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Abstract: Among the methods for solving ODE-IVPs, the class of General Linear Methods
(GLMs) is able to encompass most of them, ranging from Linear Multistep Formulae
(LMF) to RK formulae. Moreover, it is possible to obtain methods able to overcome
typical drawbacks of the previous classes of methods. For example, order barriers for
stable LMF and the problem of order reduction for RK methods. Nevertheless, these goals
are usually achieved at the price of a higher computational cost. Consequently, many
efforts have been made in order to derive GLMs with particular features, to be exploited
for their efficient implementation.
In recent years, the derivation of GLMs from particular Boundary Value Methods (BVMs),
namely the family of Generalized BDF (GBDF), has been proposed for the numerical
solution of stiff ODE-IVPs [11]. In particular, in [8], this approach has been recently
developed, resulting in a new family of L-stable GLMs of arbitrarily high order, whose
theory is here completed and fully worked-out. Moreover, for each one of such methods, it
is possible to define a corresponding Blended GLM which is equivalent to it from the point
of view of the stability and order properties. These blended methods, in turn, allow the
definition of efficient nonlinear splittings for solving the generated discrete problems.
A few numerical tests, confirming the excellent potential of such blended methods, are also
reported.

Keywords: Numerical methods for ordinary differential equations, General
Linear Methods, Boundary Value Methods (BVMs), Generalized Backward
Differentiation Formulae (GBDF), Blended Implicit Methods, blended itera-
tion.

Mathematics Subject Classification: 65L05, 65L20, 65H10, 65Y20.

c© 2009 European Society of Computational Methods in Sciences and Engineering

1Work developed within the project “Numerical methods and software for differential equations”.
2E-mail: luigi.brugnano@unifi.it
3E-mail: cecilia.magherini@dma.unipi.it



2 L.Brugnano, C.Magherini

1 Introduction

General Linear Methods, in the form introduced by Burrage and Butcher [13], are numerical
methods for solving ODE-IVPs which, in order to advance the integration one step, require some
information from the previous step (external stages), along with some internal stages to be com-
puted at the current step. Such methods are able to describe, as extreme cases, both RK methods
and LMF (the latter, when used as Initial Value Methods (IVMs)) [14]. A GLM with r external
stages and s internal stages, when applied with stepsize h for solving the IVP

y′ = f(t, y), y(t0) = y0 ∈ R
m, (1)

is usually described as

Y [n] = h(A ⊗ Im)F (Y [n]) + (U ⊗ Im)y[n−1], (2)

y[n] = h(B ⊗ Im)F (Y [n]) + (V ⊗ Im)y[n−1], n = 1, 2, . . . ,

where:

• the matrices A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r characterize the method;

• Y [n], F (Y [n]) ∈ Rsm are the vector of the internal stages and the corresponding values of the
function f , respectively;

• y[n−1],y[n] ∈ Rrm are the vectors of the external stages.

Many papers have been devoted, across the years, to the construction and the analysis of GLMs
(see, e.g., the review article [16]; see also [15, 17, 18, 19, 20, 21, 22, 23]). Clearly, the efficient
implementation of GLMs depends on the properties of the matrix A. In particular, we shall here
consider implicit GLMs for which the external and the internal stages coincide, i.e.,

A = B, U = V ∈ R
r×r, and Y [n] = y[n] ∈ R

rm.

Moreover, matrix A is nonsingular and the order of accuracy of each entry of y[n] is equal to p (to
be specified later), which is, therefore, the global order of the method. We mention that sometimes
GLMs with approximations having the same order have been also called “peer methods” (see, e.g.,
[29]). The approach that we shall consider is the one introduced in [11, Chapter 11, Section 6]
and is based on Boundary Value Methods (BVMs). In more detail, the family of BVMs which we
shall consider is that of Generalized Backward Differentiation Formulae (GBDF) [10, 11]. For the
efficient solution of the generated discrete problems, we shall consider the blended implementation
of such methods. This implementation, introduced in [2] for block implicit methods (see also
[3, 4, 6, 9, 12]), naturally induces an efficient splitting procedure for the solution of the generated
discrete problems. The linear analysis of convergence for this splitting will be done according to
[7].

