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1. Introduction

Inverse Sturm–Liouville problems (SLPs) consist of recovering the potential q(x) 2 L2[0,p] from
� y00 þ qðxÞy ¼ ky; x 2 ½0;p�; ð1Þ
a1yð0Þ � a2y0ð0Þ ¼ 0; ja1j þ ja2j – 0; ð2Þ
b1yðpÞ � b2y0ðpÞ ¼ 0; jb1j þ jb2j – 0; ð3Þ
and the knowledge of suitable spectral data. They play an important role in several areas such as geophysics, engineering and
mathematical-physics. The research concerning the development of numerical techniques for the approximation of their
solution represents therefore a very active and interesting field of investigation.

The existence and uniqueness of the solution of an inverse SLP has been proved for several formulations of it among
which we quote:

� The two-spectrum problem characterized by the knowledge of two sets of eigenvalues fkðjÞk g
1
k¼1, j = 1, 2, corresponding to

two SLPs sharing the first boundary condition (2) (BC in the sequel) and differing for the second one (3), [1];
� The spectral function data problem where the input consists of one spectrum fkkg1k¼1 and the ratios fkykk

2
2=y2

kð0Þg
1
k¼1 or

fkykk
2
2=ðy0kð0ÞÞ

2g1k¼1 in the case a2 – 0 or a2 = 0, respectively. Here yk denotes the eigenfunction corresponding to kk, [2];
� The endpoint data problem occurring when the spectrum of the SLP subject to Dirichlet BCs is known together with the

terminal velocities jk ¼ logðjy0kðpÞj=jy0kð0ÞjÞ; k ¼ 1;2; . . ., [3];
� The symmetric problem for which a potential q satisfying
qðxÞ ¼ qðp� xÞ; ð4Þ
for all x 2 [0,p], has to be reconstructed from the knowledge of one spectrum corresponding to symmetric BCs (i.e.
a1b2 + a2b1 = 0), [1].
. All rights reserved.
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The latter is the problem that we shall consider in this paper. It is known that, if q 2 L2[0,p], the kth eigenvalue of (1)–(3)
behaves asymptotically as
kk ¼ kkðqÞ ¼ lk þ qþ dkðqÞ; ð5Þ
where lk = O(k2) depends only on the BCs of the SLP, q ¼ 1
p

R p
0 qðxÞdx and fdkðqÞg1k¼1 2 ‘

2, [4]. This implies that, in addition to
(4), the information concerning the variation of q for the symmetric problem are contained in the small terms dk(q).

Obviously, in the practice, the set of known eigenvalues is finite and usually consists of the first M ones. The matrix meth-
ods are therefore well-suited for the solution of inverse SLPs and among them the three-point scheme and the Numerov
method are the most popular ones. In general, the matrix methods are based on the use of finite difference or finite element
methods for the solution of ODEs over an assigned partition of [0,p] frequently composed by:
xi ¼ ih; i ¼ 0;1; . . . ;N þ 1; h ¼ p
N þ 1

: ð6Þ
When applied for solving direct SLPs, such methods replace the continuous problem with a generalized matrix eigenvalue
one of the form
AðqÞyðhÞ ¼ kðhÞSðqÞyðhÞ: ð7Þ
Here k(h) is the approximation of one of the exact eigenvalues, y(h) the corresponding numerical eigenfunction and the square
matrices A(q) and S(q), besides the potential q, depend on the particular method and on the BCs of the SLP. As well-known the
accuracy of the approximation kðhÞk of kk deteriorates significantly for increasing values of the index k so that the discretiza-
tion error of a matrix method inevitably swamps the term dk(q) in (5) with the exception of the first few indices. The appli-
cation of the asymptotic (or algebraic) correction technique, introduced in [5,6] for the three-point formula and in [7–9] for
the Numerov method, allows to greatly improve such eigenvalue estimates. It is based on the observation that the leading
term in the discretization error is independent of the potential q. This has suggested to correct the estimate kðhÞk by adding to
it the term �ðhÞk ¼ kk;0 � kðhÞk;0 where kk,0 and kðhÞk;0 are the kth exact and numerical eigenvalues corresponding to the potential
q(x) � 0, respectively.

Among the first successful algorithms for the solution of symmetric inverse SLPs subject to Dirichlet BCs (DBCs from now
on) we mention the ones proposed in [10–12]. In particular, the method in [12] used the three-point scheme for which the
coefficient matrix A(q) in (7) is symmetric and tridiagonal while S(q) is the identity matrix. The number of meshpoints N in
(6) was set equal to the number M of known eigenvalues so that A(q) was of size M. An inverse matrix eigenvalue problem for
a centrosymmetric A(q) was then solved with the very important shrewdness, derived from the asymptotic correction tech-
nique, of taking kk � �ðhÞk as kth reference eigenvalue instead of simply kk for each k. From the knowledge of A(q) an approx-
imation qðhÞin of qin = (q(x1),q(x2), . . . ,q(xN))T was then easily computed. The defect of this method, however, was the use of the
entire numerical spectrum which even after the application of the asymptotic correction presents discretization error of or-
der O(1) in the largest eigenvalues.

A more reliable method for the same type of inverse SLP was then proposed in [13] which still used the three-point for-
mula but involved only the first half of the computed numerical eigenvalues. In this case, in fact, N was set equal to 2M and
the approximation qðhÞin of qin was computed by solving the system of nonlinear equations
kðhÞk � kk þ �ðhÞk ¼ 0; k ¼ 1;2; . . . ;M; ð8Þ
where kðhÞk ¼ kðhÞk ðqÞ ¼ kðhÞk qðhÞin

� �
represents the kth eigenvalue of A(q). By virtue of the symmetry condition (4), the constraint

qðhÞin ¼ bJqðhÞin was imposed on qðhÞin where bJ denotes the anti-identity matrix. The unknowns in (8) were therefore the first M

entries of qðhÞin and a modified Newton method was used for solving such system. The convergence properties of the latter
method were also studied in details in [13] for q ‘‘sufficiently” close to a constant.

A similar approach for solving symmetric inverse SLPs has been considered in [14,15] where the Numerov method has
been used in place of the three-point formula. Moreover, in [15] the treatment of the Neumann boundary conditions (NBCs
in the sequel) has been discussed. It must be said that while this extension is straightforward for the three-point method, the
same definitely does not happen for the Numerov one.

As final reference for the currently available numerical techniques for the problem under consideration, we mention the
one recently proposed in [16]. In this case the continuous problem is reformulated as a system of first order ODEs and a fam-
ily of Boundary Value Methods (BVMs) obtained from the Obrechkoff formulas in conjunction with the asymptotic correction
technique is applied for the solution of the direct problem (see also [17,18]). The resulting generalized eigenvalue problem
(7) has size 4M � 4 with N = 2M � 3 and the Newton method is used for solving (8).

