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Abstract

In this paper we will be concerned with numerical methods for the solution of nonlinear
systems of two point boundary value problems in ordinary differential equations. In par-
ticular we will consider the question “which codes are currently available for solving these
problems and which of these codes might we consider as being state of the art”. In answer-
ing these questions we impose the restrictions that the codes we consider should be widely
available (preferably written in MATLAB and/or FORTRAN) they should have reached a
fairly steady state in that they are seldom, if ever, updated, they try to achieve broadly
the same aims and, of course, it is relatively inexpensive to purchase the site licence. In
addition we will be concerned exclusively with so called boundary value (or global) methods
so that, in particular, we will not include shooting codes or Shishkin mesh methods in our
survey. Having identified such codes we go on to discuss the possibility of comparing the
performance of these codes on a standard test set. Of course we recognise that the compar-
ison of different codes can be a contentious and difficult task. However the aim of carrying
out a comparison is to eliminate bad methods from consideration and to guide a potential
user who has a boundary value problem to solve to the most effective way of achieving his
aim. We feel that this is a very worthwhile objective to pursue. Finally we note that in this
paper we include some new codes for BVP’s which are written in MATLAB. These have not
been available before and allow for the first time the possibility of comparing some powerful
MATLAB codes for solving boundary value problems. The introduction of these new codes
is an important feature of the present paper.

1 Introduction.

An important task in many areas of Numerical Analysis is to carry out meaningful comparisons
of numerical algorithms which attempt to achieve roughly the same well defined objectives. This
is of particular interest to a user who wishes to find an appropriate code to solve his problem as
well as to someone who has developed a new algorithm and wishes to compare it with existing
state of the art codes. An obvious example of a particular case where such comparisons have
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been carried out leading to the development of codes which are very much more efficient is in
the numerical solution of initial value problems of the form

dy

dx
= f(x, y), x ≥ a, y(a) = ya. (1.1)

The normal course of events which was followed by, for example, algorithms for initial value
problems (and also by most linear algebra routines) is that first the mathematical theory behind
the problems to be solved is well understood, then the mathematical theory behind the numerical
algorithms is established, then the problems involved in the writing of high quality, robust codes
are identified and overcome and finally some sort of numerical comparison is carried out to
highlight the strengths and weaknesses of the codes.
It is particularly relevant to us in this paper to focus our attention for the present on what has
been done for initial value problems of the general form (1.1) and this we now do. Traditionally
when a new code was proposed for the numerical solution of (1.1) the code was illustrated by
comparing it, on a small set of test problems, with other codes also designed to solve (1.1). This
proved to be less than satisfactory since there is the danger that potential disadvantages of the
new code are not discovered if such limited testing is done. The first widely used test set for
general initial value problems was DETEST which was proposed by Enright, Hull and Lindberg
[19]. After this test set first appeared, users proposing a new method were often expected to
run their code on this test set (which contains 30 problems) and this proved very useful in
eliminating poor codes. However as codes became even more powerful they tended to find the
problems in DETEST to be too easy. A particular cause for concern was that many of the
problems in DETEST were of very small dimension and so they were often solved extremely
quickly even by relatively poor codes. Following an appraisal by Shampine [35] this test set
was modified to make it much more challenging but the major disadvantage still was the small
dimension of the problems. A big step forward in the quality of numerical testing came with
the book of Hairer and Wanner [20]. They proposed a test set which was considerably more
challenging than DETEST and, in particular, contained some problems of very large dimension
(for example, the Brusselator problem on page 151 of [20] is of dimension 32768). They also
considerably advanced the methodology of testing and set new standards in attempting to make
the tests as fair as possible. Based on the work of Hairer and Wanner an even more demanding
test set was derived in Amsterdam by Lioen and de Swart [23]. They considerably broadened the
aims and scope of the test set by adding differential algebraic equations with index ≤ 3. More
recently this test set was taken over by Francesca Mazzia and her co-workers at the University
of Bari [25] and it now plays a central role in providing realistic test problems for IVP solvers.
It is important to realise, however, that this test set now has several additional facilities which
can be extremely useful to users and which considerably strengthens the case for carrying out
sophisticated numerical testing. For example, the user is easily able to run several state of the
art codes either on his own test problems or on problems that appear in the test set. It also
allows the user to test his own code against those appearing in the test set on really challenging
problems and as output it produces highly relevant, and easy to understand, statistics. For these
reasons the Bari test set now plays an important role in the development of powerful codes for
the numerical solution of initial value problems of the form (1.1) and it also has several other
important features available, which are much more important than was anticipated when this
project was first begun. To see exactly what is available (and to note the very high level of use
of this facility) the reader is urged to log into the Bari web page [25].
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2 Boundary Value Problems.

