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Abstract. We consider the issue of energy conservation in the numerical solution of Hamiltonian systems coupled with
boundary conditions and discuss a few examples arising from astrodynamics.
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INTRODUCTION

In this note we report a few initial results on the implementation of energy conserving Runge-Kutta methods to the
solution of Hamiltonian boundary value problems. These methods, named Hamiltonian Boundary Value Methods (HB-
VMs), have been recently devised for the solution of canonical Hamiltonian systems coupled with initial conditions.
They can be interpreted as an extension of the well-known Gauss-Legendre methods with the difference that HBVMs
provide a precise energy conservation for polynomial Hamiltonian functions of any high degree and, hence, a practical
energy conservation for general Hamiltonian functions.1 Hereafter, we are interested in applying such methods to the
solution of Hamiltonian boundary value problems in the form

ẏ = J∇H(y), g(y(0),y(T )) = 0, (1)

where J =

(
0 I
−I 0

)
(here I is the identity matrix of dimension m), the scalar function H : Ω ⊂ R

2m → R is the

Hamiltonian of the problem and its value is constant along any solution of (1), and g : R2m×R
2m → R

2m defines the
boundary conditions.

The state vector y splits in two vectors of length m, yT = [qT , pT ] referred to as generalized coordinates and conjugate
momenta. Interests in problems such as (1) arise in several research areas and, in the last section, we focus our
attention to a couple of applications in astrodynamics. The numerical treatment of Hamiltonian problems is thoroughly
discussed in the monographs [6, 9, 11]. In the next section we briefly recall the definition of HBVMs and describe
their main feature. For a detailed description of HBVMs and their properties when applied to IVPs, see [2, 3, 4].
The implementation of HBVMs to solve problem (1) will be discussed elsewhere and is not reported here (for an
introduction on the solution of boundary value problems by one-step methods see, for example, [1]).

DEFINITION OF HBVMS

We consider the Legendre polynomials Pi shifted on the interval [0,1], and scaled in order to be orthonormal:

degPi = i,
∫ 1

0
Pi(x)Pj(x)dx = δi j, ∀i, j ≥ 0, (2)

1 That is, the error in the Hamiltonian function is within the machine precision.
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where δi j is the Kronecker symbol. The roots {c1, . . . ,ck} of Pk(x) are all distinct and symmetrically distributed on
the interval (0,1). They are referred to as the Gauss-Legendre abscissae on [0,1] and generate the well-known Gauss-
Legendre quadrature formulae, whose weights we denote bi, i = 1, . . . ,k.

Let s≤ k. We introduce the following matrices, defined by means of the Legendre polynomials evaluated and the k
abscissae ci, i = 1, . . . ,k:

Ps =

⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Is =

⎛
⎜⎝

∫ c1
0 P0(x)dx . . .

∫ c1
0 Ps−1(x)dx

...
...∫ ck

0 P0(x)dx . . .
∫ ck

0 Ps−1(x)dx

⎞
⎟⎠ , Ω =

⎛
⎜⎝

b1
. . .

bk

⎞
⎟⎠ .

Notice that Ps and Is are k× s matrices while Ω ∈ Rk×k. Finally, let c = (c1, . . . ,ck)
T and b = (b1, . . . ,bk)

T . The
Runge–Kutta formulation of a HBVM is defined by the following Butcher tableau

c IsPT
s Ω

bT
(3)

and is denoted by HBVM(k,s) to outline the dependence of the formula on the two integers s (number of Legendre
polynomials involved) and k (number of internal abscissae).

When k = s one can show that the method (3) becomes the Gauss collocation method of order 2s. For any k ≥ s
the coefficient matrix A = IsPT

s Ω has constant rank s and its nonzero eigenvalues coincide with those of the basic
s-stage Gauss method [3]. The main property of HBVMs is summarized in the following theorem.

Theorem 1. HBVM(k,s) is symmetric, of order 2s and energy-conserving for all polynomial Hamiltonians of degree
ν ≤ 2k

s . In any other case, H(yn)−H(yn−1) = O(h2k+1).

Notice that in the case of non polynomial Hamiltonians, energy conservation can be practically obtained by choosing
k large enough, provided that the O(h2k+1) term in the theorem above, is within roundoff errors.

APPLICATIONS TO ASTRODYNAMICS

We consider the motion of a body with negligible mass (planetoid) in the gravitational field generated by two celestial
bodies with finite mass (primaries) rotating around their common center of mass in circular orbits. Such a dynamical
system is referred to as the circular restricted three-body problem (CRTBP) and its interest goes back to the second
quarter of the eighteenth century, in the context of the lunar theory. A renewed interest arose starting from the late
1960s up to present day and is testified by a rich and growing literature on the design and analysis of a variety of orbits
connected with the motion of spacecrafts, satellites and asteroids [5, 7, 8, 10, 12].

We consider the case where the two primaries are the Sun and the Earth+Moon whose masses are denoted m1 and
m2. Usually the units are chosen so that the properties of the resulting dynamical system depend on a single parameter
μ , defined as the ratio m2

m1+m2
. Under this assumption we have μ = 3.04036 · 10−6, the unit of length is the distance

between the two primaries R = 1.49589 · 108km while the unit of time is 1/n, where n = 1.99099 · 10−7rad/s is the
constant angular velocity of the Sun and Earth/Moon around their center of mass CM .