In this paper, for the solution of the symmetric inverse problem, we consider the application of the BVMs introduced in
[19,20] for the direct one. These schemes are obtained as a generalization of the Numerov method and provide competitive
results with respect to the latter improved with the asymptotic correction technique. Moreover, in [20] a compact formula-
tion of the corresponding generalized eigenvalue problem (7) is given which covers all possible types of BCs (2) and (3). With
respect to the methods in [13–16], a relevant difference of our procedure is constituted by the fact that we look for an
approximation of the unknown potential of the form q(h)(x) = /(x,c(h)) where, for any c ¼ ðc1; c2; . . . ; cLÞT ; /ðx; cÞ ¼PL

j¼1cj/jðxÞ being f/jðxÞg
L
j¼1 a set of symmetric linearly independent functions. The chosen value of L usually depends on



3034 P. Ghelardoni, C. Magherini / Applied Mathematics and Computation 217 (2010) 3032–3045
the number of known eigenvalues while the number of meshpoints N in (6) is left free. A system of nonlinear equations anal-
ogous to (8) is formulated where now kðhÞk ¼ kðhÞk ð/ð�; cÞÞ. This is solved by means of a Newton type method if L = M or in the

least-square sense if L < M, i.e. c(h) is determined so that
PM

k¼1 kðhÞk ð/ð�; cÞÞ � kk þ �ðhÞk

� �2
is minimized. We observe that the pre-

vious summation represents a numerical version of the functional introduced by Röhrl in [21] and already used in [22].
The paper is organized as follows. In Section 2 we recall the main facts concerning the BVMs introduced in [19,20] for the

solution of direct SLPs with general BCs. In Section 3 the procedure for the reconstruction of the unknown potential is de-
scribed and the properties of the method used with M = L are discussed for some function spaces. In Section 4 an upper
bound for the error kq � q(h)k2 is derived which separates the contribute due to the discretization operated through the BVMs
from the one due to the function space used. Finally, in Section 5 some numerical results are reported which proves the effec-
tiveness of the new method.

2. Boundary value methods for the direct problem

Recently a family of BVMs has been proposed for the approximation of the eigenvalues of regular SLPs subject to general
BCs [19,20]. According to the usual structure of BVMs, the considered 2m-step (m P 1) scheme approximates a second order
differential equation of special type
y00 ¼ f ðx; yÞ; x 2 ½0;p�;
over the mesh (6) by using the following set of Linear Multistep Formulas
ys�1 � 2ys þ ysþ1

h2 ¼
X2m

i¼0

bðsÞi fi; s ¼ 1;2; . . . ; m� 1; ð9Þ

yn�1 � 2yn þ ynþ1

h2 ¼
X2m

i¼0

bðmÞi fnþi�m; n ¼ m; mþ 1; . . . ;N þ 1� m; ð10Þ

ym�1 � 2ym þ ymþ1

h2 ¼
X2m

i¼0

bðsÞi fm�sþi; s ¼ mþ 1; . . . ;2m� 1; m ¼ N þ 1þ s� 2m; ð11Þ
where yi � y(xi) and fi = f(xi,yi). The formula in (10) is named main method while those in (9) and (11) are called initial and
final additional methods, respectively, [17]. For each s = 1,2, . . . ,2m � 1, the coefficients bðsÞi are uniquely determined by impos-
ing the sth formula to have order at least 2m + 1. As proved in [19], the so-obtained composite scheme (9)–(11) turns out to be
symmetric, namely bðsÞi ¼ bð2m�sÞ

2m�i , i = 0,1, . . . ,2m, s = 1,2, . . . ,m. In particular, the main formula, which is the one corresponding to
s = m, is a symmetric Linear Multistep Formula and this implies that its order of accuracy is actually p = 2m + 2 since it must be
even and not less than 2m + 1 by construction. In the sequel, when speaking about the order of the composite scheme we will
refer to the order p of its main formula. It is important to remark that when m = 1 the proposed scheme reduces to the Nume-
rov method.

When applied to (1), the Eqs. (9)–(11) can be written in matrix form as
eAðqÞ ~yðhÞ � � 1

h2
eT þ eBðmÞ eQ� �

~yðhÞ ¼ kðhÞeBðmÞ~yðhÞ; ð12Þ
where k(h) represents the approximation of an exact eigenvalue, ~yðhÞ ¼ ðy0; y1; . . . ; yNþ1Þ
T and, by denoting with bJ the anti-

identity matrix of size N, with eðNÞ1 the first unit vector in RN and by posing qi = q(xi) for each i, the matrices eT and eQ are given
by:
eT ¼ eðNÞ1 j T jbJeðNÞ1

� �
¼

1 �2 1
1 �2 1

. .
. . .

. . .
.

1 �2 1
1 �2 1

0BBBBBB@

1CCCCCCA 2 RN�ðNþ2Þ;

eQ ¼ q0

Q

qNþ1

0B@
1CA; Q ¼ diag q1; . . . ; qNð Þ:
Finally, the matrix eBðmÞ is defined as
eBðmÞ ¼ b
ðmÞ
0 BðmÞ
��� ���bJbðmÞ0

� �
2 RN�ðNþ2Þ; b

ðmÞ
0 2 RN ;
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with
b
ðmÞ
0 ¼ bð1Þ0 ; bð2Þ0 ; . . . ; bðmÞ0 ; 0; . . . ;0

� �T
2 RN ;

BðmÞ ¼

bð1Þ1 � � � bð1Þm � � � bð1Þ2m�1 bð1Þ2m

..

. ..
. ..

. ..
.

bðm�1Þ
1 � � � bðm�1Þ

m � � � bðm�1Þ
2m�1 bðm�1Þ

2m

bðmÞ1 � � � bðmÞm � � � bðmÞ1 bðmÞ0

bðmÞ0 bðmÞ1 � � � bðmÞm � � � bðmÞ1 bðmÞ0

. .
. . .

. . .
. . .

. . .
.

bðmÞ0 bðmÞ1 � � � bðmÞm � � � bðmÞ1 bðmÞ0

bðmÞ0 bðmÞ1 � � � bðmÞm � � � bðmÞ1

bðm�1Þ
2m bðm�1Þ

2m�1 � � � bðm�1Þ
m � � � bðm�1Þ

1

..

. ..
. ..

. ..
.

bð1Þ2m bð1Þ2m�1 � � � bð1Þm � � � bð1Þ1

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
N�N

:

Concerning the discretization of the BC (2), the (2m + 2)-step Forward Differentiation Formula of order 2m + 2 and coefficients
faig2mþ2

i¼0 is used for the approximation of y0(0), i.e.
X2mþ2

i¼0

aiyðxiÞ ¼ hy0ð0Þ þ sL; sL ¼ O h2mþ3
� �

:

By neglecting sL, the following approximation of the first BC is therefore obtained
a2