Having explained what has been done in developing test sets for initial value problems of the
form (1.1), and witnessing the central role that is taken by test sets in deriving efficient codes
for initial value problems, it clearly would be a worthwhile aim to extend some of these ideas to
codes for the numerical solution of two-point boundary value problems. Ideally we would like
to be able to answer the question “What are the best codes currently available for solving a
large class of nonlinear two-point boundary value problems and what properties of the boundary
value problem need to be taken into account when deriving efficient numerical methods for its
solution”. Here the situation is very different than it is for initial value problems simply because
boundary value problems tend to be much harder to solve and much more diverse than initial
value problems. However it could be argued that in these circumstances a user is in even more
need of guidance. Due to the many forms that can be taken by two-point boundary value
problems, it is clear that we will need to impose some important restrictions: firstly, on which
classes of problems we will attempt to solve; secondly, on which classes of numerical methods
we will consider. We need to decide for example whether or not we will consider non-separated
boundary conditions, eigenvalues and other parameter dependent problems, singular problems,
problems of the special form y′′ = f(x, y) where there is no first derivative present) etc., etc.
What we will in fact consider in this paper is global methods, i.e. not shooting methods or
Shishkin methods, for first order systems of nonlinear two-point boundary value problems with
separated boundary conditions. This means that we will restrict the class of problems that we
are interested in to

dy

dx
= f(x, y), a ≤ x ≤ b, g(y(a), y(b)) = 0. (2.1)

In this paper our aim will be to identify which codes are at present suitable to be used for the
numerical solution of (2.1). In order to do this, we need to reconsider the codes that were pre-
sented in a previous article [5], where one of the present authors sought to identify those codes
designed for the numerical solution of two point boundary value problems of the form (2.1),
which were in some sense efficient for the solution of this class of problems. This has naturally
involved some repetition of what was considered in [5] but we feel that this is justified since it
is appropriate, for the sake of completeness, for us to collect together in a single article those
codes which we feel are efficient and are suitable for inclusion in a numerical comparison. Note
however that all of these codes in [5] are written in FORTRAN. In due course we will hope to
provide a comparison of the performance of various codes on (2.1) but in the present paper we
will be mainly interested in identifying ‘state of the art’ codes which will be suitable for inclusion
in a comparison. Some interesting thoughts concerning this can be found in [2, p.515]. In [5]
three codes were identified as having the possibility of being considered state of the art codes
and these were COLNEW.f/COLSYS.f, MIRKDC.f, and TWPBVP.f/TWPBVPL.f. Also iden-
tified in [5] as being powerful continuation codes were COLMOD.f and ACDC.f [9]. The first of
these two codes is based on COLSYS.f and the second is an adaptation of TWPBVPL.f. These
codes allow COLSYS.f and TWPBVPL.f to be run in a continuation framework. This makes
these codes much more able to deal with really difficult singular perturbation problems than is
the case when continuation is not used. The important questions we need to consider in this
section are: whether these codes have stabilised in the time since [5] was written; whether these
new codes can still be considered as state of the art; whether new codes which are competitive
with these three codes have been developed in the interim; whether more recent codes written
in MATLAB are now suitable. It is important to be aware of the fact that the development
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of a test set for initial value problems took a lot of time, and considerable effort, and many
researchers contributed to this project. We would expect the same to be the case for BVPs and
so the present paper, which aims to identify which codes should have a place in a numerical
comparison, should be regarded as the first step in an on going project.
The first code we consider is COLSYS.f/COLNEW.f [1, 2]. This code is based on the approx-
imation of the solution of the differential equation (2.1) by a piecewise polynomial and it uses
collocation at Gauss points to define this polynomial uniquely. In fact, the COLSYS.f codes are
applicable directly to mixed order systems (i.e., there is no need to reduce the problem to a first
order system before attempting to solve it ) and in what follows we describe how COLSYS.f can
deal with such systems. This code was considered in [5] but for completeness we include it here.
However, there is a major difference in that in [5] we considered a single high order equation
whereas here we consider a mixed order system. We consider the mixed order system of ODEs
with separated boundary conditions

u
(mi)
i = fi(x, u1, ....., u

(m1−1)
1 , u2, .., u

(md−1)
d ) (2.2)