With these premises, the structure of the paper is the following: in Section 2 Boundary Value
Methods (BVMs) are briefly sketched, along with their block form; in Section 3 the family of
Generalized Backward Differentiation Formulae (GBDF), in the BVMs class, is considered, in
order to obtain L-stable GLMs of arbitrarily high order; in Section 4 the corresponding Blended
GLMs are described; Section 5 is devoted to the implementation details of the methods; Section 6
contains some numerical tests; finally, Section 7 contains a few concluding remarks.
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Blended GLMs based on GBDF 3

2 Boundary Value Methods (BVMs) and their block form

Boundary Value Methods (BVMs) are a relatively new class of numerical methods for ODEs based
on an unconventional use of LMF. Even though recent developments of such methods have been
also obtained (see, e.g., [26, 27]), nevertheless, the main reference for such methods remains the
book [11]. The basic idea, on which BVMs rely, can be easily explained by just applying a k-step
LMF, which can be described, by using the usual notation, as

k
∑

i=0

αiyn+i = h

k
∑

i=0

βifn+i, (3)

to the standard test equation
y′ = λy, Re(λ) < 0. (4)

If we assume we know the first ν ∈ {1, . . . , k} values of the discrete solution, as well as the last
k − ν, say

y0, . . . , yν−1, and yN−k+ν+1, . . . , yN , (5)

then, under suitable conditions for the method, if

|z1(q)| ≤ |z2(q)| ≤ · · · ≤ |zk(q)|

are the zeros of the characteristic polynomial of the method,

ρ(z) − qσ(z), where q = hλ, and ρ(z) =

k
∑

i=0

αiz
i, σ(z) =

k
∑

i=0

βiz
i, (6)

then the discrete solution is approximately given by

yn ≈ c [zν(q)]
n

, for 0 ≪ n ≪ N, (7)

with the constant c independent of N [11]. When ν = k we have the usual way in which LMF are
used; i.e., we approximate the continuous IVP by means of a discrete IVP. We speak, in such a
case, of an Initial Value Method (IVM). On the other hand, when ν < k we are approximating the
continuous IVP by means of a discrete BVP. The latter defines a Boundary Value Method (BVM)
used with (ν, k− ν)-boundary conditions. This freedom in the choice of the number ν of the initial
conditions in (5), allows us to overcome the usual Dahlquist’s barriers for stable LMF (see [11], for
further details).

Nevertheless, the IVP (1) only provides the initial condition y0, whereas the remaining set of
k − 1 additional conditions in (5) are not known. However, they can be retrieved implicitly, by
introducing a suitable set of ν − 1 additional initial methods,

k
∑

i=0

α
(j)
i yi = h

k
∑

i=0

β
(j)
i fi, j = 1, . . . , ν − 1, (8)

and k − ν additional final methods,

k
∑

i=0

α
(j)
k−iyN−i = h

k
∑

i=0

β
(j)
k−ifN−i, j = ν + 1, . . . , k, (9)

which are independent of the main method (3). Moreover, in such a way, BVMs can be also
implemented in block form (block BVMs [11]), which is computationally more appealing: as a
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4 L.Brugnano, C.Magherini

matter of fact, block BVMs have been successfully implemented in the computational codes GAM
[24] and GAMD [32]. In more detail, the block method, with blocksize r, is used in a sequential
fashion by solving, at the nth step, a discrete problem in the form

A⊗ Imy − hB ⊗ Imf = 0,

where

A =





































α
(1)
0 α

(1)
1 . . . . . . α

(1)
k

...
...

...

α
(ν−1)
0 α

(ν−1)
1 . . . . . . α

(ν−1)
k

α0 α1 . . . . . . αk

. . .
. . .

. . .

α0 α1 . . . . . . αk

α
(ν+1)
0 α

(ν+1)
1 . . . . . . α

(ν+1)
k

...
...

...

