, 0)T , while the approximation of ζ1(x, λ) is computed
by backward integration with variable stepsize as described in Section 3.2. In particular, the error
bound (38) has been conveniently used to choose the number of gridpoints of the discretization of
the subinterval [π− 1, π] and, consequently, the position of the layer near π. The criterion used was
the following: if h is the stepsize of the uniform partition of the left subinterval [0, π − 1] then the
value of N in Theorem 4 has been chosen as

N = ⌈−(s+ 1) log(h/2)/h⌉

where s is the stagenumber of the method. In this way, the asymptotic behaviour of the term on
the right hand-side of (38) is O(hs+1 log(h)) which coincides with the one of the error near the
singularity at x = 0 (see Figures 2-3).
In Figure 5 we report the errors in the eigenvalue estimates obtained against the total number
of gridpoints Ntot used for discretizing the overall interval [0, π] for the methods of order 4 and
6, ǫ = 1, 2/3 and the function f(x) in (47). The errors were estimated by taking as reference
eigenvalues the ones obtained with two-sided shooting, p = 6 and Ntot = 2477. These are the
reference eigenvalues we have used also for the results reported in Figure 4. The errors corresponding
to the simple forward shooting with the method of order 6 have been also reported in order to better
emphasize the great advantages arising from the use of two-sided shooting when η is small.

The aim of the last two examples was to compare the performance of our forward shooting pro-
cedure with that of the WKB method proposed by Benilov, O’Brien and Sazonov in [3] and the
shooting procedure proposed by Chugunova and Volkmer in [6], where the results are given for the
special case f(x) = sin(x). WKB uses an asymptotic expansion of the solutions of (1) with respect
to the parameter ǫ which, therefore, is assumed to be sufficiently small. The shooting procedure
in [6], instead, solves the more general problem (7) with f(x) = sin(x) and g(x) = − cos(x) which
clearly reduces to (1) if a = 0.
In Table 2, the eigenvalue estimates obtained for ǫ = 0.13 with our methods of orders p = 4, 6 with
N = 300 gridpoints and forward shooting are listed. In this table k denotes the mode number while
λk,p is the approximation of the k-th eigenvalue provided by the method of order p. The correspond-
ing estimates λk,WKB and µk given by the WKB method and the method in [6], respectively, are
also reported. The differences reported in the last three columns of the table can be regarded as
estimates of the error for the methods of order 4, WKB and the method in [6], respectively. As one
can see, our method provides definitely more accurate approximations than the other two. It must
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be said, however, that the accuracy of WKB is independent of the mode number of the eigenvalues
while for our method it deteriorates as the index increases. This usually happens when standard
discretization schemes are used for the approximation of the spectrum of differential operators; it
can often be avoided by the use of specially designed Magnus methods [9] though these would have
to be carefully chosen to behave well near singularities.
In view of the competitiveness of our method when a = 0, we decided to test it also for the case of a
nonzero value for a even though the theory is still lacking. We reformulated (7) as a system of first
order ODEs as described in (11)-(12) where the coefficient matrix is now

J(x) =

(

0 (ǫf(x))−1

−iλ− ag′(x) −(1 + a g(x))(ǫf(x))−1

)

.

In Table 3 we list the eigenvalues computed with N = 300 by the methods of order 4 and 6,
together with the estimates provided by the shooting method in [6]. The differences reported in
the second last column suggest that our methods can tackle this more general case too. However
the rigorous error analysis which we presented here does not immediately generalize to the case
a 6= 0, with general functions g and f satisfying the properties specified in the proof of Theorem 1,
because the logarithmic semi-norm µ1(J(x)) is no longer bounded (see Proposition 4). We shall defer
consideration of this case to future work.

Table 2 Comparison of our results with those provided by the WKB method and the method in [6] for f(x) = sin(x)
and ǫ = 0.13.

k λk,4 λk,6 λk,WKB µk |λk,4 − λk,6| |λk,WKB − λk,6| |µk − λk,6|

1 1.016031 1.016031 1.016306 1.016070 5.804468 · 10−12 2.752395 · 10−4 3.894446 · 10−5

2 2.118176 2.118176 2.119515 2.118266 1.671983 · 10−10 1.339477 · 10−3 9.039683 · 10−5

3 3.359418 3.359418 3.361995 3.359580 1.076850 · 10−9 2.576915 · 10−3 1.623123 · 10−4

4 4.764312 4.764312 4.767907 4.764572 3.648983 · 10−9 3.595254 · 10−3 2.598077 · 10−4

5 6.343734 6.343734 6.348097 6.344121 8.212884 · 10−9 4.362362 · 10−3 3.868387 · 10−4

6 8.102844 8.102844 8.107778 8.103393 1.235901 · 10−8 4.933742 · 10−3 5.487597 · 10−4

7 10.044314 10.044314 10.049678 10.045061 6.585230 · 10−9 5.364257 · 10−3 7.469191 · 10−4

8 12.169637 12.169637 12.175331 12.170624 3.378970 · 10−8 5.694361 · 10−3 9.872458 · 10−4

9 14.479701 14.479701 14.485653 14.480973 1.626462 · 10−7 5.952096 · 10−3 1.272263 · 10−3

10 16.975062 16.975062 16.981219 16.976669 4.859431 · 10−7 6.156774 · 10−3 1.606505 · 10−3

We conclude by summarizing the results of the numerical experiments:

– the numerically observed orders of convergence in the eigenvalue estimates computed with for-
ward shooting and listed in Table 1 confirm the result of Theorem 3;

– a catastrophic loss of order is observed when η = −1/(ǫf ′(π)) is close to 1 due to the singularity
at x = π; this severe drawback can be overcome by using the proposed two-sided shooting;

– by contrast, when η is small enough, forward shooting works very well, as confirmed by the last
examples where our estimates have been compared with those provided by the WKB method
proposed in [3] and the shooting procedure proposed in [6].
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Fig. 4 Errors in the eigenvalue estimates computed with forward shooting and fixed stepsize.
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Fig. 5 Errors in the eigenvalue estimates for two-sided shooting with variable stepsize.
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