= fi(x, z(u)), 1 ≤ i ≤ d, a ≤ x ≤ b. (2.3)

The boundary conditions are

gj(z(u(ηj))) = 0, 1 ≤ j ≤ m∗, (2.4)

where

u(x) = [u1(x), u2(x), ..., ud(x)]
T , (2.5)

m∗ =
d

∑

i=1

mi, a = η1 ≤ η2 ≤ .... ≤ ηm∗ = b, (2.6)

and

z(u(x)) = (u1(x), u
′
1(x), ..., u

(m1−1)
1 (x), u2(x), ...., u

(m2−1)
2 (x), ....., u

(md−1)
d (x))T . (2.7)

There are some important points to be noted about COLSYS.f. The first is that multipoint
boundary conditions are allowed but all boundary conditions must be separated. The second
point is that, as mentioned earlier, collocation codes such as COLSYS.f do not require the
problem to be reduced to first order form before it can be solved. The codes COLSYS.f and
COLNEW.f approximate the solution by using collocation at Gauss points. This requires

u(x) ∈ Cmi−1[a, b], for i = 1, 2, ..., d. (2.8)

In this approach, an approximate solution of the form

uπ(x) =
M
∑

j=1

αjφj(x), a ≤ x ≤ b, (2.9)

is sought. Here the φj(x) are known linearly independent functions, defined on the range [a, b],
and the αj are parameters that remain to be chosen. The M parameters are determined by
the requirement that uπ(x) should satisfy the following M conditions: It should satisfy the
m boundary conditions and it must also satisfy the ODE at M − m points in [a, b]. These
M −m points are called the collocation points. A popular choice for the φj(x) is to let them be
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piecewise polynomial functions and this is exactly what is done in COLSYS.f. It follows that
the M conditions imposed on uπ(x), to allow (2.9) to be uniquely defined are
1) uπ satisfies the m boundary conditions (2.4)
2) uπ satisfies the ODE at k points in each of the N mesh subintervals and this defines Nk+m
unknowns.
In order that the solution should satisfy the differential equation at Nk points we require that

0 = u(m)
π (xij) − f(xij, uπ(xij)), 1 ≤ j ≤ k, 1 ≤ i ≤ N. (2.10)

If we define the mesh with maximum mesh size h, and we derive our collocation method so that
it is based on Gauss points with s collocation points per subinterval, then the global error is
uniformly O(hs) while at the mesh points we have superconvergence and the error is O(h2s). It
is important to realise that COLSYS.f derives a continuous solution in the form of a piecewise
polynomial and it also attempts to compute the error in this continuous solution. Of course,
computing a continuous solution is a much more difficult task than just computing the solution
at a discrete set of points as is done by several other codes. On the other hand, COLSYS.f
performs the expensive task of computing a continuous solution even if the user only requires
the solution to be computed at a few points. Thus, in any numerical comparison, we have to
consider if the user will be provided with a continuous solution and if that is what he requires.
As mentioned previously, COLSYS.f attempts to provide an estimate of the error in the continu-
ous solution and it does this using equi-distribution. The idea is that mesh points are distributed
so that an equal error is made in each mesh interval. A description of this technique can be
found in [2, p.62].
The second code highlighted in [5] was MIRKDC.f. This code is based on Mono Implicit Runge-
Kutta methods ([4, 11, 16]) which have been widely used for the numerical solution of two point
boundary value problems. These methods have the special property that they can be imple-
mented very efficiently for boundary value problems, due to a certain explicitness appearing in
the MIRK equations. In what follows, we will describe exactly what MIRK formulae attempt
to achieve and we show how this is done. Following Enright and Muir [17], we rewrite MIRK
schemes in the slightly different form

yn+1 = yn + h
∑s

i=1 bi f(xn + ci h, Yi)

Yi = (1 − vi) yn + vi yn+1 + h
∑s

j=1 zij f(xn + cj h, Yj), i = 1, . . . , s .
(2.11)

This is of course just a standard implicit Runge-Kutta method which can be expressed using
the celebrated Butcher notation. A convenient way of expressing this formula as an array, is to
write it in the form

c1 v1 z11 z12 . . . z1s

c2 v2 z21 z22 . . . z2s

...
...