α
(k)
0 α

(k)
1 . . . . . . α

(k)
k





































∈ R
r×r+1, (10)

matrix B is similarly defined by replacing the α-s with the β-s,

y = ( y(n−1)r, y(n−1)r+1, . . . , ynr )T , f = ( f(n−1)r, f(n−1)r+1, . . . , fnr )T ,

and y(n−1)r, f(n−1)r are known from the previous step (when n = 1, y0 is the initial condition
for problem (1)). Block BVMs allow an easier implementation of variable stepsize, since only the
stepsize h of the current “block” can be varied. Several families of block BVMs have then been
defined (see [11], for full details).

3 Generalized Backward Differentiation Formulae (GBDF) and GLMs

Let us consider the particular class of k-step LMF having the polynomial σ(z) in its simplest form,
i.e.,

σ(z) = zj,

where j ∈ {0, 1, . . . , k}, with the coefficients of the corresponding polynomial ρ(z) (see (6)) uni-
quely defined by imposing that the method has the maximum possible order p = k. When j = k,
one obtains the well-known family of BDF which, however, provides 0-stable methods only up to
k = 6 and A-stable methods up to k = 2. Nevertheless, when

j = ν ≡ ⌈(k + 2)/2⌉,

and the formula is used as a BVM with (ν, k−ν)-boundary conditions, i.e., by fixing the values (5)
of the discrete solution, then it turns out that the resulting methods are stable for all values of k,
and have been called Generalized BDF (GBDF) [10, 11, 1]. By the way, when k = 1, 2, one obtains
the usual first two BDF. In view of the implementation of GBDF as GLMs, one may assume they
know the initial values of the discrete solution. On the other hand, the final k − ν values can
be retrieved implicitly by using a suitable set of additional final methods (9), consisting of LMF
having the following characteristic polynomials:

σ(j)(z) = zj, ρ(j)(z) =
k
∑

i=0

α
(j)
i zi, j = ν + 1, . . . , k,
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Blended GLMs based on GBDF 5

with the coefficients {α(j)
i } uniquely defined by imposing the order p = k conditions. If we assume,

for the sake of simplicity, that a constant stepsize h is used, then by introducing the vectors

ynew =







yn+1

...
yn+r






, fnew =







fn+1

...
fn+r






, yold =







yn−r+1

...
yn






,

and the r × r matrices A1 and A2 such that

[A1 | A2] =























α0 . . . . . . . . . . . . αk

. . .
. . .

α0 . . . . . . . . . . . . αk

0 α
(ν+1)
0 . . . . . . . . . . . . α

(ν+1)
k

...
...

α
(k)
0 . . . . . . . . . . . . α

(k)
k























, (11)

it turns out that the discrete problem, at a given point tn = nh, can be cast in matrix form as

(A2 ⊗ Im)ynew = hfnew − (A1 ⊗ Im)yold. (12)

This corresponds to a GLM of the form (2) with coinciding internal and external stages, and
A = A−1

2 , U = −A−1
2 A1 (indeed, matrix A2 turns out to be nonsingular). Such methods were called

Block BVMs with Memory (B2VM2s) in [11]. In the GLM notation, the abscissae defining this
GLM are ci = i, i = 1, 2, . . . , r. However, in order to guarantee the L-stability of the corresponding
method, it is sometimes required to change them into the following set of abscissae:

ci = i, i = 1, . . . , ℓ − 1,

cℓ+j = ℓ − 1 +

j
∑

m=0

ξm, j = 0, . . . , r − ℓ, (13)

with positive {ξm} s.t. cr = ℓ.

A first possible choice, as also suggested in [11], is that of setting

ξm = ζm+1, m = 0, . . . , r − ℓ, (14)

where ζ is the positive root of the polynomial

p(z) =

r−ℓ
∑

m=0

zm+1 − 1.

However, in general such a value of ζ is an irrational number, which implies that the coefficients of
the corresponding GLM are irrational numbers as well. In order to have methods whose coefficients
are always rational numbers, a slightly different choice for the abscissae can be made, i.e.:

ξm =
2r−ℓ−m

2r−ℓ+1 − 1
, m = 0, . . . , r − ℓ. (15)

Clearly, when ℓ = r we have a uniform mesh, whereas for ℓ < r the last r − ℓ + 1 stepsizes
are geometrically decreasing, in the case of choice (14), or approximately halved, in the case of
choice (15). In such a case, the points corresponding to the abscissae {c0, . . . , cℓ−1, cr} are