X2mþ2

i¼0

aiyi ¼ ha1y0 () y0 ¼
a2

ha1 � a2a0

X2mþ2

i¼1

aiyi ¼ cLa
T yðhÞ; ð13Þ
where y(h) = (y1,y2, . . . ,yN)T,
cL ¼
a2

ha1 � a2a0
and a ¼ a1;a2; . . . ;a2mþ2;0; . . . ; 0ð ÞT 2 RN:
Similarly, the (2m + 2)-step Backward Differentiation Formula of order 2m + 2 and coefficients âi ¼ �a2mþ2�i, i = 0,1, . . . ,2m + 2,
is applied for discretizing the BC (3) thus getting
yNþ1 ¼ �cR aTbJ� �
yðhÞ; cR ¼

b2

hb1 þ b2a0
: ð14Þ
Now, combining (12) with (13) and (14), after some computation one obtains that the coefficient matrices A(q) and S(q) = S of
the generalized eigenvalue problem (7) the considered BVM generates for the solution of the direct SLP (1)–(3) are given by:
AðqÞ ¼ � 1

h2 T þ BðmÞQ þ cL �
1

h2 eðNÞ1 þ q0b
ðmÞ
0

� �
aT � cR

bJ � 1

h2 eðNÞ1 þ qNþ1b
ðmÞ
0

� �
aTbJ; ð15Þ

S ¼ BðmÞ þ cLb
ðmÞ
0 aT � cR

bJbðmÞ0 aTbJ; ð16Þ
respectively. Concerning the convergence of the so-obtained approximations for the kth eigenvalue, in [19,20] it has been
proved that if kh is ‘‘sufficiently” small and m > 1 one has
jkk � kðhÞk j 	 O kpþ1hp�1
2

� �
þ Oðkpþ2hpÞ; p ¼ 2mþ 2: ð17Þ
By virtue of this result the proposed BVMs are able to provide substantially more accurate estimates of the eigenvalues kk

with respect to those given by the corrected Numerov method at least for the lowest indexes k. Moreover, there is numerical
evidence that the asymptotic correction is successful in improving the eigenvalue approximations provided by the former
methods and this extends the range of values of k for which they are competitive with the latter one.

In the sequel, in order to better emphasize the dependence of kk; kðhÞk and of yðhÞk on the potential q, we shall denote them
as kkðqÞ; kðhÞk ðqÞ and yðhÞk ðqÞ, respectively.

Remark 1. For later reference, we observe that if the potential is shifted by a constant #, i.e. q(x) is replaced with q(x) + #, the
matrix S does not vary while A(q(x) + #) = A(q(x)) + #S. This implies that, analogously to the continuous problem,
kðhÞk ðqðxÞ þ #Þ ¼ kðhÞk ðqðxÞÞ þ # with the same corresponding eigenvector, see (7).
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Remark 2. A drawback of the proposed schemes is the fact that when the order p of the method increases the spectrum of
the matrix pencil (A(q),S) may contain some few couples of complex conjugate eigenvalues. This is in contrast with the pecu-
liarity of a regular SLP with a real-valued potential q of having a real spectrum. A possible strategy for overcoming such
inconsistency is that of taking a finer mesh near the extremes of the interval of integration, namely in discretizing the inter-
val [0,p] as follows:
x0 ¼ 0; xi ¼ xi�1 þ hi; i ¼ 1;2; . . . ;N þ 1; xNþ1 ¼ p;
where
h1 6 h2 6 � � � 6 hg;

hi ¼ hg; i ¼ gþ 1; . . . ;N � gþ 1;
hi ¼ hN�iþ2; i ¼ N � gþ 2; . . . ;N þ 1:

8><>:

The choice of the nonuniformly distributed nodes can be made in several ways. For example, they can be derived starting
from the zeros of suitable orthogonal polynomials of degree 2g + 1, or arranged with a geometric progression distribution
(see [19,20] for further details).
3. Reconstruction of symmetric potentials

The first step of the numerical procedure we have studied for solving the inverse SLP (1)–(3) consists in selecting a sub-
space U of L2[0,p] composed by symmetric functions and of finite dimension L inside of which we look for an approximation
of the exact potential q(x). In particular, U is chosen so that the constant functions belong to it since a reasonable basic prop-
erty a ‘‘good” method for inverse SLPs must satisfy is that of allowing the exact reconstruction of constant potentials. As a
matter of fact, all matrix methods improved with the asymptotic correction technique solve exactly direct SLPs with such
potentials.

The outline of our method is the following. Let us denote with
K ¼ ðk1; k2; . . . ; kMÞT ;
the vector containing the input data of the problem and, for each / 2U, let us collect into
Kð/Þ ¼ k1ð/Þ; k2ð/Þ; . . . ; kMð/Þð ÞT ; ð18Þ
the exact eigenvalues of the SLP (1)–(3) with potential / and into
KðhÞð/Þ ¼ kðhÞ1 ð/Þ; k
ðhÞ
2 ð/Þ; . . . ; kðhÞM ð/Þ

� �T
; ð19Þ
the corresponding numerical approximations provided by the (2m)-step BVM with m a priori fixed. In addition, let

EðhÞ ¼ �ðhÞ1 ; �ðhÞ2 ; . . . ; �ðhÞM

� �T
be the vector containing the correction terms in (8) associated to the selected BVM and to the

BCs of the SLP. We then take as approximation of the exact potential the function q(h) 2U for which the corresponding cor-
rected numerical eigenvalues better approximate in the least-square sense the reference ones, i.e.
qðhÞðxÞ ¼ arg min
/2U

GðhÞð/Þ;
where GðhÞð/Þ ¼ kKðhÞð/Þ �Kþ EðhÞk2
2. We observe that, as h& 0, G(h)(/) approaches the Röhrl functional kKð/Þ �Kk2

2 intro-
duced and analyzed in [21].

By considering that the function space U is chosen of finite dimension L, in practice we fix a suitable basis for U, say
B ¼ /1ðxÞ;/2ðxÞ; . . . ;/LðxÞf g; ð20Þ

with U ¼ spanðBÞ, and we compute the coefficients of the representation of q(h)(x) with respect to such basis. This means that
if we define
/ðx; cÞ ¼
XL

j¼1

cj/jðxÞ;

FðhÞðc;XÞ ¼ KðhÞð/ðx; cÞÞ �X; ð21Þ
for each c = (c1,c2, . . . ,cL)T and each X 2 RM , then
qðhÞðxÞ ¼ / x; cðhÞ
� �

; ð22Þ

where c(h) solves in the least-square sense the system of M nonlinear equations, analogous to that in (8),
FðhÞ c;K� EðhÞ
� �

¼ KðhÞð/ðx; cÞÞ �Kþ EðhÞ ¼ 0; ð23Þ
being from now on 0 the zero vector of suitable size depending on the context.
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Remark 3. If the SLP is subject to DBCs the method in [14] is a particular instance of our procedure corresponding to the
following choices: p = 4, N = 2M, L = M, and for each i, j = 1,2,. . .,L, /j(x) is such that /j(xi) = 1 if i = j, N + 1 � j, and /j(xi) = 0
otherwise. In this setting, the approach is that of solving (23) exactly since the number of unknowns M of such system equals
the number L of its nonlinear equations. Similar correspondences can be found with the methods in [13,16] via some suitable
adjustments.

Concerning the effective computation of c(h) standard nonlinear optimization methods like the Gauss–Newton or the
Levenberg–Marquardt methods with line search can be used [23–25].

