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Numerical Solution of Obstacle and Parabolic Obstacle 
Problems based on Piecewise Linear Systems' 

Luigi Bmgnano and Alessandra Sestini 

Dipartimento di Matematica "U. Dini", Viale Morgagni 67/A, 50134 Firenze, Italy 

Abstract. Piecewise Linear Systems (PLSs) are linear systems whose coefficient matrix is a piecewise constant function of 
the solution itself. Their general formulation has been introduced in [1] and their application to flows in porous media has 
already been studied in [2]. Here we consider another important application of such kind of systems, that is the numerical 
solution of obstacle and parabolic obstacle problems. The discrete formulation of such problems is expressed as a linear 
complementarity problem and it is then formulated as a specific PLS for the elliptic case and as a finite sequence of such 
systems for the parabolic case. A semi-iterative Newton-type method is proposed for the solution of the obtained PLSs and it 
is possible to prove that monotonic convergence in a finite number of steps is guaranteed. Some numerical results are presented 
to show the effectiveness of the proposed approach. 

Keywords: Obstacle problems, Parabolic obstacle problems, Coincidence set, Piecewise linear systems, M-matrices, Picard iteration. 
PACS: 65K10, 90C33, 90C53. 

INTRODUCTION 

Here we are interested in the numerical solution of obstacle and parabolic obstacle problems which have important 
apphcations for example in the elasticity theory [8]. In the literature, the classical approach used for this aim is based 
on a finite-element discretization combined with the use of projected relaxation methods [4] which however have 
a convergence rate heavily depending on the mesh refinement. In order to improve the efficiency, it has been later 
proposed the use of multigrid (e.g. see [5, 11]) and/or of active set (e.g. see [9, 10]) strategies. Two approaches 
recently introduced in the literature, respectively for the elliptic and the parabohc case, are presented in [9] and in [6], 
where the Lagrange multipher strategy is used in order to express the problem as a higher dimension standard equahty 
problem; in particular in [9] such strategy is combined with a semi-iterative procedure based on a suitable successive 
update of the coincidence set (that is the area where the solution touches the obstacle) while in [6] the solution of 
the parabolic variational inequahty is obtained as the limit of the solutions of a family of appropriately regularized 
nonlinear parabolic equations. 

In this paper, at the moment dealing with the linear case, we introduce a new approach for the numerical effective 
treatment of obstacle elliptic and parabolic problems which has a very compact formulation and does not require the 
use of Lagrange multipliers. The new method is obtained as an application of Piecewise Linear Systems to the obstacle 
problems. For the sake of simphcity and of clarity, it is here assumed to deal with hyper-rectangular domains because 
this allows us to use a standard finite difference discretization. However, the presented theory can be generalized 
to more complicated geometries and also to different discretization schemes. In fact the requirement for its safe 
apphcation is that an M-matrix (a less restrictive condition on the matrix structure is also possible, see [3] for further 
details) characterize the discrete inequality modeling the given differential one. The method is at its initial formulation, 
for example mesh adaptation (see e.g. [7]) is an important non trivial aspect which has not yet been investigated. 

Work developed within the project "Numerical methods and software for differential equations". 

CPl 168, Vol. 2, Numerical Analysis and Applied Mathematics, International Conference 2009 
edited by T. E. Simos, G. Psihoyios, and Ch. Tsitouras 

O 2009 American Institute of Physics 978-0-7354-0708-4/09/$25.00 

746 

Downloaded 05 Oct 2012 to 150.217.1.25. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



APPLICATION OF PIECEWISE LINEAR SYSTEMS TO THE OBSTACLE PROBLEMS 

The classical obstacle problem, often expressed as a variational inequahty, can be also formulated as the following 
complementarity problem [8], 

-AM > / , u > xjf, {u-\if){Au + f) = 0, in Q, (1) 

with suitable prescribed boundary conditions, where / and \j/ are given functions, Q is a domain in R'',^ > 1, and 
\j/ is the obstacle function. Assuming for simphcity a hyper-rectangular shape for Q., a standard finite difference 
discretization of the Laplacian on a rectangular mesh can be used, which leads us to consider the following discrete 
complementarity problem, 

Tu > f, u > p ( u - p ) ^ ( r u - f ) = 0, (2) 

where u represents the unknown discrete solution and T is a square matrix. Observe that u, f and p are vectors with 
a number n of entries equal to the number of inner mesh points if Dirichelet boundary conditions are considered (or, 
more generally, to the number of mesh points where the solution is unknown) and that the vector f depends on the 
function / and on the boundary conditions. The matrix T has a useful special structure because it turns out to be an 
M-matrix (i.e. it can be written as al -B with B>0 and p{B) < a) if the solution is prescribed in at least one point on 
the boundary (conversely, it has a relaxed similar structure which anyway guarantees the robustness of the presented 
approach, see [3] for further details). Thus, using a suitable known vector b G R", problem (2) can be transformed into 
the following standard complementarity problem, 

Ty>h, y > 0 , y ^ ( r y - b ) = 0, (3) 

whose solution y can be proved to be max{0, x}, where x = (x,)"^j is the solution of the following PLS, 

[/-p(x) + rp(x)]x = b, (4) 

where P(x) = diag{p{xi),... ,/'(x„)), with p{x) denoting the step function 

1, i f x > 0 , 
'^^ ' ^ 0 , otherwise. 