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



6 L.Brugnano, C.Magherini

equally spaced and will be the ones needed for the subsequent integration step. This implies
that r − ℓ zero columns must be appropriately inserted in matrix A1 in (11), i.e., those referring
to the approximations at the abscissae {cℓ, . . . , cr−1} (according to [11], such points are called
auxiliary points). Consequently, such a GLM based on GBDF is uniquely determined by the triple
of integers (k, r, ℓ). Clearly, the order of the corresponding method is p = k. In addition, for all
practical values of k, by appropriately choosing the values of (r, ℓ), it is possible to guarantee the
L-stability of such methods. However, it turns out that, for each value of k, the couples (r, ℓ) are
not unique. Consequently, an additional criterion will be considered, in the next section, which is
aimed to speed-up the iterative solution of the corresponding discrete problems, via the blended
implementation of the methods.

4 Blended General Linear Methods

In the previous section, we devised a procedure for obtaining a whole class of implicit GLMs based
on GBDF, containing L-stable methods of arbitrarily high order. We now consider the problem
of efficiently solving the generated discrete problems which, at a given time step, assume the form
(see (2)),

y − h(A ⊗ Im)f = η, (16)

where, according to (11) and (12),

y = ynew, f = fnew , A = A−1
2 , η = −(A−1

2 A1 ⊗ Im)yold.

A discrete problem in the form (16) can be efficiently solved, under suitable hypotheses, via the
blended implementation of the method. We recall that the blended implementation of block implicit
methods has been previously considered in the framework of one-step methods [2, 3, 4, 6, 7, 9, 12]
and has been implemented in the computational codes BiM [4, 31] and BiMD [9, 31]. In order to
describe the blended implementation of the GLM (16), it is convenient to consider its application
for solving the usual test equation (4). In such a case, in fact, the discrete problem reduces to a
linear system of dimension r:

(I − qA)y = η, q = hλ, (17)

where, hereafter, I denotes the identity matrix of dimension r. Such a linear system is clearly
equivalent to

γ(A−1 − qI)y = γA−1η ≡ η1, (18)

with γ > 0 a free parameter. By introducing the weight function

θ(q) = (1 − γq)−1I, (19)

we can then obtain an equivalent discrete problem by combining, with weights θ(q) and I − θ(q),
respectively, the linear systems (17)-(18):

M(q)y ≡
(

θ(q)(I − qA) + γ(I − θ(q))(A−1 − qI)
)

y

= θ(q)η + (I − θ(q))η1 ≡ η(q). (20)

Equation (20) defines the Blended General Linear Method (Blended GLM) corresponding to the
original GLM (17). Then, in view of the fact that

M(q) ≈
{

I, for q ≈ 0,

−γqI, for |q| ≫ 1,

the following blended iteration for solving the discrete problem (20) is naturally induced:

N(q)y(i+1) ≡ (I − γqI)y(i+1) = (N(q) − M(q))y(i) + η(q), i = 0, 1, . . . . (21)

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Blended GLMs based on GBDF 7

Remark 1 By considering that in (21) N(q)−1 = θ(q) (see (19)), it is quite straightforward to
realize that, in the case of problem (1), the corresponding blended iteration formally becomes

δ(i) = N−1
(

θ
(

(I − γA−1) ⊗ Im (y(i) − η) − h(A − γI) ⊗ Imf (i)
)

+γ
(

A−1 ⊗ Im (y(i) − η) − hI ⊗ Im f (i)
))

, (22)

y(i+1) = y(i) − δ(i), i = 0, 1, . . . ,

where
N ≡ θ−1 = I ⊗ (Im − hγJ), (23)

with J the Jacobian of f evaluated at the last known point. Consequently, only the factorization of
one matrix of the size of the continuous problem is required.