Alternatively, when M = L, the classical Newton method can be applied for solving (23). Nevertheless, in order to reduce
the computational cost of the procedure, the use of the modified Newton method is frequently preferred which has good
convergence properties if the potential is assumed to be ‘‘sufficiently” close to a constant, [13–15]. The corresponding recur-
rence relation is given by:
cðhÞrþ1 ¼ cðhÞr � JðhÞð0Þ
� ��1

FðhÞ cðhÞr ;K� EðhÞ
� �

; r ¼ 0;1;2; . . . ; ð24Þ
with cðhÞ0 a suitable initial approximation and J(h)(0) the Jacobian matrix
JðhÞðcÞ ¼
@FðhÞ c;K� EðhÞ

� �
@c

¼ @K
ðhÞð/ðx; cÞÞ
@c

; ð25Þ
evaluated at c = 0. Clearly, the iteration (24) is well defined provided J(h)(0) is nonsingular. Now, if we assume that the coef-
ficient matrix S in (16), which is constant with respect to c, is nonsingular, kðhÞk ð/ðx; cÞÞ is the kth eigenvalue of S�1A(/(x,c)),
see (7), where the matrix A(/(x,c)) in (15) can be decomposed as
A /ðx; cÞð Þ ¼ A0 þ
XL

j¼1

cjAj;
with A0 ¼ �h�2 T þ cLeðNÞ1 aT � cR
bJeðNÞ1 aTbJ� �

and
Aj ¼ BðmÞ
/jðx1Þ

. .
.

/jðxNÞ

0BB@
1CCAþ cL/jðx0ÞbðmÞaT � cR/jðxNþ1ÞbJbðmÞaTbJ:
As a consequence, see (19), it is not difficult to verify that, for any M and L, the entries of the Jacobian (25) are given by the
classical formula
JðhÞðcÞ
� �

kj
¼

vðhÞk ð/ðx; cÞÞ; S
�1Ajy

ðhÞ
k ð/ðx; cÞÞ

D E
vðhÞk ð/ðx; cÞÞ; y

ðhÞ
k ð/ðx; cÞÞ

D E ;
being h � , � i the standard scalar product and yðhÞk ð/ðx; cÞÞ and vðhÞk ð/ðx; cÞÞ right and left eigenvectors of S�1A(/(x,c)) corre-
sponding to kðhÞk ð/ðx; cÞÞ, respectively.

Some considerations have to be made at this point concerning the choice of the function space U and of its set of basis
functions B. With reference to the former choice, standard arguments from the approximation theory, like the regularity and
the flexibility of the approximating functions, have been adopted and the accuracy of the approximation q(h)(x) � q(x) ob-
tained clearly depends on this choice. In determining the performance of the overall procedure, however, the selection of
B turns out to be of no minor relevance. The Jacobian J(h)(c), in fact, depends on B and the properties of such matrix deter-
mine the stability of the method with respect to perturbations on the input data or perturbations due to the use of the finite
precision arithmetic. A general discussion of such properties, however, is rather difficult. Nevertheless, if we assume from
now on that the potential to be reconstructed is ‘‘sufficiently” close in some norm to a constant then J(h)(0) represents a
‘‘good” model for carrying out an analysis of the stability of the method (observe that if /ðx; ~cÞ is constant then from Remark
1 one deduces yðhÞk ð/ðx; ~cÞÞ ¼ yðhÞk ð/ðx;0ÞÞ, vðhÞk ð/ðx; ~cÞÞ ¼ vðhÞk ð/ðx;0ÞÞ and, consequently, JðhÞð~cÞ ¼ JðhÞð0Þ). In addition, when
M = L the convergence properties of the iterative method used for solving (23) like, for instance, the modified Newton one
are strictly related to the conditioning of J(h)(0).

As the notation used underline, the previous matrix depends on the discretization stepsize h of the BVM. Nevertheless,
unlike the methods in [13–16], in our case we have the freedom of choosing h arbitrarily small independently of the number
M of known eigenvalues. We observe that K(h)(/(x,c)) converges to K(/(x,c)) as h& 0 for any c and from now on we shall
assume that
lim
h!0

JðhÞð0Þ ¼ lim
h!0

@KðhÞð/ðx; cÞÞ
@c

¼ @Kð/ðx; cÞÞ
@c

�����
c¼0

� Jð0Þ; ð26Þ
whose entries are given by Röhrl [21]
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Jð0Þð Þkj ¼
R p

0 y2
kðxÞ/jðxÞdxR p

0 y2
kðxÞdx

; k ¼ 1; . . . ; M; j ¼ 1; . . . ; L; ð27Þ
being yk(x) the kth exact eigenfunction for the SLP with zero potential and the same BCs. This assumption is supported by the
results of some numerical experiments we have conducted with the function spaces U described in the following subsec-
tions. In the sequel, we will therefore refer to the limit Jacobian J(0) when talking about the stability of the method.

Before proceeding, we mention that similar function spaces have been used also in [26].

3.1. Trigonometric polynomials

It is known that the asymptotic estimates (5) for the Dirichlet eigenvalues for large k specify to, see [3],
kkðqÞ ¼ k2 þ �q� 1
p

Z p

0
qðxÞ cosð2kxÞdxþ Oð1=kÞ � nðDÞk ðqÞ þ Oð1=kÞ; ð28Þ
so that, as discussed in [13], the informations in them contained are related to the coefficients of the Fourier cosine series of
q. In addition, in [15], the following eigenvalue estimates
kkðqÞ 	 ðk� 1Þ2 þ �qþ 1
p

Z p

0
qðxÞ cosð2ðk� 1ÞxÞdx ¼ nðNÞk ðqÞ ð29Þ
are given for large k when talking about the solution of symmetric inverse SLPs with NBCs. In the same paper, it is therefore
argued that also such eigenvalues give an approximation to the truncated Fourier cosine series of q.

The previous two estimates suggest to consider the space U constituted by the symmetric trigonometric polynomials
with coordinate functions given by:
/jðxÞ ¼ cosð2ðj� 1ÞxÞ; j ¼ 1;2; . . . ; L; ð30Þ
which have been already successfully used in the derivation of the methods proposed in [10,27].
Clearly, in this case the best approximation in L2-norm of q that we can obtain is represented by its truncated Fourier

cosine series.
The limit Jacobian (26) associated to (30) have a very simple structure if the SLP is subject to DBCs or to NBCs. In more

details, the eigenfunctions for the former conditions and q(x) � 0 are yk(x) = sin(kx), k = 1,2,. . . , so that from (27) after some
computations one verifies that the only nonzero entries of J(0) are given by:
Jð0Þð Þk1 ¼ 1; k ¼ 1;2; . . . ;M;

Jð0Þð Þj�1;j ¼ �
1
2
; j ¼ 2;3; . . . ;minfL;M þ 1g:

ð31Þ
For the NBCs and zero potential, instead, the eigenfunctions are known to be yk(x) = cos((k � 1)x), k = 1,2,. . . , and the Jacobian
J(0) corresponding to (30) is lower triangular with nonzero entries given by:
Jð0Þð Þk1 ¼ 1; k ¼ 1;2; . . . ;M; Jð0Þð Þjj ¼
1
2
; j ¼ 2;3; . . . ;minfL;Mg: ð32Þ
In both the previous cases, when M = L there is numerical evidence that J(h)(0) rapidly approaches J(0) as h goes to zero and
the same happens for their inverses. For the computation of the coefficient vector c(h) in (22) the very simple structure of the
limit matrix J(0) suggests therefore to apply the modified Newton method in (24) with J(h)(0) replaced by J(0). The conver-
gence properties of the so-obtained iterative procedure turn out to be very satisfactory in all our experiments. Moreover, it is
not difficult to verify that the spectral condition number of J(0), say j(J(0)), grows linearly with respect to M.

