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Abstract. In this short note we describe how to apply high order finite difference methods to the solution of eigenvalue
problems with initial conditions. Finite differences havebeen successfully applied to both second order initial and boundary
value problems in ODEs. Here, based on the results previously obtained, we outline an algorithm that at first computes a good
approximation of the eigenvalues of a linear second order differential equation with initial conditions. Then, for anygiven
eigenvalue, it determines the associated eigenfunction.
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INTRODUCTION

Eigenvalue problems with boundary conditions are quite important and widely studied since they describe many
physical phenomena, both in classical and quantum mechanics, and also engineering problems such as wave functions
in signal processing. They are defined by means of an ODE whichdepends on a parameterλ called eigenvalue. A
classical example is the Sturm-Liouville problem [9] whichis described by a second order ODE and is in general
subject to separated boundary conditions. The main properties of Sturm-Liouville problems are that the eigenvalues
are real and ordered asλ1 < λ2 < .. . . The eigenfunction associated withλi hasi −1 zeros.

Different numerical approaches for solving BVODE eigenvalue problems have been developed over the years. For
example, the shooting-type algorithms which reduce the solution of a boundary value problem to an initial value
one (see, for example, [7]), and the so called matrix methods, where finite difference or finite element methods are
considered to transform the original problem into the computation of the eigenvalues of a matrix [1, 2]. Most of the
available code for boundary value problems have been adapted to the solution of eigenvalue problems. As an example,
if the eigenvalue problem is singular, the code BVPSUITE1.1[10] for singular boundary value problems has been
successfully applied.

In this note our interest is to determine the numerical solution of eigenvalue problems where initial conditions are
known. Although IVODE eigenvalue problems are less considered in the literature, they are of practical interest. We
study the linear problem

p(t)y′′+q(t)y′+ r(t)y= λy, t ∈ [0, 1], y,λ ∈ R (1)

subject to homogenous initial conditions
y(0) = y′(0) = 0, (2)

wherep, q andr are sufficiently smooth functions. In the following sections we describe a numerical method based on
high order finite difference schemes proposed in [4, 5, 6] forboundary value problems, which have been generalized
to initial value problems in [3]. The idea of this approach isto approximate each derivative of the original problem by
a high order finite difference involving a finite set of discrete values of the solution. Therefore, it is not necessary to
transform the original problem into a system of first order ODEs.

Depending on the position in the interval of integration, weuse symmetric finite differences for the feasible inner
points and one-sided finite differences at the boundaries, see [8]. Furthermore, for the IVPs in ODEs of second order,
an appropriate use ofy′(0) has to be provided.



HIGH ORDER FINITE DIFFERENCES

Given an ODE
f (t,y,y′,y′′) = 0, t ∈ [0, 1], y∈R (3)

with initial conditions
y(0) = y0, y′(0) = y′0, (4)

we fix a constant stepsize partition of[0, 1]

0= t0 < t1 < · · ·< tn = 1, ti = t0+ ih = ih, h=
tn− t0

n
=

1
n
, (5)

and the following vector of approximations

Y = [y′0,y0,y1, . . . ,yn],

whereyi ≈ y(ti) andy′0 andy0 are the known values in (4).
Then, based on the mesh specified in (5) and for a fixed numberk we use central finite differences (called ECDFs

in [5]) to approximate the first and the second derivative,

y′(ti)≈ y′i =
1
h

k

∑
j=−k

β j+ky j , i = k, . . . ,n− k,

y′′(ti)≈ y′′i =
1
h2

k

∑
j=−k

α j+ky j , i = k, . . . ,n− k,

whereα j andβ j are chosen in such a way that the formulae are consistent withthe maximum order 2k.
Moreover, we approximate the first and second derivatives atpointsti , i = 1, . . . ,k−1, by

y′(ti)≈ y′i = β (i)
∗ y′0+

1
h

2k−1

∑
j=0

β (i)
j y j ,

y′′(ti)≈ y′′i =
1
h

α(i)
∗ y′0+

1
h2

2k

∑
j=0

α(i)
j y j ,

and at pointsti , i = n− k+1, . . . ,n, by

y′(ti)≈ y′i =
1
h

2k

∑
j=0

β (i−n+2k)
j yn− j ,

y′′(ti)≈ y′′i =
1
h2

2k+1

∑
j=0

α(i−n+2k)
j yn− j .