...
...

...
cs vs zs1 zs2 . . . zss

b1 b2 . . . bs

(2.12)

This is written to emphasise the fact that both yn and yn+1 appear in the Runge-Kutta equations
written in the form (2.11). The link between (2.12) and the standard Butcher notation is

A = Z + vbT . (2.13)

Having defined the Runge-Kutta method in this particular way, Enright and Muir then compute
a solution of the given two point boundary value problem on a discrete set of points. Once
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convergence has been obtained to a discrete solution, Enright and Muir consider how this can
be transformed to a continuous solution by the computation of additional function evaluations.
Muir and Owren consider schemes of the form

u(x) = u(xi + θhi) = yi + h
s∗
∑

r=1

br(θ)kr (2.14)

where

θ = (x− xi)/hi, 0 ≤ θ ≤ 1, xi ≤ x ≤ xi+1, (2.15)

which they call CMIRK schemes [33]. Note that this defines a continuous solution on the ith
subinterval. The number of stages required to compute this continuous solution is s∗, with
s < s∗, and the first s stages of the interpolating polynomial (2.14) are the same as the first
s stages of the discrete solution. The main difference between discrete MIRK schemes and
continuous CMIRK schemes is that the weight coefficients of the MIRK scheme are replaced by
weight polynomials in (2.14). Having derived a continuous solution u(x) by using the CMIRK
framework (2.14), (2.15), Enright and Muir use defect control both for mesh selection and
accuracy control, in order to define a continuous defect. The (continuous) defect is defined as

δ(x) = u′(x) − f(x, u(x)) (2.16)

and Enright and Muir estimate the maximum value of this defect on each subinterval. For further
discussion of this defect correction approach, the reader is referred to [5, p.13]. In summary, we
should point out that COLSYS.f controls the global error while MIRKDC.f controls the defect
and these two tasks are not equivalent. The theory underlying the code MIRKDC.f [17] has
remained largely unchanged since the MIRKDC.f code was written. What has changed, since
[17] was written, is that there has been a major update to the code rather than to the theory.
Concerned by the long calling sequence of many boundary value codes (in particular calling
sequences for boundary value problems tend to be much longer than for initial value problems)
and worried that many potential users may be put off using standard codes because of this,
Shampine and Muir wrote a MIRKDC code which they called ‘user friendly’ [37]. This new code
is written in FORTRAN 90/95, it cuts down drastically on the number of calling parameters
required, it extends the capabilities of the MIRKDC code to the solution of problems with
unknown parameters, it is able to deal with eigenvalue problems and some singular problems,
and it allows the required Jacobian matrices to be computed using numerical differences. There
is also a discussion explaining why it is desirable for the code to be written in FORTRAN 90/95.
Also the possibility of using the code in a continuation framework is discussed. For the purpose
of this paper we will consider this code to be state of the art and, for more details, the reader
is referred to [37].

3 Deferred Correction Codes

The most convenient way to describe our deferred correction approach is to write our methods
in a Runge-Kutta framework. As mentioned earlier, if we are using MIRK formulae we can
write our Runge-Kutta formulae in the form (2.11). In what follows we consider the deferred
correction framework originally proposed by Fox [18]. In this approach we first need to define
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two Runge-Kutta methods which will be used to define our basic algorithm. The first Runge-
Kutta method, which we will denote by φ, computes a cheap low order approximation to the
solution of (2.1) while the second, denoted by ψ, computes an estimate of the local error in φ.
This then allows us to define the deferred correction scheme in the basic form

φ(η) = 0,
φ(η) = ψ(η).