Finally, it is worth to mention that for SLPs subject to more general BCs, the limit Jacobian J(0) corresponding to (30) is not
known in closed form since the same holds for the exact eigenfunctions. Nevertheless, when M = L, the behaviour of j(J(h)(0))
observed is still O(M).

3.2. Algebraic polynomials

A second function space to be considered is surely represented by the algebraic polynomials symmetric with respect to p
2

and, actually, this has been our first choice in chronological order. At the time being, however, the results obtained with this
choice are definitely negative in terms of stability properties of the numerical procedure. When M = L, in fact, the condition
number of the limit Jacobian (26) associated to different sets of basis functions, like the shifted and scaled Legendre and Che-
byschev polynomials of even degree, grows very quickly with M.

In this situation, it is evident that with this function space if we set L = M then we may get an accurate approximation of
the unknown potential only if the first few eigenvalues contain almost all the information about it and the given input eigen-
values M is very small. Alternatively, one may set L
M and solve (23) in the least-square sense.

Anyway, it must be said that we cannot exclude that there exists a set of basis functions, which we have not yet consid-
ered, such that the stability properties of the method becomes acceptable, say a linear or at most quadratical growth with
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respect to M of the conditioning of the limit Jacobian (26) when M = L. In our opinion, however, the cause of its instability is
intrinsic to the function space since the use of polynomials of very high degree is usually not recommended. This is the moti-
vation which has led us to consider the function space described in the following subsection.

3.3. Cubic spline functions

It is well-known that many of the most well established methods for function approximations are based on the use of
cubic spline functions [28]. This is due to their peculiarity of combining flexibility with almost always sufficient smoothness
properties. By virtue of this fact, the third function space we have considered is constituted by the cubic spline functions
symmetric with respect to p/2. In this context, the most natural choice is surely represented by the ones defined over a uni-
form partition D of [0,p] with a set of symmetric basis functions derived from the B-spline basis.

In more details, the first choice of spline function space of size L that we have considered is the following. The partition D
has been fixed as
Table 1
Conditi

M

Diric
10
20
40
80
160
320

Neum
10
20
40
80
160
320
D : 0 ¼ t0 < t1 < � � � < t2L�4 ¼ p;

ti ¼ t0 þ iht ; i ¼ 0;1; . . . ;2L� 4; ht ¼
t2L�4 � t0

2L� 4
;

ð33Þ
and, by denoting with fwiðxÞg
2L�1
i¼1 the B-spline basis of order four for the knot sequence ti = t0 + iht, i = �3,�2, . . . ,2L�1, the

basis functions in (20) are set as
/iðxÞ ¼
/̂iðxÞR p

0 /̂iðxÞdx
; /̂iðxÞ ¼ wiðxÞ þ w2L�iðxÞ; i ¼ 1;2; . . . ; L: ð34Þ
Unfortunately, this straightforward approach does not give positive results from the point of view of the stability of the ob-
tained method. When M = L, in fact, the condition number of J(0) grows as O(M4) for DBCs and as O(M2) for NBCs. This behav-
iour has been observed experimentally and the obtained estimates for the rate of growth of j(J(0)) have been reported in
Table 1 where this method has been called ‘‘type 1 method”. A direct inspection of the entries of J(0) and of its inverse shows
that such negative results are mainly caused by the first two basis functions in (34) which have a smaller support with re-
spect to the others. This implies that the corresponding coefficients in (22) are kept less under control since the computed
approximation of the unknown potential depends on them only in small intervals near the extremes of [0,p]. In addition, an
explanation of the worse results for the DBCs relies on the fact that the corresponding eigenfunctions are close to zero near
x = 0, p so that the entries in the first columns of the limit Jacobian (26) have a much smaller magnitude with respect to those
corresponding to the NBCs.

A possible remedy for improving the stability of the procedure is therefore that of enlarging the support of the first basis
spline functions. In particular, the approach that we have considered is the following. For a function space U of size L, the first
knot in (33) is taken strictly positive, that is t0 > 0 and, consequently, t2L�4 = p � t0 < p. In the subinterval [t0, t2L�4] ˆ [0,p] the
symmetric cubic splines /̂jðxÞ in (34) are defined in the same way as just described while in [0, t0] and [t2L�4,p] they are obtained
by extending the corresponding polynomials in [t0, t1] and [t2L�5, t2L�4], respectively. In more details, for each j, /̂jðxÞj½0;t0 � and
/̂jðxÞj½t2L�4 ;p� are taken to be the cubic polynomials /̂jðxÞj½t0 ;t1 � and /̂jðxÞj½t2L�5 ;t2L�4 �, respectively. The basis functions /j are finally
computed by applying the normalization given in the left formula in (34). It is not difficult to realize that the so-obtained func-
tions are symmetric not-a-knot splines with respect to the partition composed by the 2L � 2 knots
D0 : 0 < t0 < t1 < � � � < t2L�4 < p: ð35Þ
oning of the limit Jacobian J(0) for some spline function spaces.

Type 1 method Type 2 method Type 3 method

j(J(0)) Rate j(J(0)) Rate j(J(0)) Rate

hlet boundary conditions
8.5509e+02 – 5.1626e+01 – 4.2834e+01 –
1.5130e+04 – 1.8275e+02 – 5.8132e+01 –
2.7125e+05 4.1642 7.0508e+02 1.9940 8.0754e+01 0.5644
4.6571e+06 4.0980 2.8023e+03 2.0054 1.1320e+02 0.5203
7.7424e+07 4.0524 1.1219e+04 2.0048 1.5939e+02 0.5094
1.2636e+09 4.0269 4.4948e+04 2.0027 2.2493e+02 0.5046

ann boundary conditions
8.4090e+01 – 2.0469e+01 – 4.5433e+01 –
2.9168e+02 – 3.4011e+01 – 9.7890e+01 –
1.1214e+03 1.9989 6.3836e+01 1.1392 2.3777e+02 1.4149
4.4429e+03 2.0011 1.2417e+02 1.0164 6.0989e+02 1.4117
1.7739e+04 2.0011 2.4516e+02 1.0038 1.6266e+03 1.4501
7.0943e+04 2.0006 4.8724e+02 1.0007 4.4515e+03 1.4742
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In this general setting, the question to be addressed is the choice of the first knot t0 and to this regard the adopted criterion
has been that of finding a good compromise between the accuracy of the best approximation in L2-norm of q over U and the
stability of the method for inverse SLPs. The first natural attempt is therefore that of taking (35) to be a uniform partition of
[0,p] and this choice turns out to be successful in improving the stability of the method which we have called ‘‘type 2 meth-
od.” As shown in Table 1, in fact, when M = L, j(J(0)) now grows quadratically with respect to M for DBCs and linearly for
NBCs. Nevertheless, for the former conditions we consider the behaviour of j(J(0)) still not satisfactory so that a further
enlargement of the subinterval [0, t0] is operated. In particular, when M = L, a noticeable improvement of the stability of
the method for DBCs is obtained by taking t0 so that t0 = 2(t1 � t0) and ti � ti�1 = (t1 � t0) for each i = 2,3, . . . ,2L � 4, see the
data in Table 1 corresponding to the ‘‘type 3 method”. For completeness, in the same table we have also reported the values
of j(J(0)) for such method applied to problems with NBCs. As one can see, in this case the use of the type 3 method is not
convenient.

