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Abstract. The notion ofstiffness, which originated in several applications of different nature, has dominated the activities
related to the numerical treatment of differential problems in the last fifty years. Its definition has been, for a long time, not
formally precise. The needs of applications, especially those rising in the construction of robust and general purposecodes,
require nowadays a formally precise definition. In this paper, we review the evolution of such notion and we provide also with
a precise definition that could be used practically.
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INTRODUCTION

The concept ofstiffnessis the counterpart in Mathematics of the struggle generatedby the duality “short
times–long times” which appear in many aspect of our culture[1]. Apart from a few forerunner papers [7, 8],
there is a general agreement in placing the date of the introduction of stiff problems in Mathematics around
1960. They were the necessities of the applications to draw the attention of the mathematical community
towards such problems, as the name itself testifies: “they have been termed stiff since they correspond to tight
coupling between the driver and the driven components in servo-mechanism" ([9] quoting from [8]).

Both the number and the type of applications proposing difficult differential problems has increased
exponentially in the last fifty years. In the early times, theproblems proposed by applications were essentially
initial value problems and, consequently, the definition ofstiffness was clear enough and shared among the
few experts, as the following three examples evidently show:

D1 : Systems containing very fast components as well as very slowcomponents(Dahlquist [9]).
D2 : They represent coupled physical systems having componentsvarying with very different times scales:

that is they are systems having some components varying muchmore rapidly then the others(Liniger
[15]).

D3 : A stiff system is one for whichλmax is enormous so that either the stability or the error bound orboth
can only be assured by unreasonable restrictions on h. Enormous means enormous relative to the scale
which here is̄t (the integration interval). . .(Miranker [16]).

The above definitions are rather informal, certainly very far from the precise definitions we are accustomed
to in Mathematics, but, at least, they agree on a crucial point: the relation among stiffness and the appearance
of different time-scales in the solutions (see also [11]).

Later on, the necessity to encompass new classes of difficultproblems, such as Boundary Value Problems,
Oscillating Problems, etc., has led either to weaken the definition or, more often, to define some consequence
of the phenomenon instead of defining the phenomenon itself.In Lambert’s book [14] five propositions about
stiffness, each of them capturing some important aspects ofit, are given.

Sometimes one has the feeling that stiffness is becoming so broad to be nearly synonymous of difficult.

1 Work developed within the project “Numerical methods and software for differential equations”.



At the moment, even if the old intuitive definition relating stiffness to multiscale problems survives in
most of the authors, the most successful definition seems to be the one based on particular effects of the
phenomenon rather than on the phenomenon itself, such as, for example, the following almost equivalent
items:

D4 : Stiff equations are equations where certain implicit methods . . . perform better, usually tremendous
better, than explicit ones[8].

D5 : Stiff equations are problems for which explicit methods don’t work [10].

As it usually happens, describing a phenomenon by means of its effects may not be enough to fully
characterize the phenomenon itself. For example, saying that fire is what produces ash would oblige firemen
to wait for until the end of a fire to see if the ash has been produced. In the same way, in order to recognize
stiffness according to the previous definitions, it would benecessary to apply first explicit methods and see if
they work or not.

It is clear that this situation is unacceptable. In particular it is necessary to have the possibility to recognize
operativelythis class of problems, in order to increase the efficiency ofthe numerical codes to be used in
the applications.Operativelyis intended in the sense that the definition must be done in terms ofnumerically
observablequantities such as, for example, norms of vectors or matrices. It was believed that, seen from the
applicative point of view, a formal definition of stiffness would not be strictly necessary:Complete formality
here is of little value to the scientist or engineer with a real problem to solve[11].

Nowadays, after the great advance in the quality of numerical codes, the usefulness of a formal definition
is strongly recognised, also from the point of view of applications:One of the major difficulties associated
with the study of stiff differential systems is that a good mathematical definition of the concept of stiffness
does not exist[5]. Following the definitions given in previous papers [2, 13], a precise definition of stiffness
has been recently introduced in [1]. In this paper we report in brief the main concept and few examples.

DEFINITION OF STIFFNESS FOR LINEAR PROBLEMS

For initial value problems for ODEs, the concept of stability concerns the behavior of a generic solutiony(t),
in the neighborhood of a reference solution ¯y(t), when the initial value is perturbed. When the problem is
linear and homogeneous, the difference,e(t) = y(t)− ȳ(t), satisfies the same equation as ¯y(t). For nonlinear
problems, one resorts to the linearized problem which is described by the variational equation, which,
essentially, provides valuable information only when ¯y(t) is asymptotically stable. Such a variational equation
can be used to generalize to nonlinear problems the arguments below which, for sake of simplicity, concerns
only the linear case. The linearized problem to be considered is

y′ = Ay, t ∈ [0,T], y(0) = η , (1)

whereA∈ IRm×m having all its eigenvalues with negative real part.
The following parameters have been defined in [1, 13]:

κc(T,η) =
1

‖η‖
max

0≤t≤T
‖y(t)‖, κc(T) = max

η
κc(T,η),

γc(T,η) =
1

T‖η‖

∫ T

0
‖y(t)‖dt, γc(T) = max

η
γc(T,η).