The following Picard iteration is used for iteratively solving system (4), 

p(°) = c», ( / - p W + rpW)x*^+i = b, p(*^+i) = p(x*^+i), fe = o , i , . . . . (5) 

In fact, thanks to the structure of T, it is possible to prove that the sequence of matrices p(*̂ ) is not decreasing and 
that, if p(*̂ +i) = p(*̂ ), then x*̂ +̂  = x [3]. Clearly, considering how P(x) is defined, this imphes that the iteration (5) 
converges in at most n steps. 

With analogous considerations, the discrete formulation of the following parabolic obstacle problem, 

Ut-Au>f, u>\if, {u-\if){ut-Au-f) = 0, inQ, f > 0, (6) 

with suitable initial and boundary conditions can be reduced to consider, at each time step, a PLS in the form, 

[/ + rp(x)]x = b, (7) 

where b now changes at each time step and T is a matrix with the same structure obtained for the stationary problem. 
Using the proofs produced for the elliptic case, it can be easily deduced that even in this case the associated Picard 
iteration has a finite and monotonic convergence behavior. 
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TABLE 1. Example 1. Number of 
iterations (5) for various couples {C,N). 

N\C 

-5 
-10 
-15 
-20 

25 

9 
5 
4 
1 

50 

17 
10 
7 
5 

75 

25 
13 
9 
7 

100 

32 
16 
11 
9 

FIGURE 1. Example 1. On the left the obstacle function and on the right the corresponding numerical solution computed with 
iV=127,C=-5. 

EXAMPLES 

The torsion problem of an elastic-plastic isotropic and homogeneous cylindrical bar with square cross section Q. = 
(0, 1)^ is here considered as a test example for the elliptic case. Its formulation as a complementarity problem is the 
following [8], 

{u-\j/){Au-
>C, 

-C) = 0 , 
u{x^y) > -min{x, 1 -x,y, 1 -y} =: w{x,y), {x,y) G ^ = (0, l)^ 

(8) 

where u{x, y) is the unknown stress function and C is a negative constant depending on both the rigidity of the material 
and the angular rotation applied at the end cross sections of the cylinder. Observe that the obstacle i// which is shown 
in the left plot in Figure 1 is actually the opposite of the distance of a domain point from the boundary. For the 
discretization, a uniform mesh is used in the reported experiments, with spatial steps Ax = Ay = j ^ , which implies 
that the associated PLS has dimension n = N^. In the right plot in Figure 1 the associated numerical solution when 
Â  = 127 and C = - 5 is shown. In Table 1 the number of iterations (5) to get convergence is reported and it can be 
observed that it is slowly increasing with Â  = -/«. In addition, the two left plots in Figure 2 show that, the higher 
is |C|, the larger is the extension of the associated active set. This behavior explains why the required number of 
iterations decreases when \C\ increases, as shown in Table 1. In fact, for \C\ increasing, the initial approximation used 
for u becomes progressively more suited because in our implementation it is chosen equal to i//. The inner right plot in 
Figure 2 shows the nicely shaped coincidence set of the PLS numerical solution of a variant of Problem (8), where the 
case of a non constant right-hand side / in the differential inequality is considered. The domain, the obstacle function 
and the boundary condition are unchanged and / is defined as follows (see Example 5.2 in [9]), 

f{x,y) = -45(x-x2)[ l + sin(ll;rx)]. 

We observe that even in this case the required number of Picard iterations is slowly depending on Â  = -/«(for N = 25 
and Â  = 100 it is respectively equal to 7 and to 26.) 

As a test example for the parabohc case we consider now the deformation of a thin homogeneous membrane loaded 
by a normal uniformly distributed force / , constrained to lie above a body (represented by the obstacle function) where 
it is initially positioned and fixed to the body on the boundary of the domain [8], 

Ut -

{u 
-AM 

-AM-
> f{x,y), 

- / ) = 0 , 
> ¥ix,y), 
\sQ. = visa, 

{x,y) G Q., 
Vr ^ J-max J u{0,x,y) = i//(x,y) V(x,y) G Q, (9) 
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FIGURE 2. The coincidence sets (black area) related to the numerical solutions of Example 1 with C = —5 (outer-left) and 
C = —20 (inner-left), of its variant case (inner-right) and of the numerical solution at time / = T^ax of Example 2 (outer-right). 
Uniform discretizations used, with N =127 and A; = 20 for the parabolic case. 

whereinparticular, as in the example considered in Section 5.2 in [7], we assume Q = ( - 1 , l)'^,Tmax = 0.1,/(x,}?) = 
- 4 and the obstacle function is chosen equal to the following radial symmetric function: 

i//(x,3') = max{0,-0.1 + 0.6*exp(-10*r^), 0 . 5 - r } , with r = ^/x^+y^. 

As for the previous examples, we report here some results obtained by using a uniform grid with Ax = Ay = j ^ 
and At = ^ ^ . In particular, the coincidence set of the numerical solution at the final time T^ax obtained with Â  = 127 
and Nt = 20 is depicted in the outer right plot in Figure 2. The number of Picard iterations required at each time step 
ranges from 9 to 11. 
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