Coming back to the iteration (21), we observe that (see [3, 7]) the iteration matrix corresponding
to the blended iteration (21) turns out to be given by

Z(q) ≡ I − N(q)−1M(q) =
q

(1 − γq)2
A−1(A − γI)2. (24)

According to the linear analysis described in [7], we shall now study the spectral properties of
Z(q), in order to obtain a linear analysis of convergence for the iteration (21). For this purpose,
hereafter let ρ(q) denote the spectral radius of Z(q). Clearly, the iteration will be convergent if
and only if ρ(q) < 1; moreover, the set

Γ = {q ∈ C : ρ(q) < 1}

is the region of convergence of the iteration. For the sake of completeness (see [7] for details), we
recall that the iteration is:

• 0-convergent, if ρ(0) = 0;

• A-convergent, if C− ⊆ Γ;

• L-convergent with index ν∞, if it is A-convergent,

Z∞ ≡ lim
q→∞

Z(q) = O,

and ν∞ is the index of nilpotency of Z∞.

Clearly, the iteration (21) is 0-convergent, since Z(0) = O. Moreover, one easily verifies (from
(24)) that

Z(q) → O, as q → ∞,

so that A-convergence and L-convergence (with index 1) are equivalent. In addition to this,

ρ(q) ≈
{

≈ ρ̃q, for q ≈ 0,

≈ ρ̃∞q−1, for |q| ≫ 1,

where ρ̃ and ρ̃∞ are the nonstiff amplification factor and the stiff convergence factor of the iteration,
respectively. Finally, for a 0-convergent iteration, A-convergence is equivalent to requiring that
the maximum amplification factor,

ρ∗ = max
x>0

ρ(ix),

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



8 L.Brugnano, C.Magherini

(with i denoting, as usual, the imaginary unit) is not greater than 1. According to [7], ρ̃, ρ̃∞, and
ρ∗ are evaluation parameters for the blended iteration (21) (the smaller they are, the better the
properties of the iteration). Consequently, if ρ∗ ≤ 1, the iteration is L-convergent and, therefore,
appropriate for L-stable methods [7], like the GLMs defined in Section 3.

Because of the form (24) of the iteration matrix, it turns out that (see also [7]):

ρ̃ = ρ
(

A−1(A − γI)2
)

, ρ̃∞ = γ−2ρ̃, ρ∗ = (2γ)−1ρ̃,

with ρ
(

A−1(A − γI)2
)

denoting the spectral radius of that matrix. Consequently, the value of
the free positive parameter γ is chosen in order to minimize ρ∗. In Table 1, the relevant figures
are reported for selected GLMs based on GBDF, each characterized by the corresponding triple
(k, r, ℓ), when the choice (14) for the auxiliary points is considered. Similarly, in Table 2, the same
results, obtained with the choice (15) of the auxiliary points, are listed. In both tables, we list
r− ℓ (i.e., the number of the auxiliary points) in place of ℓ. The specified values of the blocksize r,
have been here chosen as small as possible, in order to minimize the computational cost per step.

As it can be seen, the blended iteration corresponding to each method turns out to be L-
convergent. Moreover, the value of the parameter γ (with the only exception of that corresponding
to k = 4, for both the choices of the auxiliary steps) turns out to coincide with the value

γ∗ = min
µ∈σ(A)

|µ|,

suggested in [3] for a class of Blended Implicit Methods (see also [7]).

As an example, we list the matrices A and U which define the third order GLM corresponding
to the triple (3, 2, 2), requiring no auxiliary steps (hereafter, let c ∈ Rr denote the vector of the
abscissae),

c = ( 1, 2 )T , A =
1

23

(

22 −4
36 6

)

, U =
1

23

(

−5 28
−4 27

)

, (25)

and those defining the fourth order GLM corresponding to the triple (4, 4, 3), with the choice (14),

c =

(

1, 2,
3 +

√
5

2
, 3

)T

,

A =








0.85795933248329 −0.22588594615620 0.09292560797716 −0.02384741384935
1.14013555838905 0.75295315385401 −0.30975202659054 0.07949137949784
1.16454145194449 0.91413597782316 0.27338586108581 −0.07015876367984
1.16304178987375 0.90057211551936 0.50490826434742 0.09507592794253









,

U =









0.07149661104027 −0.44184164162566 0 1.37034503058538
0.09501129653242 −0.52719452791448 0 1.43218323138206
0.09704512099537 −0.53021970356702 0 1.43317458257165
0.09692014915615 −0.53024220062923 0 1.43332205147308









.

