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Abstract. Recently, the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods
(HBVMs), has been proposed for the efficient solution of Hamiltonian problems, as well as for other types of conservative
problems. In this paper, we report further advances concerning such methods, resulting in their enhanced version (Enhanced
HBVMs, or EHBVMs). The basic theoretical results are sketched, along with a few numerical tests on a Hamiltonian problem,
taken from the literature, possessing multiple invariants.

Keywords: Hamiltonian problems, Energy-conserving methods, Multiple invariants, Hamiltonian Boundary Value Methods, Enhanced
Hamiltonian Boundary Value Methods.
PACS: 02.60.-x; 45.20.dh; 45.20.Jj; 02.30.Hq; 02.70.Jn; 02.70.Bf.
MSC: 65P10; 65L05.

INTRODUCTION

In a recent series of papers [6, 7, 5, 8, 9, 10, 11] (see also [3, 4]), the class of Hamiltonian Boundary Value Methods
(HBVMs) has been proposed for the efficient numerical solution of Hamiltonian problems, i.e., problems in the form

y′ = J∇H(y), y ∈ R
2m, (1)

where y = (q, p)T , J =

(
0 Im

−Im 0

)
=−JT =−J−1, and H(y)≡H(q, p) is the Hamiltonian (also referred to as the

energy). The system turns out to be energy-preserving. Indeed, since J is skew-symmetric, from (1) one has that

d
dt

H(y(t)) = ∇H(y(t))T y′(t) = ∇H(y(t))T J∇H(y(t)) = 0,

which implies that H(y(t)) ≡ H(y(0)) for all t ≥ 0. The basic idea on which HBVMs rely is that of discrete line
integral, introduced in [15, 16, 17]. Such a tool has also been extended to different kinds of conservative problems
[1, 2] (see also [19]). We here use the approach of discrete line integrals, to derive the enhanced version of HBVMs,
able to cope with problems, in the form (1), possessing additional (functionally independent) invariants, besides the
Hamiltonian. In more details, let us assume that

L : R2m → R
ν (2)

is a set of smooth invariants of system (1). Then, one has

∇L(y)T J∇H(y) = 0 ∈ R
ν , ∀y ∈ R

2m,

where ∇L(y)T is the Jacobian of L. The ehanced version of HBVMs, which we call Enhanced HBVMs (EHBVMs), will
be able, under suitable mild hypotheses, to provide a discrete solution for which all the invariants (2) are conserved,
besides the Hamiltonian. Full theoretical details on EHBVMs can be found in [14].

MUTIPLE INVARIANTS PRESERVING HBVMS

Let σ be a polynomial of degree s, approximating the solution of (1) on the interval [0,h], in the form

σ ′(ch) =
s−1

∑
j=0

Pj(c)γ j(σ), c ∈ [0,1], with s > ν , (3)
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where {Pj} j≥0 is the family of normalized and shifted Legendre polynomials, orthonormal on the interval [0,1], i.e.,

Pj ∈Π j,
∫ 1

0
Pi(x)Pj(x)dx = δi j. ∀i, j ≥ 0.

We require that vector coefficients γ j(σ) in (3) satisfy

γ j(σ) = η jJ

∫ 1

0
Pj(τ)∇H(σ(τh))dτ ≡ η j γ̃ j(σ), with η j ∈ R, j = 0, . . . ,s−1. (4)

Imposing σ(0) = y0, and defining the new approximation as y1 ≡ σ(h) ≈ y(h), provides energy-conservation, since
due to the skew-symmetry of matrix J, one obtains [8, 11]:

H(y1)−H(y0) = H(σ(h))−H(σ(0)) =
∫ h

0
∇H(σ(t))T σ ′(t)dt

= h

∫ 1

0
∇H(σ(τh))T σ ′(τh)dτ = h

s−1

∑
j=0

η j γ̃(σ)T
j Jγ̃ j(σ) = 0.

Taking ηi = 1, for 0≤ i≤ s−1, provides the energy-conserving methods named HBVMs [8]. Here we set, instead,

η j = 1, 0≤ j ≤ s−ν−1, η j = 1−h2(s−1− j)α j, s−ν ≤ j ≤ s−1, (5)

with the coefficients α j determined by imposing the conservation of the additional invariants (2) at y1:

L(y1)−L(y0) = L(σ(h))−L(σ(0)) = h
s−1

∑
j=0

[∫ 1

0
Pj(τ)∇L(σ(τh))dτ

]T

γ j(σ)dτ

≡ h

[
s−1

∑
j=0

φ j(σ)T γ̃ j(σ) −
s−1

∑
j=s−ν

h2(s−1− j)α jφ j(σ)T γ̃ j(σ)

]
,

where

φ j(σ) =
∫ 1

0
Pj(τ)∇L(σ(τh))dτ ∈ R

2m×ν , j ≥ 0, (6)

and {γ̃ j(σ)}s−1
j=0 is defined according to (4). Consequently, L(y1) = L(y0) if and only if

s−1

∑
j=s−ν

h2(s−1− j)α jφ j(σ)T γ̃ j(σ) =
s−1

∑
j=0

φ j(σ)T γ̃ j(σ). (7)

By defining the matrix

Γ(σ) =
[

h2(ν−1)φs−ν(σ)T γ̃s−ν(σ), . . . , h0φs−1(σ)T γ̃s−1(σ)
] ∈ R

ν×ν ,

and the vectors

ααα =
[

αs−ν , . . . , αs−1
]T

, b(σ) =
s−1

∑
j=0

φ j(σ)T γ̃ j(σ) ∈ R
ν ,

equation (7) can be recast in vector form as
Γ(σ)ααα = b(σ). (8)

The following results hold true [14].