(3.1)

For a long time the question concerning the order of accuracy of (3.1) was unresolved. This
problem was solved by Skeel [38] and in what follows we give his theorem. In the theorem below
the first two conditions have been known for some time, it was the third condition that was
elusive. However the theorem is quite intuitive if we regard the true solution as being the sum
of the numerical solution and the global error. To state Skeel’s theorem consider the deferred
correction scheme (3.1) defined on the grid

π : a = x0 < x1 < ..... < xN = b. (3.2)

Denote by ∆y the restriction of the continuous solution y(x) to the final grid π. Then Skeel’s
theorem says the following:
Theorem Let φ be a stable numerical method and assume that the following conditions hold
for the deferred correction scheme (3.1):

||η − ∆y|| = O(hp),
||ψ(∆y) − φ(∆y)|| = O(hr+p),
ψ(∆w) = O(hr),

(3.3)

for arbitrary functions w having at least r continuous derivatives. Then if φ(η) = ψ(η) it follows
that

||η − ∆y|| = O(hr+p). (3.4)

The main problem was how to define the two operators φ and ψ. There are many ways in which
the deferred correction schemes can be refined depending on the choices of φ and ψ and in what
follows we use a particular form of deferred correction which was proposed by Fox [18] and later
refined by Lindberg [22]. Their proposal was to consider two Runge-Kutta formulae of order
i and j, respectively, where i < j. Having defined these formulae (and of course there is an
extremely wide choice that we have), we consider the algorithm defined by

φi(η) = 0
φi(η) = −φj(η).

It is clear that the first two conditions of Skeel’s theorem are trivially satisfied if we use this
deferred correction approach, with p = i and r + p = j. It is much more complicated to verify
that the final condition is satisfied and this requires us to present our Runge-Kutta methods in
a special way and to explain this the reader is referred to [10]. There are many ways in which
these deferred correction methods can be refined. For example we could consider the deferred
correction scheme

φi(η) = 0
φi(η) = −φj(η)
φi(η) = −φj(η) − φk(η)

(3.5)
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where an extra symmetric Runge-Kutta formula is introduced in an attempt to define a scheme
of order k where k > j. Again the order of accuracy of this scheme can be determined by Skeel’s
theorem. A popular choice is to take i = 4, j = 6, k = 8. It is easy to show that if the φ are
either MIRK formulae or Lobatto formulae then η , η, and η are of order 4, 6 and 8 respectively.
If we use the deferred correction scheme based on MIRK methods then this defines the code
TWPBVP.f and if we base our codes on Lobatto formulae then we have the code TWPBVPL.f.
This leads to two widely used codes which use the basic framework (3.5). For an illustration of
how these formulae perform on a wide range of test problems the reader is referred to the web
page of one of the authors [13]. We emphasise that the schemes we have described are just some
of many that can be defined in the Runge-Kutta framework. Another possibility which certainly
seems worth investigating is to use methods of different orders in different parts of the mesh.
Another possibility is to use fixed order but include methods of order 10 rather than stopping
at order 8. An important point to note is that these schemes, which are based on Runge -Kutta
methods, have the usual problem that there is no convenient error estimate available and, also,
the obtained solution is a discrete one. In order to define a continuous solution, if it is needed,
we have to derive a suitable interpolant and as an estimate of the error we compute

φi(η) − φi(η). (3.6)

This gives us an error estimate in the jth order solution η and this is used for grid refinement
[39]. There is also an important difference in the way in which the mesh is formed when using
iterated deferred correction methods. As mentioned earlier, COLSYS.f uses equi-distribution
and this results in mesh points ‘sliding about’. The deferred correction methods discussed in
[5], namely TWPBVPL.f which is based on Lobatto formulae and TWPBVP.f which is based
on MIRK formulae, either add in or take out mesh points depending on the error estimate and
this results in a lot of the mesh points not moving during a grid refinement. These codes are
on the authors web page and can be considered as being state of the art codes. In particular,
the code TWPBVP.f tends to be very effective for non-stiff problems while TWPBVPL.f is
particularly efficient for stiff problems. The main reason for this behaviour is that the Lobatto
codes, which use implicit deferred corrections, are much more reliable than the codes based on
MIRK formulae which use explicit deferred corrections [12].

