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Abstract. We here investigate the efficient implementation of the energy-conserving methods named Hamiltonian Boundary
Value Methods (HBVMs) recently introduced for the numerical solution of Hamiltonian problems. In this note, we describe
an iterative procedure, based on a triangular splitting, for solving the generated discrete problems, when the problem at hand
is separable.
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INTRODUCTION

Recently, the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HB-
VMs) has been introduced for the efficient solution of Hamiltonian problems [8, 9, 10, 11, 12, 13]. Further generaliza-
tion of such methods have been also devised [2, 4, 14], all essentially deriving from the original idea of discrete line
integral, at first devised in [19, 20, 21]. For such methods, we propose an iterative procedure for solving the generated
discrete problem, based on a suitable triangular splitting. The proposed approach follows the recent trend started in
[6, 3]. Let then consider a separable Hamiltonian problem defined by the Hamiltonian H(q, p) = 1

2 pT p+U(q), that is,

q′ = p, p′ =−∇U(q), q(0) = q0, p(0) = p0 ∈ R
m, (1)

which we plan to assume to solve on the interval [0,h]. A HBVM(k,s) method, k≥ s, is a Runge-Kutta method defined
by the Butcher tableau

c IsPT
s Ω

bT
, c = (c1, . . . ,ck)

T , b = (b1, . . . ,bk)
T ,

with {c�} the k Gauss-Legendre abscissae on [0,1], {b�} the corresponding weights, Ω = diag(b), Is =(∫ ci
0 Pj−1(x)dx

) ∈ R
k×s, and, in general, Pr =

(
Pj−1(ci)

) ∈ R
k×r, with {Pj} j≥0 the Legendre polynomials or-

thonormal on [0,1]. Moreover, it is well-known that

Is = Ps+1X̂s ≡Ps+1

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1
ξs−1 0

ξs

⎞
⎟⎟⎟⎟⎟⎟⎠
≡

(
Xs

0 . . .0ξs

)
, ξ j = (2

√
4 j2−1)−1, j = 1, . . . ,s.

In particular, when k = s one retrieves the usual s-stage Gauss method [10]. The following discrete problem then
provides O(h2s+1) approximations q1 = q0+hbT ⊗ Im P≈ q(h) and p1 = p0−hbT ⊗ Im ∇U(Q)≈ p(h) [10, 12, 13],

Q = e⊗q0 +hIsP
T
s Ω⊗ Im P, P = e⊗ p0−hIsP

T
s Ω⊗ Im ∇U(Q),

where Q = (Q1, . . . ,Qk)
T and P = (P1, . . . ,Pk)

T are the stage vectors, e = (1, . . . ,1)T ∈ R
k, and ∇U(Q) =

(∇U(Q1)
T , . . . ,∇U(Qs)

T )T . Subsitution of the second equation into the first one, then gives, by considering
that IsPT

s Ωe = c and PT
s ΩIs = Xs,

Q = e⊗q0 +hc⊗ p0−h2Ps+1X̂sXsP
T
s Ω⊗ Im ∇U(Q). (2)

11th International Conference of Numerical Analysis and Applied Mathematics 2013
AIP Conf. Proc. 1558, 734-737 (2013); doi: 10.1063/1.4825598

©   2013 AIP Publishing LLC 978-0-7354-1184-5/$30.00

734 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to  IP:

150.217.1.25 On: Mon, 21 Oct 2013 16:20:20



TABLE 1. Auxiliary abscissae and diagonal entry of the matrix L, for s = 2,3,4,5,6.

s = 2

ĉ1 = 0.3
ĉ2 = 1
d2 = 1/12

s = 3

ĉ1 = 0.184464928775305737265558103045646778
ĉ2 = 0.355206619967670337592124663758030473
ĉ3 = 0.11
d3 = 0.0411035345721745016915268553859098174

s = 4

ĉ1 = 0.121426360154302109549573710053503842
ĉ2 = 0.321983015309146534767025518371538042
ĉ3 = 0.556746651956821737853056260425394287
ĉ4 = 0.0669
d4 = 0.0243975018237133294838596159060025047

s = 5

ĉ1 = 0.112021061643484468967447207878165951
ĉ2 = 0.250642318747930116818386585660135569
ĉ3 = 0.468530060432028509730164673409742649
ĉ4 = 0.549585424388219061926710294932774144
ĉ5 = 0.8432
d5 = 0.0161349374182782642725304938088289256

s = 6

ĉ1 = 0.0248310778562588151037629089054186400
ĉ2 = 0.0810927467455591556136430071800859819
ĉ3 = 0.164842169836300745621531627379110494
ĉ4 = 0.286473972582812178906454295119846077
ĉ5 = 0.822252930294509663636743142004393542
ĉ6 = 0.43621
d6 = 0.0114550901343208942220264712822213470