and with the choice (15),

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Blended GLMs based on GBDF 9

k r r − ℓ γ ρ̃ ρ̃∞ ρ∗

3 2 0 0.7223 0.2272 0.4355 0.1573
4 4 1 0.6195 0.3802 0.9908 0.3069
6 5 1 0.6063 0.5734 1.5600 0.4729
8 6 1 0.5769 0.6380 1.9170 0.5530

10 7 1 0.5502 0.6626 2.1887 0.6021
12 9 2 0.5271 0.7345 2.6438 0.6968
14 10 2 0.5127 0.7366 2.8022 0.7183
16 11 2 0.4999 0.7345 2.9393 0.7347

Table 1: Parameters of the blended iteration associated with Blended GLMs, based on GBDF,
characterized by the triple (k, r, ℓ) and the choice (14).

k r r − ℓ γ ρ̃ ρ̃∞ ρ∗

3 2 0 0.7223 0.2272 0.4355 0.1573
4 4 1 0.6249 0.3827 0.9801 0.3062
6 5 1 0.6082 0.5740 1.5520 0.4719
8 6 1 0.5778 0.6381 1.9113 0.5522

10 7 1 0.5507 0.6625 2.1845 0.6015
12 9 2 0.5274 0.7345 2.6407 0.6964
14 10 2 0.5130 0.7366 2.7998 0.7180
16 11 2 0.5000 0.7345 2.9374 0.7344

Table 2: Parameters of the blended iteration associated with Blended GLMs, based on GBDF,
characterized by the triple (k, r, ℓ) and the choice (15).

c =

(

1, 2,
8

3
, 3

)T

,

A =
1

6336684









5429268 −1381941 570807 −174960
7249176 4606470 −1902690 583200
7421568 5690784 2388672 −732160
7415388 5637357 3628233 198936









,

U =
1

6336684









452439 −2798388 0 8682633
604098 −3345408 0 9077994
618464 −3365888 0 9084108
617949 −3366036 0 9084771









,

which slightly differ from each other.
Finally, in Figures 1 and 2, we plot the boundary of the stability regions of the methods listed

in Table 1, whereas in Figures 3 and 4, we plot the boundary of the stability regions of the methods
listed in Table 2.

5 Implementation details

In the actual implementation of the above Blended GLMs, three main points need to be clarified:

• the choice of a suitable starting procedure;

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



10 L.Brugnano, C.Magherini

• an efficient local error estimate;

• the variable stepsize implementation of the methods.

All of them are briefly sketched here.

Concerning the first issue, namely the definition of a starting procedure to obtain the first
vector of approximations, from the initial condition y0 of problem (1), a natural candidate is the
block GBDF of order k and blocksize r = k. In more detail, at the very beginning, one solves the
discrete problem

A⊗ Imy − hB ⊗ Imf = 0, (26)

where

y = ( y0, y1, . . . , yk )T , f = ( f0, f1, . . . , fk )T ,

and, by denoting with {α(j)
i } the α-s coefficients of the additional initial and final methods (8) and

(9), the matrices A and B are defined as (see (10)):

A =



























α
(1)
0 α

(1)
1 . . . α

(1)
k

...
...

...

α
(ν−1)
0 α

(ν−1)
1 . . . α

(ν−1)
k

α0 α1 . . . αk

α
(ν+1)
0 α

(ν+1)
1 . . . α

(ν+1)
k

...
...

...

α
(k)
0 α

(k)
1 . . . α

(k)
k



























, B = (0 | Ik ) ∈ R
k×k+1.

For the efficient solution of equation (26), a corresponding blended methods, with the associated
blended iteration, can be conveniently and easily defined.

The estimate of the local error is obtained by deferred correction, as described in [11, Chapter 10]
(see also [4, 5]), by first “plugging” the local discrete solution (see (12)) (yold, ynew )T in the
discrete problem defined by a higher order method. In such a way, one obtains an estimate τ of
the local truncation error. The same is done by considering an equivalent formulation of the same
method (compare with (16) and (17)-(18)), thus obtaining a new approximation τ 1 = γA−1⊗Imτ .
After that, the estimate e of the local error is obtained by performing one blended iteration, namely
by formally solving the block diagonal linear system (see (23))

Ne = θτ + (I − θ)τ 1.