In the case of symmetric inverse SLP subject to general BCs not of Dirichlet type the most appropriate method to be used
seems to be the ‘‘type 2 method”. This is because, like in the Neumann case, the value of the corresponding eigenfunctions is
surely different from zero for x = 0, p.

By virtue of these results, in the sequel when talking about the use of the spline functions for solving the inverse SLP (1)–
(3) we will refer to the ‘‘type 3 method” for DBCs and to the ‘‘type 2 method” otherwise.

Remark 4. We would like to underline the fact that with the spline functions the behaviour of j(J(0)) with respect to M
coincides with that of the methods in [13,15]. Moreover, for later reference, we mention that with the normalization (34) it
results k(J(0))�1k2 = O(1).
4. Error analysis

The error in the approximation of the unknown potential q(x) through the described methods is here analyzed and dis-
cussed. We will assume that q(x) is ‘‘sufficiently” close to a constant and consider only the case where L = M and the coef-
ficient vector c(h) of the computed approximation q(h)(x) = /(x,c(h)), see (22), solves exactly the system of nonlinear equations
(23). Moreover, we will concentrate on the case of inverse problems subject to DBCs and to NBCs. In our opinion, however,
the results obtained for the latter conditions hold also for problems subject to more general BCs not of Dirichlet type.

As we are going to see, the error in the approximation q(h)(x) � q(x) can be splitted in three terms all depending on the
function space U used and consequently on the number M of known eigenvalues since its size L is set equal to M. The error
due to the discretization of the SLP operated by applying the described BVMs is present instead in only one term of such
decomposition.

If we denote with /(x,c*) the best approximation in L2-norm of the unknown potential over U, namely
c� ¼ c�1; c
�
2; . . . ; c�M

� �T ¼ arg min
c2RM
kq� /ð�; cÞk2; ð36Þ
then we get
q� qðhÞ
		 		

2 6 kq� /ð�; c�Þk2 þ /ð�; c�Þ � /ð�; cðhÞÞ
		 		

2 6 kq� /ð�; c�Þk2 þ
XM

j¼1

c�j � cðhÞj

��� ���k/jk2

6 kq� /ð�; c�Þk2 þ max
j¼1;2;...;M

k/jk2

� �
c� � cðhÞ
		 		

1: ð37Þ
In order to find an estimate of kq � q(h)k2 we therefore need to study the behaviour of kc* � c(h)k1. From (21) and (19), one
immediately deduces that for each h
FðhÞ c�;KðhÞ /ðx; c�Þð Þ
� �

¼ 0;
whereas under the assumption we have made
FðhÞ cðhÞ;K� EðhÞ
� �

¼ 0:
It follows that a first order approximation of c* � c(h) is given by:
c� � cðhÞ ’ JðhÞðc�Þ
� ��1

KðhÞ /ðx; c�Þð Þ �Kþ EðhÞ
� �

;

where J(h)(c*) is the Jacobian in (25). Consequently
kc� � cðhÞk1/ JðhÞðc�Þ
� ��1
				 				

1
kDK1k1 þ kDK2k1ð Þ; ð38Þ
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with, see (18),
DK1 ¼ KðhÞ /ðx; c�Þð Þ �K /ðx; c�Þð Þ þ EðhÞ;

DK2 ¼ K /ðx; c�Þð Þ �K:
ð39Þ
With reference to the behaviour of k(J(h)(c*))�1k1, we shall assume that, if h is small enough then there exists a coefficient
x = x(q) independent of M and h such that
JðhÞðc�Þ
� ��1
				 				

1
6 x ðJð0ÞÞ�1

			 			
1

ð40Þ
where J(0) is the limit Jacobian in (26). This assumption is based on the fact that q is supposed to be ‘‘sufficiently” close to a
constant so that the eigenfunctions of the corresponding SLP are close to those for the zero potential even for the first indices
k. The numerically observed values of x are always of moderate size. For example, for q(x) = sin(x), q(x) = jx � p/2j and
q(x) = x(p � x) it results x � 1 for DBCs and x 6 2.5 for NBCs for both the trigonometric polynomials and the spline
functions.

By setting
vðMÞ ¼ x max
j¼1;2;...;M

k/jk2

� �
Jð0Þð Þ�1

			 			
1
; ð41Þ
from (37), (38) and (40) we therefore obtain
kq� qðhÞk2 6 kq� /ð�; c�Þk2 þ vðMÞ kDK1k1 þ kDK2k1ð Þ: ð42Þ
Concerning the behaviour of kDK1k1, from (39), (18) and (19) it is evident that DK1 represents the discretization error in the
numerical approximations of the eigenvalues of the SLP (1)–(3) with potential /(x,c*) when the selected BVM improved with
the asymptotic correction technique is applied. As already underlined in Section 3, such error can be arbitrarily reduced since
the choice of the stepsize h is left free. More precisely, from (17) it follows that (at least) kDK1k1 = O(hp�1/2) being p the order
of accuracy of the BVM.

The terms v(M) and kDK2k1 in (42) closely depend on the function space U used and, in particular, for the trigonometric
polynomials and the spline functions the following are the behaviours with respect to M that we have observed for them.

� Trigonometric polynomials:It is immediate to verify that v(M) = O(M) for this function space. In fact, from (30)–(32) one
deduces that maxj¼1;2;...;Mk/jk2 ¼

ffiffiffiffi
p
p

and k(J(0))�1k1 = O(M).
Concerning the vector DK2 defined in (39), it contains the differences between the first M exact eigenvalues of the SLP
(1)–(3) with potential /(x,c*) and q(x). It is well-known that regular SLPs are well-conditioned with respect to perturba-
tions on their coefficients and a first estimate of kDK2k1 can be obtained by applying Theorem 2.8 in [29] which gives
kDK2k1 6Mkq � /(�,c*)k1. In all our experiments, however, such upper bound turns out to be definitely crude and a shar-
per estimate for the trigonometric polynomials is given by:
kDK2k1 6 rðMÞkq� /ð�; c�Þk2; ð43Þ
where r(M) is a suitable coefficient independent of the potential q whose behaviour is r(M) = O(M�1/2) and r(M) = o(M�1)
if the SLP is subject to DBCs or to NBCs, respectively. These results can be explained by considering (28) and (29). It is in
fact clear that the terms nðDÞk and nðNÞk in such equations coincide for q and its Fourier cosine series. Therefore, since /(x,c*)
represents such series truncated to the Mth harmonic we have nðDÞk ðqÞ ¼ nðDÞk ð/ð�; c�ÞÞ with k = 1, . . . ,M � 1 and
nðNÞk ðqÞ ¼ nðNÞk ð/ð�; c�ÞÞ for k = 1, . . . ,M.