We again choose the coefficients such that the formulae have maximum order.
Substitutingy′i andy′′i in (3) we obtain the following nonlinear system

f (ti ,yi ,y
′

i ,y
′′

i ) = 0, i = 1, . . . ,n

that, together with the initial conditions (4), provide (inthe linear case) a unique solution of the problem in the
meshpoints (5).



EIGENVALUE COMPUTATION

If we apply the numerical method of the previous section to the left hand side of (1), we obtain an×n matrix. The
eigenvalues of such matrix are in general good approximations of the first eigenvalues of (1)-(2). Then, in order to
improve the approximation of these values and to compute thecorresponding eigenfunctions, we solve, for eachλk of
interest, the following nonlinear problem with unknownsy1, . . . ,yn,λk:

p(ti)y′′i +q(ti)y′i + r(ti)yi = λkyi , i = 1, . . . ,n,
n

∑
i=0

y2
i = 1, (6)

where the last row is a normalization condition on the eigenfunction.
Since for the solution of (6) a very good approximation forλk is available, only few iterations are sufficient to

compute the corresponding eigenfunction too.

TEST EXAMPLE

In this section we consider the following test problem (in the class of Sturm-Liouville problems)

(t2
−1)y′′+2ty′− y= λy t ∈ [0,1], (7)

with initial conditionsy(0) = y′(0) = 0. All the eigenvalues are real and positive.
We have computed the first 10 eigenvalues (and the corresponding eigenvectors) by using the previous formulae for

the discretization of the derivatives. If we are interestedin obtaining the eigenvalues with an error less than 10−2, then
very small sizes (at most 30 for the 10th eigenvalue) of the coefficient matrices are required. Viceversa, around 200
meshpoints were necessary to decrease the error to less than10−3. In Table 1 we show the computed value of each
eigenvalue (approximated to 4 digits), the value ofn required to obtain the prescribed tolerance for the orders 4, 6 and
8, and the relative errors.

TABLE 1. Relative error obtained approximating the eigenvalues with fixed order andn.

Eigenvalue
λ1

1.001e0
λ2

1.100e1
λ3

2.901e1
λ4

5.501e1
λ5

8.902e1
λ6

1.310e2
λ7

1.811e2
λ8

2.391e2
λ9

3.051e2
λ10

3.791e2

order 4
n= 205 7.72e-4 9.36e-4 9.63e-4 9.72e-4 9.76e-4 9.79e-4 9.80e-4 9.81e-4 9.81e-4 9.75e-4

order 6
n= 170 7.83e-4 9.48e-4 9.76e-4 9.86e-4 9.90e-4 9.92e-4 9.94e-4 9.95e-4 9.96e-4 9.96e-4

order 8
n= 180 7.76e-4 9.41e-4 9.67e-4 9.77e-4 9.81e-4 9.83e-4 9.84e-4 9.85e-4 9.85e-4 9.86e-4

We emphasize that, by using the orders and the number of meshpointsn shown in Table 1 for the above problem (7),
a much greater number of eigenvalues is approximated with anerror smaller than 10−4. In particular, 16 eigenvalues
are well approximated with order 4 andn= 170, 23 eigenvalues with order 6 andn= 170, and 24 eigenvalues with
order 8 andn= 180. As an example, Figures 1 and 2 depict the eigenfunctionsassociated withλ4 andλ9, respectively.
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FIGURE 1. Eigenfunction associated withλ4 in (7)
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FIGURE 2. Eigenfunction associated withλ9 in (7)
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