In more detail, when using the GLM defined by the triple (k, r, ℓ), the corresponding method
used for estimating τ is the GBDF defined by the triple (k + 1, r, ℓ). Consequently, the cost for
estimating e is the same as that for carrying out one blended iteration. This can be done for all
methods listed in Tables 1 and 2, with the only exception being the triple (3,2,2), for which the
value of r should be increased. For this reason, such a method has not been considered for carrying
out the numerical tests in Section 6.

Finally, for the efficient variation of the stepsize, we have considered the Nordsiek implemen-
tation of the methods, firstly introduced in [28] and later modified according to, e.g., [25, 30]. For
the sake of completeness, we also mention that the initial guess for the blended iteration (22)-(23)
is obtained by extrapolation, through the interpolating polynomial on (see (12)) yold.
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6 Numerical Tests

In this section, we report a few numerical tests comparing a Matlab fixed-order implementation
of the Blended GLMs presented here, with some of the most reliable codes currently available, on
selected stiff test problems. Both the problems and the codes have been taken from the current
release (release 2.4) of Test Set for IVP Solvers [32]. In particular, we have considered the following
solvers:

• BiMD, which uses a blended iteration for solving the generated discrete problems;

• GAMD, which uses a nonlinear splitting for solving the discrete problems, generated by block
BVMs in the Generalized Adams Methods (GAMs) family;

• DASSL, which implements standard BDF methods.

The problems considered are:

• Pollution (of dimension 20);

• Elastic Beam (of dimension 80);

• Emep (of dimension 66);

• Ring Modulator (of dimension 15).

The comparisons have been summarized in corresponding work-precision diagrams [32], where the
computational cost is plotted versus accuracy. A standardized cost has been computed as the
number of floating-point operations for the factorizations and the system solvings required by each
code, while accuracy has been measured in terms of mixed-error significant correct digits [32]. For
all codes, the used tolerances are essentially those specified in the Test Set. Figures 5–8 summarize
the results obtained, where the label “ORDER k” is used for the fixed-order implementation of the
Blended GBDF of order k (see Table 2): as one can see, for each problem, the selected fixed-order
implementations of the Blended GBDF presented here, appear to be competitive with the above
mentioned solvers.

7 Conclusions

In this paper, a straightforward approach for deriving L-stable General Linear Methods (GLMs)
of arbitrarily high order has been presented. Such an approach relies on the class of Boundary
Value Methods (BVMs) for ODEs. In the same framework corresponding starting procedures are
easily derived, as well as appropriate error estimates.

The generated discrete problems can be efficiently solved by means of the blended implementa-
tion of the methods, thus defining corresponding Blended GLMs, equivalent to the original meth-
ods, from the point of view of the stability and accuracy properties. The corresponding blended
iterations are all L-convergent, thus appropriate for the underlying L-stable methods.

A number of numerical tests, on problems taken from the Test Set for IVP Solvers, prove that
the obtained methods are competitive with some of the best codes currently available.

The availability of methods having arbitrarily high-order makes them good candidates for an
efficient variable-order implementation.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 1: Boundary loci of the GLMs obtained with the choice (14), k = 3, 4, 6, 8, 10.
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Figure 2: Boundary loci of the GLMs obtained with the choice (14), k = 12, 14, 16.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Blended GLMs based on GBDF 15

0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

k=10

k=8
k=6

k=4

k=3

Re(q)

Im
(q

)

Figure 3: Boundary loci of the GLMs obtained with the choice (15), k = 3, 4, 6, 8, 10.
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Figure 4: Boundary loci of the GLMs obtained with the choice (15), k = 12, 14, 16.
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Figure 5: Numerical results for the Pollution Problem.
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Figure 6: Numerical results for the Elastic Beam Problem.
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Figure 7: Numerical results for the Emep Problem.

0 2 4 6 8 10 12

10
8

10
9

mixed−error significant correct digits

# 
flo

ps

ORDER 6
ORDER 8
ORDER 10
BiMD
GAMD
DASSL

Figure 8: Numerical results for the Ring Modulator Problem.
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