� Spline functions:In this case, after some computations, one obtains that with the normalization (34)
maxj¼1;2;...;Mk/jk2 ¼ Oð

ffiffiffiffiffi
M
p
Þ. Concerning the behaviour of k(J(0))�1k1, from Remark 4 we deduce that it grows at most as

Oð
ffiffiffiffiffi
M
p
Þ. Nevertheless, the numerically computed values of k(J(0))�1k1 for M 6 1500 suggest that such quantity has actu-

ally an horizontal asymptote. From the previous arguments, see (41), we therefore get that vðMÞ ¼ Oð
ffiffiffiffiffi
M
p
Þ.

With reference to kDK2k1 the estimate obtained from Theorem 2.8 in [29] is considerably not sharp also for this function
space. In fact, the experiments indicate that
kDK2k1 6 rðMÞkq� /ð�; c�Þk2 ð44Þ
for a suitable coefficient rðMÞ ¼ Oð
ffiffiffiffiffi
M
p
Þ which is independent of the potential q.

By collecting all the previous considerations, from (42)–(44) we finally get
kq� qðhÞk2 6 ð1þ rðMÞvðMÞÞkq� /ð�; c�Þk2 þ vðMÞkDK1k1; ð45Þ
where for the trigonometric polynomials, v(M) = O(M) while r(M) = O(M�1/2) and r(M) = o(M�1) for SLPs with DBCs and
NBCs, respectively. For the spline functions, instead, vðMÞ ¼ Oð

ffiffiffiffiffi
M
p
Þ and rðMÞ ¼ Oð

ffiffiffiffiffi
M
p
Þ.

The obtained upper bound for kq � q(h)k2 put into evidence that the convergence properties of our procedure for the solution
of symmetric inverse SLPs are closely related to the behaviour of kq � /(�,c*)k2 which, in turn, depends on the regularity of q, on
the number of known eigenvalues and on the function space used. In this context, the following is an important consideration.
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Remark 5. If the unknown potential belongs to the function space used, our procedure allows to reconstruct it with
arbitrarily high accuracy. This happens even if a fixed and not necessarily large number M of known eigenvalues is given.

More generally, when q is ‘‘sufficiently” regular, the results obtained with the spline functions are usually more accurate
than those obtained with the trigonometric polynomials in spite of the faster growth of the coefficient r(M)v(M) in (45) for
the former space. The well-known flexibility of the spline functions, in fact, usually allows the best spline approximation
/(�,c*) to be much closer to q than its truncated Fourier cosine series is. In particular, this clearly happens if q0(0) and
q0(p) are different from zero since in such case the accuracy of the approximation obtained with the trigonometric polyno-
mials inevitably deteriorates near the extremes of [0,p]. On the other hand, the trigonometric polynomials are simpler to be
manipulated and, obviously, they are the functions to be used when the interest is devoted to the knowledge of the harmon-
ics of q instead of to its global behaviour.

Before concluding, we must say that even though many of the arguments used in this section are purely experimental, we
think that our approach for the analysis of the error is valid since it allows to isolate the term due the discretization operated
by the matrix methods used. Moreover, many of the papers currently available in the literature concerning the solution of
inverse SLP, like [13–16], do not treat this aspect and are mainly interested on the analysis of the convergence properties of
the iterative procedure used for solving the system of nonlinear Eq. (8).

5. Numerical examples

In this section some numerical results obtained with the proposed procedure, always used with L = M (see Section 3),
are reported which put into evidence its competitiveness with respect to other classical methods. In particular, the
numerical experiments we have conducted suggest that if the potential q(x) to be recovered is at least continuous then
the approximation provided by our method is globally more accurate than the one provided by the Numerov method
used as described in [15]. On the other hand, if q(x) is discontinuous then the results given by the two methods are
very similar. This can be explained by considering that in the previous case the main term in the decomposition of
the error (45) is the one involving kq � /(�,c*)k2 i.e. the one associated to the projection of the unknown potential over
the function space U.

Finally, the last example is aimed to confirm what observed in Remark 5.
Before proceeding, we mention that in all the following examples the required reference eigenvalues have been computed

by using the MATSLISE software package [30] while the numerical eigenvalues have been computed with the routine EIG of
MATLAB.

Example 1. Let us consider the SLP (1) with q(x) = 10 sin(x) subject to DBCs. For solving the corresponding inverse problem
we have used the cubic spline functions defined according to the ‘‘type 3 method” described in Section 3. The involved direct
problems have been solved by applying the BVM of order p = 8 defined over N = 6M uniformly distributed meshpoints being
M the number of known eigenvalues. The obtained results have been reported in Fig. 1 where the two subplots correspond to
M = 5 and M = 10, respectively. More precisely, the error jq(x) � q(h)(x)j, x 2 [0,p], for the cubic spline functions is plotted and
compared with the error of the pointwise approximation given by the Numerov method [15].

It is evident that our procedure provides definitely more accurate approximations than the one given by the Numerov
method and that, with respect to it, the gain in accuracy of our method as M increases is larger.

Example 2. In this second example we have solved the inverse SLP subject to NBCs with exact potential qðxÞ ¼ x� p
2

�� ��. We
have applied the BVM of order p = 8 defined over a nonuniform mesh with geometrically distributed stepsize as described in
Remark 2 and the function space U used is constituted by the cubic spline functions defined according to the ‘‘type 2 method”.
The problem has been solved with M = 10 and M = 20 known eigenvalues and N = 6M meshpoints for the BVM. The
corresponding errors have been reported in Fig. 2 where we have also compared our results with that provided by the
Numerov method labeled as Method 1 in [15, Section 3].

As one may expect, in a neighbourhood of x ¼ p
2, where the exact potential is only continuous, the two errors are quite

similar. In the remaining part of the interval of integration, however, our procedure gives a significantly more accurate
approximation of the unknown potential. In particular, this happens near the extremes x = 0, p where the accuracy of the
approximation provided by the Numerov method rapidly deteriorates.

Example 3. The potential to be reconstructed in this example is the step-function
qðxÞ ¼
1 if p

4 < x < 3p
4 ;

�1 if 0 6 x 6 p
4 ;

3p
4 6 x 6 p;

(
ð46Þ
starting from the knowledge of the corresponding Neumann spectrum. In the first three subplots of Fig. 3, together with the
exact potential, the approximations obtained by using the trigonometric polynomials, the BVM of order p = 6 with N = 6M
geometrically distributed meshpoints and M = 16, 32, 48 known eigenvalues have been reported, respectively. As one can
see at first sight such approximation improves for increasing values of M; actually, the reconstructed potential q(h) more
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Fig. 1. Error in the reconstruction of q(x) = 10 sin(x) for the spline functions (solid line) and the Numerov method (*).
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�� �� for the spline functions (solid line) and the Numerov method (*).
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closely constitutes an approximation of the truncated Fourier cosine series of q limited to the Mth harmonic. This is shown in
the last subplot of Fig. 3 where the errors kq � q(h)k2 (solid line) and, see (36), k/(�,c*) � q(h)k2 (dashed line) computed with M
even have been reported. This result perfectly agrees with the error analysis carried out in Section 4 and we mention that a
similar comparison had been done in [13].
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Fig. 3. Reconstruction of the discontinuous potential (46) with trigonometric polynomials and corresponding error in the approximation.