An important way in which deferred correction codes have changed since TWPBVP and
TWPBVPL were written is that they now have the option of taking into account the conditioning
of the problem. The importance of having this facility was demonstrated in a paper of Shampine
and Muir [36] who wanted to test out the diagnostic capabilities of the two-point boundary value
code BVP4C. They did this by considering Bratu’s problem:

y′′ = λ exp(y), y(0) = y(1) = 0. (3.7)

Davis [14] has shown that if 0 ≤ λ < λ∗ = 3.51383.. then there are 2 solutions to this problem
and both are parabolic and are concave down in nature. If λ = λ∗ then there is just one
solution and for λ > λ∗ there are no solutions. In their numerical experiments Shampine and
Muir first described the performance of the code for λ = 3.45 and plotted one of the solutions
which they obtained in a perfectly satisfactory way. However they did note that their estimate
of the conditioning constant was quite high (the error tolerance imposed was 10−3) and the
estimate of the conditioning constant was 3.14 · 103. The code found this problem so easy
that the solution was obtained on the initial mesh of 10 points. Having done this, Shampine
and Muir solved Bratu’s problem with λ = 3.55 for which the problem has no solution. The
expectation was that BVP4C would fail to find a solution and would send this message back
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to the user. However the code did not do this, instead it returned a solution which had all
the characteristics of being parabolic in nature and concave downwards. The solver provided
no warning message. However the code did need 179 points to compute the solution and the
estimate of the conditioning constant was 106 which can be considered as being very large given
the precision that is required. The reason for this poor performance of BVP4C is not hard to
understand. The problem arises from the fact that the solution is obtained, and the mesh is
refined, using a local error estimate. We do this on the assumption that if the local error estimate
is sufficiently small, then the global error will also be small. However a backward error analysis
shows that this may not be the case if the problem is ill conditioned. All of this makes a very
powerful case, when solving two point boundary value problems, for computing the conditioning
constant of the problem as well as the solution. Without a conditioning estimate we are not
able to have any confidence in a solution that we compute based on local errors and we feel that
this is a really important problem which requires considerable further investigation.
Early work on the estimation of conditioning for boundary value problems was carried out by
Trigiante, Brugnano and Mazzia [3, 32]. The approach of these researchers was rather different
from that of Shampine and Muir. The Shampine Muir approach on the detection of poor
conditioning was to warn the user of this and to warn that there may be a severe loss of correct
digits in the solution computed. In contrast, in a recent series of papers [6, 7] Cash, Mazzia
and their co-workers derived efficient algorithms for estimating the condition numbers of BVPs
and they developed a mesh choosing algorithm which takes into account the conditioning of
the problem. In this approach the aim is to choose the mesh so that a local error tolerance
is satisfied and also so that the problem remains well conditioned. This led to the derivation
of codes TWPBVPLC.f and TWPBVPC.f which are based on Lobatto and MIRK methods
respectively and which give an estimate of the conditioning of the problem along with the
numerical solution computed by the code. The existence of these new codes gives the user the
option of taking into account the conditioning of the problem and, if this option is used, the
original codes TWPBVP.f and TWPBVPL.f require the change of just one input parameter.
Extensive numerical testing on these four deferred correction codes appear on the web page
of one of the authors [13]. What is found, for most problems where conditioning is not an
issue, is that there is little difference between the performance of TWPBVP.f/ TWPBVPC.f
and TWPBVPL.f/TWPBVPLC.f. However for problems where conditioning is important there
is often a considerable gain in efficiency if the codes TWPBVPC.f and TWPBVPLC.f are used.
Finally, another important feature, is that the estimate of the conditioning constant can be
used in a backward error analysis to ensure that the final solution, which is based on local error
estimation, gives a solution with a satisfactory global error. Although considerable advances
have been made in the computation of conditioning constants we feel that there is still more
work to be done. However the approach of Trigiante, Brugnano, Cash and Mazzia which chooses
the mesh so that a local error tolerance is satisfied and so that the conditioning of the continuous
and discrete problems remains roughly the same is a very powerful one.

4 Boundary Value Methods

In this section we describe a class of methods known as Boundary Value Methods (BVMs) [3].
These are linear multistep methods used in a special way that allows us to generate stable
discrete boundary values schemes. In the case of symmetric schemes, given the grid π defined
by (3.2) with hi = xi − xi−1, 1 ≤ i ≤ N ,the numerical scheme generated by a k-step BVM is
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defined by the following equations:














































































g(y0, yN ) = 0,
∑k−i

j=−i α
(i)
j+i yi+j = hi

∑k−i
j=−i β

(i)
j+i fi+j,

i = 1, . . . , k1 − 1,
(additional initial methods)

∑k2

j=−k1
α

(i)
j+k1

yi+j = hi

∑k2

j=−k1
β

(i)
j+k1

fi+j

i = k1, . . . , N − k2,
(main methods)