This problem has (block) dimension k, which may be significantly larger than s [10, 11, 13]. In order to recover a
problem of (block) dimension s, independently of k, we set γγγ = PT

s Ω⊗ Im ∇U(Q), thus resulting in the following
discrete problem, obtained by substituting (2) in such an equation:

F(γγγ)≡ γγγ−PT
s Ω⊗ Im ∇U

(
e⊗q0 +hc⊗ p0−h2Ps+1X̂sXs⊗ Im γγγ

)
= 0.

Application of the simplified Newton method for its solution, then gives the following iteration, by taking into account
that PT

s ΩPs+1X̂sXs = [Is 0]X̂sXs = X2
s , and setting I the identity of dimension sm:

Solve
[
I +h2X2

s ⊗∇2U(q0)
]

Δ j =−F(γγγ j), then set γγγ j+1 = γγγ j +Δ j, j = 0,1, . . . . (3)

The efficient (possibly approximate) solution of the first linear system in (3) will be our main concern.

MODIFIED TRIANGULAR SPLITTING

Instead of solving the original linear system in (3), which would require the factorization of a matrix of dimension sm,
we consider the following equivalent linear system,[

I +h2As⊗∇2U(q0)
]

Δ̂ j = ηηη j,

where

As = P̂sX
2
s P̂−1

s , P̂s =
(
Pj−1(ĉi)

) ∈ R
s×s, Δ̂ j = P̂s⊗ ImΔ j, ηηη j =−P̂s⊗ ImF(γγγ j),

for a suitable choice of the set of s auxiliary abscissae ĉ1, . . . , ĉs. In particular, by following the approach used in [6, 3]
(see also [18, 1]), these latter abscissae are chosen in order to obtain a Crout factorization As = LsUs, with Ls lower
triangular and Us upper triangular with unit diagonal entries, such that Ls has constant diagonal entries, all of them
equals to ds =

s
√

detX2
s . Following the approach in [3], this allows us to express the first s− 1 auxiliary abscissae

ĉ1, . . . , ĉs−1 as a function of the last one, ĉs. This latter abscissa, in turn, is chosen in order to optimize the convergence
properties of the following inner iteration, coupled with the outer iteration (3),

Solve
[
I +h2Ls⊗∇2U(q0)

]
Δ̂ j,�+1 = h2[Ls−As]⊗∇2U(q0) Δ̂ j,�+ηηη j, �= 0,1, . . . , (4)

by (approximately) minimizing its maximum amplification factor ρ∗ which, if not larger than 1, makes the iteration
P-convergent, according to [7]. The advantage of using the inner iteration (4) is that the coefficient matrix is lower
block triangular, with diagonal block entries all equals to

Ds = Im +h2ds∇2U(q0) ∈ R
m×m,
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TABLE 2. Convergence parameters.

s ρ∗ ρ̃ ρ̃∞ ρ∗1
2 0.25 0.08333 12 0.25
3 0.3546 0.06256 4.3307 0.4294
4 0.4168 0.03192 1.2575 0.5623
5 0.4931 0.03665 0.8351 0.6338
6 0.7295 0.03087 2.5826 0.9250

which is a symmetric matrix having the same size as that of the continuous problem (1), independently of s. In Table 1,
we list the computed optimal auxiliary nodes, for s = 2, . . . ,6, along with the corresponding diagonal entry ds, with
36 significant digits: one may see that the auxiliary nodes are all distinct and in the interval [0,1]. Their order (which
is not commutative in the definition of matrix P̂s) is the increasing one except, possibly, for last auxiliary abscissa,
ĉs, which may not always be the largest one. According to the analysis in [7], a linear convergence analysis of the
iteration (4) is obtained by considering the scalar problem y′′ = −μ2y, with μ ∈ R. By setting x = hμ ∈ R, one then
obtains that the iteration matrix is given by