Table 2
L2-norm of the errors in the reconstruction of q(x) = cos(6x) with trigonometric polynomials, M = 8 Dirichlet and Neumann known eigenvalues and increasing
number N of meshpoints.

N Dirichlet BC Neumann BC

Order 6 Order 8 Order 6 Order 8

25 6.5937e�03 2.4742e�03 1.0136e�03 2.0918e�04
50 9.3910e�05 2.3805e�06 3.5753e�05 6.4272e�06
75 9.3355e�06 5.6048e�07 2.7278e�06 2.6838e�07

100 1.4209e�06 5.9983e�08 3.8299e�07 2.1873e�08
125 3.1333e�07 8.9742e�09 8.0664e�08 2.9519e�09
150 8.9623e�08 1.7998e�09 2.2294e�08 5.6213e�10
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Example 4. In this last example the trigonometric polynomials are used for the reconstruction of q(x) = cos(6x) with the aim
of confirming what observed in Remark 5. In particular, in Table 2, for the corresponding inverse SLPs with DBCs and NBCs,
we have listed the errors kq � q(h)k2 obtained with M = 8 by applying the BVMs of order p = 6, 8 with geometrically distrib-
uted variable stepsize for increasing number N of meshpoints. It is evident that such errors approach zero and that the accu-
racy increases with the order of the method.
6. Conclusions

The procedure proposed for the solution of symmetric inverse SLPs have provided positive results. The accuracy of the
obtained approximation is closely related to the regularity of the unknown potential q. In particular, when q is sufficiently
smooth, our method turns out to be very competitive with respect to the Numerov method used as described in [15]. By vir-
tue of this fact, an interesting topic for future investigation is the application of the adopted approach for solving nonsym-
metric inverse SLPs.

References

[1] G. Borg, Eine Umkehrung der Sturm-Liouvillechen Eigenwertaufgabe, Acta Math. 78 (1946) 732–753.
[2] I.M. Gelfand, B.M. Levitan, On the determination of a differential equation from its spectral function, Am. Math. Soc. Trans. 1 (1951) 253–304.



P. Ghelardoni, C. Magherini / Applied Mathematics and Computation 217 (2010) 3032–3045 3045
[3] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, London, 1987.
[4] V.A. Marchenko, Sturm–Liouville Operators and applications, Birkhäuser, Basel, 1986.
[5] J.W. Paine, F.R. de Hoog, R.S. Anderssen, On the correction of finite difference eigenvalue approximations for Sturm–Liouville problems, Computing 26

(1981) 123–139.
[6] R.S. Anderssen, F.R. de Hoog, On the correction of finite difference eigenvalue approximations for Sturm–Liouville problems with general boundary

conditions, BIT 24 (1984) 401–412.
[7] A.L. Andrew, J.W. Paine, Correction of Numerov’s eigenvalue estimates, Numer. Math. 47 (1985) 289–300.
[8] A.L. Andrew, Asymptotic correction of Numerov’s eigenvalue estimates with natural boundary conditions, J. Comput. Appl. Math. 125 (2000) 359–366.
[9] A.L. Andrew, Asymptotic correction of Numerov’s eigenvalue estimates with general boundary conditions, ANZIAM J. 44 (2002) C1–C19.

[10] O.H. Hald, The inverse Sturm–Liouville problem and the Rayleigh–Ritz method, Math. Comput. 32 (1978) 687–705.
[11] O.H. Hald, The inverse Sturm–Liouville problem with symmetric potentials, Acta Math. 141 (1978) 263–291.
[12] J.W. Paine, A numerical method for the inverse Sturm–Liouville problem, SIAM J. Sci. Stat. Comput. 5 (1984) 129–156.
[13] R.H. Fabiano, R. Knobel, B.D. Lowe, A finite-difference algorithm for an inverse Sturm–Liouville problem, IMA J. Numer. Anal. 15 (1995) 75–88.
[14] A.L. Andrew, Numerical solution of inverse Sturm–Liouville problems, ANZIAM 45 (2004) C326–C337.
[15] A.L. Andrew, Numerov’s method for inverse Sturm–Liouville problems, Inverse Prob. 21 (2005) 223–238.
[16] A. Kammanee, C. Böckmann, Boundary value method for inverse Sturm–Liouville problems, Appl. Math. Comput. 214 (2009) 342–352.
[17] L. Brugnano, D. Trigiante, Solving ODEs by Linear Multistep Initial and Boundary Value Methods, Gordon & Breach, Amsterdam, 1998.
[18] P. Ghelardoni, Approximations of Sturm–Liouville eigenvalues using boundary value methods, Appl. Numer. Math. 23 (1997) 311–325.
[19] L. Aceto, P. Ghelardoni, C. Magherini, Boundary value methods as an extension of Numerov’s method for Sturm–Liouville eigenvalue estimates, Appl.

Numer. Math. 59 (2009) 1644–1656.
[20] L. Aceto, P. Ghelardoni, C. Magherini, BVMs for Sturm–Liouville eigenvalue estimates with general boundary conditions, JNAIAM 4 (2009) 113–127.
[21] N. Röhrl, A least-squares functional for solving inverse Sturm–Liouville problems, Inverse Prob. 21 (2005) 2009–2017.
[22] L. Aceto, P. Ghelardoni, M. Marletta, Numerical solution of forward and inverse Sturm–Liouville problems with an angular momentum singularity,

Inverse Prob. 24 (2008) 015001. pp. 21.
[23] J.E. Dennis Jr., Nonlinear Least-Squares, in: D. Jacobs (Ed.), State of the Art in Numerical Analysis, Academic Press, 1997, pp. 269–312.
[24] K. Levenberg, A method for the solution of certain problems in least-squares, Quart. Appl. Math. 2 (1944) 164–168.
[25] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441.
[26] W. Rundell, P.E. Sacks, Reconstruction techniques for classical inverse Sturm–Liouville problems, Math. Comput. 58 (1992) 161–183.
[27] B.D. Lowe, M. Pilant, W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal. 23 (1992) 482–504.
[28] C. de Boor, A Practical Guide to Splines, Applied Mathematical Sciences,, Revised ed., vol. 27, Springer-Verlag, New York, 2001.
[29] J.D. Pryce, Numerical Solution of Sturm–Liouville Problems, Clarendon Press, Oxford, 1993.
[30] V. Ledoux, M. Van Daele, G. Vanden Berghe, Matslise: a matlab package for the numerical solution of Sturm–Liouville and Schrödinger equations, ACM

Trans. Math. Softw. 31 (2005) 532–554. <http://users.ugent.be/	vledoux/MATSLISE/>.

http://users.ugent.be/~vledoux/MATSLISE/
http://users.ugent.be/~vledoux/MATSLISE/

	BVMs for computing Sturm–Liouville symmetric potentials
	Introduction
	Boundary value methods for the direct problem
	Reconstruction of symmetric potentials
	Trigonometric polynomials
	Algebraic polynomials
	Cubic spline functions

	Error analysis
	Numerical examples
	Conclusions
	References