∑N−i
j=N−i−k α

(i)
j−N+i+k yi+j = hi

∑N−i
j=N−i−k β

(i)
j−N+i+k fi+j,

i = N + 1 − k2, . . . , N,
(additional final methods)

(4.8)

where yi is the approximation of y(xi), fi = f(xi, yi), k is odd, k1 = (k + 1)/2, k2 = k − k1 and

α(i) = (α
(i)
0 , . . . , α

(i)
k )T and β(i) = (β

(i)
0 , . . . , β

(i)
k )T are the coefficient vectors characterizing the

method. The so called “additional initial methods” and “additional final methods” i.e. k1 − 1
initial and k2 final equations, are derived by using appropriate discretization schemes.

The main code currently available, which implements these methods, is known as TOM.
This is a general purpose code for the solution of BVPs and is rather different from other codes
that have been derived. The first release of the code was written in MATLAB in 2003 [24],
and was based on a class of symmetric Boundary Value Methods (BVMs) [3]. The Top Order
Methods (TOM) are k-step linear multistep methods with the highest possible order 2k and in
the code TOM we use k = 3 to give a sixth order method. A complete description of these
methods, along with their stability properties, can be found in [3, sec. 7.4]. Recently the code
has been updated by implementing another class of BVMs, namely the BS linear multistep
methods [27, 28, 29]. The new version of the code is available in MATLAB.

The BS methods are derived by imposing the restriction that the numerical solution of
the general k-step linear multistep formula is the same as is given by the collocation procedure
using the B-spline basis. The coefficients are computed by solving special linear systems. The
k-step BS scheme provides a Ck continuous solution that is kth-order accurate uniformly in
[a, b] and collocating the differential equation at the mesh points [29]. In order to introduce the
continuous extension, some further notation is needed. First, we represent any spline function s
of degree d = (k + 1) and knot xi, i = 0, . . . , N using the associated (dth-degree) B–spline basis
Bj(x), j = −d, . . . ,N − 1. This can be defined after prescribing two additional sets of d knots,
{xi, i = −d, . . . ,−1} (left auxiliary knots), with x−d ≤ . . . ≤ x0, and {xi, i = N + 1, . . . , N + d}
(right auxiliary knots), with xN ≤ xN+1 ≤ . . . ≤ xN+d [15]. Using this notation, the spline
collocating the differential equation can be represented as follows,

Q
(BS)
d (y) =

N−1
∑

j=−d

µ
(BS)
j (y)Bj , (4.9)

where µ
(BS)
j (y) are linear combinations of the values of yi and fi, i = 0, . . . , N in π. We note that,

if the values yi and fi have been computed with a different scheme, the continuous approximation
is the quasi-interpolation spline described in [26]. This means that this continuous extension
could safely be used for any discretization method.

The main feature of the code is that it implements a hybrid mesh selection strategy based
on both the conditioning parameters of the problem and on a suitable approximation of the
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local error. This strategy was introduced in [32] and was first implemented in the code TOM.
Subsequently it was modified in [6, 7] for use in TWPBVPC and TWPBVPLC. As is the case for
the codes based on deferred correction, by changing just one input parameter, it is possible for
the mesh selection to use a standard strategy based only on the local error for the mesh selection.
Instead of using a damped Newton method for the solution of the nonlinear equations, the code
TOM implements a quasi-linearization technique [29, 30, 31]. This means that a sequence of
continuous linear BVPs is solved to a suitable tolerance. This allows us to use very efficiently
the mesh selection based on conditioning for non linear problems as well as linear ones.

We note that the conditioning parameters estimated by the code can be defined both for
the continuous problem and for the discrete one giving the possibility to measure the reliability of
the discrete problem with respect to the continuous one. In other words, we must be suspicious if
the discrete problem provides parameters which are very different from the continuous ones, and
this could be checked if the conditioning parameters do not converge. Since such parameters,
for the discrete problem, depend on the chosen mesh, it is possible, for a fixed method, to vary
the latter in order to be sure that the discrete parameters converge. This allows us, for example,
to recognize if the solution has two or more time scales associated with it. This is the idea on
which the mesh strategy is based.

Since the BS are collocation methods, the code provides as output a continuous solution,
which could be used to estimate the error at any chosen point, or a set of discrete points, if, for
example, the user requires only the solution at the mesh points. A continuous solution is also
computed, if needed, when using the TOM code, by the quasi-interpolation technique based on
the BS methods described in [26].