M(x2) = x2(Is + x2Ls)
−1Ls(Is−Us),

whose spectral radius will be denoted by ρ(x2). Clearly, the iteration will be convergent if and only if ρ(x2) < 1.
We observe that ρ(x2)→ 0, as x→ ∞. The maximum amplification factor [7] of the iteration is then defined as ρ∗ =
maxx≥0 ρ(x2). Moreover, according to the analysis in [7], one has ρ(x2)≈ ρ̃x2, for x≈ 0, and ρ(x2)
 ρ̃∞|x|−2/(s−1),
for |x| � 1. Clearly, the smaller the parameters ρ∗, ρ̃ , and ρ̃∞, the better the iteration properties. In particular, the most
important one is ρ∗ which, if not larger than 1, makes the iteration P-convergent and, therefore, L-convergent (see
[7] for full details). In Table 2 we list the convergence factors for the iteration (4). For sake of comparisons, in the
last column we list the maximum amplification factor obtained by setting ĉs = 1 (denoted by ρ∗1 ), as is done in [6]:
the improvement by appropriately choosing the last auxiliary abscissa is evident, by comparing the last column in the
table with the second one, containing the maximum amplification factor obtained by choosing ĉs according to Table 1.

NUMERICAL TESTS

For assessing the effectiveness of the proposed iteration, we consider a problem for which the traditional fixed-
point iteration may be not always effective, i.e., the Fermi-Pasta-Ulam problem, which is defined by the following
Hamiltonian [17, page 21]:

H(q, p) =
1
2

m

∑
i=1

(p2
2i−1 + p2

2i)+
ω2

4
1
2

m

∑
i=1

(q2i−q2i−1)
2 +

m

∑
i=0

(q2i+1−q2i)
2, (q0 = q2m+1 = 0).

Indeed, such a problem is an example of stiff oscillatory problem. We solve it with ω = 100, m = 3, integration
interval [0,10], and initial condition q0 = (0 1 2 3 4 5)T/10, p0 = (0 0 0 0 0 0)T , by using the following 4-th
order methods: HBVM(4,2), which is energy-conserving, in such a case, and HBVM(2,2), i.e., the 2-stage Gauss
method [10], which is symplectic but not energy conserving. Table 3 contains the computational costs, in terms of total
iterations, required when using a constant stepsize h = 2−i10−1, i = 0, . . . ,6. For both methods we used the following
iterative procedures for solving the generated discrete problems: the fixed-point iteration; the iterative procedure here
described; the blended iteration, for special second order problems, as described in [11] (see also [15, 16]). Moreover,
for the triangular splitting here described, we used either ν iterations (splitting-ν column in Table 3) in (4), where
ν is the least value of iterations minimizing the total number of outer iterations (3) (ν is listed in the corresponding
column), or we fixed ν = 2 inner iterations (splitting-2 column in Table 3) since, in so doing, one outer-inner iteration
(3)-(4) and one blended iteration as described in [11] have a comparable cost. From the obtained results, it follows that
the outer-inner iteration, based on the modified triangular splitting here proposed, is the most effective one, among
those considered, especially for coarser stepsizes (**** in Table 3 means that the iteration doesn’t converge). We
also observe that the number of iterations needed for solving the discrete problem, whichever the iterative method
considered, is approximately independent of k, for a HBVM(k,s) method, but only depends on s. This fact has been
systematically observed for such methods (see, e.g., [8, 10, 11, 12]) and is indeed confirmed also in the present case,
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TABLE 3. Fermi-Pasta-Ulam problem: total number of iterations required by the HBVM(4,2) (left) and the 2-stage Gauss
(right) methods, both used with stepsize h = 2−i10−1. The asterisks means that the iteration doesn’t converge.

i fixed-pt. splitting-ν ν splitting-2 blended
iteration iteration iteration iteration

0 **** 593 5 900 1592

1 **** 1004 7 2550 4720

2 20622 1885 9 4784 9357

3 13506 3200 5 6384 12156

4 16178 5756 6 9364 15947

5 24374 9600 3 12800 24206

6 38229 19200 3 24889 38238

i fixed-pt. splitting-ν ν splitting-2 blended
iteration iteration iteration iteration

0 **** 589 5 898 1585

1 **** 1000 7 2531 4686

2 20453 1826 9 4776 9203

3 13468 3200 5 6376 11933

4 16000 5435 6 9205 15925

5 23756 9600 3 12800 23401

6 38100 19200 3 24405 38177

where we have considered the HBVM(k,2) methods with k = 4 (energy-conserving) and k = 2 (2-stage symplectic
Gauss method).
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