It is also common to write down the equations of motion of the planetoid in a frame where the primaries are
stationary. This is accomplished by introducing a rotating (synodic) orthogonal frame centered at CM , with the x− y
axes lying in the plane of the Sun-Earth/Moon orbit, the x axis being oriented from the Sun toward the Earth, and the
z axis forming a right-hand frame with the other axes. Thus, the Sun and the Earth are located on the x axis at the
abscissae −μ and 1−μ respectively.

Let q(t) = [q1(t),q2(t),q3(t)]
T be the coordinates of the planetoid at time t and set p(t) = [p1(t), p2(t), p3(t)]

T ≡
[q̇1(t)− q2(t), q̇2(t)+ q1(t), q̇3(t)]

T the vector of conjugate momenta. The Hamiltonian function in non-dimensional
form associated with the dynamical system governing the motion of the planetoid is

H(q, p) = p1q2− p2q1 +
1
2

pT p− 1−μ
r1

− μ
r2
. (4)

where r1 = ((q1+μ)2+q2
2+q2

3)
1/2 and r2 = ((q1− (1−μ))2+q2

2+q2
3)

1/2 are the distances of the planetoid from the
Sun and the Earth/Moon respectively.
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FIGURE 1. Left picture: two halo orbits around the libration point L2 (solid lines) and the initial guess for the Newton iteration
scheme associated to the method (dashed line). Right picture: the Hamiltonian function (4) is precisely conserved along the
numerical solutions.

It is well-known that such a dynamical system admits five equilibrium points referred to as Lagrangian or libration
points and denoted Li, i = 1, . . . ,5. Periodic and quasi-periodic orbits around libration points are suited for a number
of mission applications. For example, Sun-Earth libration points are commonly used for deep space or Sun activity
observations. In the following experiments we consider the dynamics around L2 which is located beyond the Earth
on the x-axis at the abscissa 1.010075. In particular, we are interested in reproducing numerically the so called halo
orbits. These are out-of-plane periodic orbits which seem to orbit the Earth but are instead quite far from it, tracing a
halo around the planet.

We have implemented the HBV M(6,2) formula and adapted the algorithm in order to compute periodic solutions
in the two different situations where we are given either the period T of the orbit or its energy level H0. In the latter
case, the step size of integration h is regarded as an extra unknown and the scalar equation H(q0, p0) = H0 is added to
the set of boundary conditions.

In both cases, an elliptic curve starting (and ending) at P0 and lying on a plane orthogonal to the x axis and passing
through L2 has been chosen as initial guess in the Newton iteration, while the number of points in the numerical
approximation is n = 100. The left picture of Figure 1 displays the initial guess (dashed line) together with two halo
orbits (solid lines). The inner one is the halo orbit corresponding to a period T1 = 180 days. The energy level of this
first numerical approximation is H1 ≈ −1.500394. As was discussed above, the outer halo orbit has been computed
on the basis of its energy level, which has been set to H2 = −1.50036. Notice that in the non-dimensional system
H2 ≈H1(1+2 ·10−5) while the actual distance of the topmost points of the two orbits is P1P2 = 2 ·105km. The period
corresponding to the energy level H2 is T2 = 179.19 days. The right pictures of Figure 1 show that the energy error is
close to the machine precision (all experiments have been carried out in Matlab using double precision arithmetic).

An interesting problem in astrodynamics is the optimal orbit transfer, which consists in finding the optimal control
laws that drives a spacecraft from an initial to a desired final state in a given time T . Here the term optimal means
that the amount of propellant needed to produce the change in orbital elements is minimized. We are interested in
transferring a spacecraft from the inner to the outer halo orbit and, specifically, from the point P1 to the point P2.

Since the fuel consumption is proportional to changes in the velocity, an input vector u(t) = [u1(t),u2(t),u3(t)]
T

enters the dynamical system to control the acceleration of the vehicle along the three axes. This is accomplished by
considering a new non-autonomous Hamiltonian function H̄(q, p) = H(q, p)+ qT u, where H(q, p) is as in (4). Our
optimal control problem is formulated as:

Minimize the quadratic cost J = 1
2
∫ T

0 ||u(t)||22dt, subject to the dynamics induced by H̄(q, p) and the
boundary conditions corresponding to the states at P1 and P2.

We assume that the control input is unconstrained and regular. The Pontryagin maximum principle is often used to
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FIGURE 2. Left picture: optimal orbit transfer between two halo orbits (dashed line). Right picture: norm of the optimal control
variable u(t) and error in the Hamiltonian function (5).

attack this problem. Setting yT = [qT , pT ] (state variables) and λ = [λ1, . . . ,λ6]
T (costate variables), one considers the

augmented Hamiltonian function H̃(y,λ ,u) = 1
2 uT u+λ T J∇H̄(q, p). Then, the necessary conditions for optimality are

ẏ =
∂ H̃

∂λ
, λ̇ =−∂ H̃

∂Y
,

∂ H̃

∂u
= 0.

The third equation gives ui =−λ(3+i), i = 1,2,3, so that the resulting system is autonomous and only depends on the
state and costate variables. It is defined by the Hamiltonian

Ĥ(y,λ ) =
1
2
(λ 2

4 +λ 2
5 +λ 2

6 )+λ T (J∇H(q, p)− [0,0,0,λ4,λ5,λ6]
T ) = λ T J∇H(q, p)− 1

2
(λ 2

4 +λ 2
5 +λ 2

6 ). (5)

In Figure 2 we show the optimal control trajectory joining the points P1 and P2 in a time T = (T1 +T2)/2 (left picture,
dashed line) together with the norm of the optimal control variable u(t) and the error Ĥ(yn)− Ĥ(y0) (right picture).
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