5 Interpolation

As mentioned earlier, the deferred correction codes TWPBVP.f and TWPBVPL.f are the only
ones described in this paper which do not seek to provide a continuous solution. The obvious way
of getting around this problem is to derive an a posteriori interpolant which can be computed
using just a few extra function evaluations. This is rather similar to what the code MIRKDC
does, although this code needs a continuous solution from the start so that it can estimate the
defect. Here a discrete solution is computed first of all and this is accepted once the defect
is sufficiently small. After the discrete solution has been accepted a continuous MIRK scheme
is formed using an approach of Muir and Owren [33]. Note that, if a continuous solution
is not required, for example the solution may be required only at a few mesh points, then
this interpolant is not needed for error estimation. Numerical experience has shown that it
is advisable to compute an interpolant using data from only one sub-interval, and this avoids
problems at the end of the mesh. If the interpolant is a local one, that is it is defined over
a single interval, then the interpolant is identical over each sub-interval and it also has the
desirable property that it is symmetric. The problem of deriving high order interpolants for
MIRK formulae has recently been considered in some detail. It has been shown in [8] that a
sixth order MIRK interpolant can be computed using just one extra function evaluation. To
compute an eighth order MIRK interpolant, we need four extra function evaluations and the
way in which this is done is described in [8]. By deriving an a posteriori interpolant, we are
effectively introducing a continuous solution and this allows a fair comparison with other codes
discussed in this paper to be carried out.
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6 Conclusion.

The purpose of the present paper was to answer the question ‘Which codes for the numerical
solution of two point boundary value problems of the form (2.1) can be considered as being state
of the art’. The codes identified as falling into this class were based on: collocation methods
(COLSYS/COLNEW); defect control methods based on MIRK formulae (MIRKDC); deferred
correction methods (TWPBVP/TWPBVPL) and boundary value methods (TOM). There is
considerable numerical evidence to suggest that these codes are amongst the most efficient
global methods currently available. In addition these codes have reached what we have called a
“steady state” and this makes them ideal for use in a numerical comparison. However there are
two important points that we need to bear in mind.
Firstly, these codes attempt to solve slightly different problems. In particular COLSYS/COLNEW
and TOM attempt to define a continuous solution by computing the error in a polynomial ap-
proximation to the solution. MIRKDC also seeks to provide a continuous solution but controls
the error in the defect. In contrast the deferred correction codes compute a discrete solution
initialy and the continuous solution is obtained using an a posteriori interpolant.
The second point to note is that it is important to take into account the conditioning of the
problem when solving a problem of the form (2.1). A standard backward error analysis which
links the global error to the local one relies on the problem being well conditioned and, if it
is not, a solution which has not got the required accuracy may be accepted. A considerable
amount of effort has been applied to the estimation of the conditioning of a problem and the
reader is referred to [3, 6, 7, 32]. The boundary vale methods and deferred correction codes
allow conditioning estimation and an estimate of the conditioning can be obtained by changing
just one input parameter for these codes. We expect the estimation of the conditioning of a
problem to become a very important topic in the future. In addition we feel that the four FOR-
TRAN codes we have discussed are a very firm basis for carrying out numerical comparisons
of different methods and we hope to be able to investigate this in the near future. Finally, we
list those codes in FORTRAN and MATLAB which would be candidates for use in a numerical
comparison. We feel it appropriate to divide the codes into two catagories, namely those which
are written in FORTRAN and those which are written in MATLAB. Generally speaking, if run
time is an issue then the user should probably be using a FORTRAN code. If it is not, then the
user may find a MATLAB code to be more convenient. The codes that we feel either are or will
become state of the art codes are

• FORTRAN codes: TWPBVPC, TWPBVPLC, ACDC, COLNEW, COLMOD, MIRKDC,
BVP SOLVER.

• MATLAB codes: BVP4C, BVP5C ([21]), TOM, TWPBVPC, TWPBVPLC.

Note that the MATLAB codes TWPBVPC/TWPBVPLC have only just been released
but are based on widely used codes. We finish this section with the observation that codes
written in languages other than FORTRAN or MATLAB are starting to appear. As an example
we mention the code TWPBVP which is now available in R (package bvpSolve) [34].
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