Lemma 1 With reference to (8), one has that b(σ) = O(h2s) and Γ(σ) = O(h2s−2).

Theorem 1 Assume that matrix Γ(σ) is nonsingular. Then, the vector ααα in (8) has O(h2) entries. The polynomial
approximation σ defined by (3) with η j in form of (5) conserves all the invariants and, moreover,

σ(h)− y(h) = O(h2s+1).
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DISCRETIZATION AND EHBVM(k,s) METHODS

It is noticed that the previous formulae provide an effective method only after that the integrals in (4) and (6) are
approximated by using a suitable quadrature formula. For this purpose, we choose the numerical integration formula
defined at the k Gauss-Legendre points 0 < c1 < · · ·< ck < 1. This leads to a new polynomial approximation of degree
s, say u, defined by

u(ch) = y0 +h
s−1

∑
j=0

∫ c

0
Pj(x)dx η̂ j γ̂ j

≡ y0 +h

[
s−1

∑
j=0

∫ c

0
Pj(x)dx γ̂ j−

s−1

∑
j=s−ν

∫ c

0
Pj(x)dxh2(s−1− j)α̂ j γ̂ j

]
, c ∈ [0,1], (9)

where γ̂ j, η̂ j, and α̂ j are the approximations to γ j, η j, and α j, respectively, obtained by using the given quadrature
formula (c�,b�)

k
�=1. Observe that u(0) = y0. Setting y1 ≡ u(h) and u� = u(c�h), �= 1, . . . ,k, from (9) one has:

y1 ≡ u(h) = y0 +hγ̂0 = y0 +h
k

∑
�=1

b�J∇H(u�). (10)

Definition 1 We name Enhanced HBVM(k, s) (in short, EHBVM(k,s)), the methods defined by (9)-(10).

The following results hold true [14].

Theorem 2 Assuming that both H and L are suitably regular, for all k ≥ s the numerical solution generated by a
EHBVM(k,s) method satisfies

y1− y(h) = O(h2s+1).

That is, the method has order 2s.

Theorem 3 Assume that the invariants (2) of problem (1) are polynomials of degree less than or equal to μ = �2k/s�.
Then, an EHBVM(k,s) method is invariants-conserving. Moreover, for all general and suitably regular L, one has

L(y1)−L(y0) = O(h2k+1).

Remark 1 As a consequence, even though EHBVM(k,s) has order 2s, one can recover a practical invariant-
conservation (i.e., to within machine round-off), provided that k is large enough.

We end this section by stating the following Runge-Kutta type formulation of a EHBVM(k,s) method [14]:

c IsΣsPT
s Ω

bT
,

where, as usual, c = (c1, . . . ,ck)
T , b = (b1, . . . ,bk)

T are the abscissae and weights vectors, respectively, and

Ps =
(
Pj−1(ci)

)
, Is =

(∫ ci

0
Pj−1(x)dx

)
∈ R

k×s, Σs = diag(1, η̂1, . . . , η̂s−1), Ω = diag(b1, . . . ,bk).

In particular, when k = s and η̂ j = 1, j = 1, . . . ,s−1, one retrieves the s-stage Gauss method.

NUMERICAL TESTS

We consider the problem defined by the Hamiltonian ([18], see also [13])

H(q, p) =
1
2

pT p+
(
qT q

)2
, q, p ∈ R

2, (11)

admitting the angular momentum, L(q, p) = q1 p2 − q2 p1, as a further invariant. In Table 1 we list the obtained
numerical results, in terms of conservation of the invariants and solution error, by using the following 4-th order
methods: the symplectic 2-stages Gauss method which, evidently, will preserve the angular momentum but not
the energy; the energy-conserving HBVM(4,2) method which, however, will not conserve the angular momentum;
the fully-conserving EHBVM(4,2) method, conserving both invariants. The obtained results clearly confirm the
effectiveness of the new methods.
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TABLE 1. Numerical result for problem (11), with initial point is q0 = (1, 1)T , p0 = (10−1, 0)T , and integration interval
[0,102]; eH is the Hamiltonian error; eL is the error in the angular momentum; esol is the error in the computed solution.

2-stage Gauss HBVM(4,2) EHBVM(4,2)
h eH eL esol eH eL esol eH eL esol

10−1 2.05e-04 6.25e-16 1.08e-02 4.44e-15 8.86e-07 7.17e-03 5.20e-14 1.53e-15 2.36e-03
2−1 ·10−1 1.26e-05 9.71e-16 6.83e-04 1.87e-14 5.55e-08 4.55e-04 4.53e-14 1.19e-15 1.51e-04
2−2 ·10−1 7.82e-07 1.47e-15 4.28e-05 7.11e-15 3.47e-09 2.86e-05 4.26e-14 1.14e-15 9.50e-06
2−3 ·10−1 4.88e-08 1.42e-15 2.67e-06 1.07e-14 2.17e-10 1.79e-06 2.04e-14 2.64e-15 5.95e-07
2−4 ·10−1 3.05e-09 2.75e-15 1.67e-07 9.77e-15 1.36e-11 1.12e-07 1.42e-14 3.64e-15 3.72e-08
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