(2)

and thestiffness ratio:

σc(T) = max
η

κc(T,η)

γc(T,η)
. (3)

Let A = diag(λ1,λ2, . . . ,λm) with λi < 0 and |λ1| > |λ2| > .. . > |λm|. The solution of problem (1) is
y(t) = eAtη . In this case, we have thatkc(T) is equal to 1, whileγc(T) = 1

T|λ1|
andσc(T) = T|λ1|.

The definition of stiffness is:

Definition 1.1 The initial value problem (1) isstiff if σc(T) � 1.



0 1 2 3 4 5 6 7 8 9 10

x 10
9

0

0.5

1

1.5

2

2.5

3
x 10

12

T

σ(
T)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 10

5

µ

σ(
µ)

FIGURE 1. Estimated stiffness ratio of Robertson’s problem (5) (left) and of Van der Pol’s problem (6) (right).

How this definition reconciles with the most used definition of stiffness for the linear case, which considers
into the play the “smallest" eigenvalueλm as well? The answer is already in Miranker’s definition D3. Infact,
usually the integration interval is chosen large enough to provide a complete information on the behavior of
the solution. In this case, until the slowest mode has decayed enough, i.e.T = 1/|λm|, which implies

σc

(

1
|λm|

)

=

∣

∣

∣

∣

λ1

λm

∣

∣

∣

∣

, (4)

which, when much larger than 1, coincides with the most common definition of stiffness in the linear case.
However, let us insist on saying that if the interval of integration is much smaller than 1/|λm|, the problem

may be not stiffeven if
∣

∣

∣
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∣
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∣
� 1.

The following examples show that Definition 1.1 is able to adequately describe the stiffness of nonlinear
and/or non autonomous problems as well.

Example 1.1 Let consider the well-known Robertson’s problem:

y′1 = −.04y1+104y2y3,

y′2 = .04y1−104y2y3−3 ·107y2
2, t ∈ [0,T], (5)

y′3 = 3 ·107y2
2, y(0) = (1, 0, 0)T .

Its stiffness ratio with respect to the length T of the integration interval, obtained through the linearized
problem and considering a perturbation of the initial condition of the form(0, ε, −ε)T , is plotted in Figure 1.
As it is well-known, the figure confirms that for this problem stiffness increases with T .

Example 1.2 Let consider the well-known Van der Pol’s problem:

y′1 = y2,

y′2 = −y1 + µ y2(1−y2
1), t ∈ [0,2µ ], y(0) = (2, 0)T , (6)

whose solution approaches a limit cycle of period T≈ 2µ . It is also very well-known that, the larger the
parameterµ , the more difficult the problem. In Figure 1 we plot the parameter σc(µ) for µ ranging from 0
to 103. Clearly, stiffness increases withµ .

In a similar way, when considering the discrete approximation of (1), for sake of brevity provided by a
suitable one-step method over a partitionπ of the interval[0,T], with subintervals of lengthhi , i = 1, . . . ,N,
the discrete problem will be given by

yn+1 = Rnyn, n = 0, . . . ,N−1, y0 = η , (7)



whose solution is given byyn =
(

∏n−1
i=0 Ri

)

η . The corresponding discrete conditioning parameters are then
defined by:

κd(π ,η) =
1

‖η‖
max

0≤n≤N
‖yn‖, κd(π) = max

η
κd(π ,η),

(8)

γd(π ,η) =
1

T‖η‖

N

∑
i=1

hi max(‖yi‖,‖yi−1‖), γd(π) = max
η

γd(π ,η),

and thediscrete stiffness ratio:

σd(π) = max
η

κd(π ,η)

γd(π ,η)
.

We say that the discrete problem (7), which is both defined by the used method and by the considered
mesh,well representthe continuous problem (1) if

κd(π) ≈ κc(T), γd(π) ≈ γc(T). (9)

The previous definitions naturally extend to the case of BVPs. In this case, innovative global mesh-selection
strategies for the efficient numerical solution of stiff problems have been defined by requiring the match (9)
(see, e.g., [3, 4, 6, 17]). It is advisable to extend to IVPs this mesh selection strategy, in order to construct codes
that measurethe reliability of the discrete problem with respect to the continuous one. In other words, we
must be suspicious if the discrete problem provides parameters which are very different from the continuous
ones. Since such parameters, for the discrete problem, depend on the chosen mesh, it is possible, for a fixed
method, to vary the latter in order to be sure that the discrete parameters converge. This permits, for example,
to recognize if the solution has two or more time scales in it.Indeed, this is the basic idea on which the mesh
strategy for BVPs is based (see, e.g., [3, 4, 6, 17]).
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