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a b s t r a c t

In this paper, we provide a simple framework to derive and analyse a class of one-step
methods that may be conceived as a generalization of the class of Gauss methods. The
framework consists in coupling two simple tools: firstly a local Fourier expansion of the
continuous problem is truncated after a finite number of terms and secondly the coeffi-
cients of the expansion are computed by a suitable quadrature formula. Different choices
of the basis lead to different classes of methods, even though we shall here consider only
the case of an orthonormal polynomial basis, from which a large subclass of Runge–Kutta
methods can be derived. The obtained results are then applied to prove, in a simplified way,
the order and stability properties of Hamiltonian BVMs (HBVMs), a recently introduced
class of energy preserving methods for canonical Hamiltonian systems (see [2] and refer-
ences therein). A few numerical tests are also included, in order to confirm the effective-
ness of the methods resulting from our analysis.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

One-step methods are widely used in the numerical solution of initial value problems for ordinary differential equations
which, without loss of generality, we shall assume to be in the form:
y0ðtÞ ¼ f ðyðtÞÞ; t 2 ½0; T�; yð0Þ ¼ y0 2 Rm: ð1Þ
In particular, we consider a very general class of effective one-step methods that can be led back to a local Fourier expansion
of the continuous problem over the interval [0,h], where h is the considered stepsize. In general, different choices of the basis
result in different classes of methods, for which, however, the analysis turns out to be remarkably simple. Though the argu-
ments can be extended to a general choice of the basis, we consider here only the case of a polynomial basis, obtaining a large
subclass of Runge–Kutta methods, even though trigonometric or exponential fitted type bases (see, e.g. [1,9,14,16,18]) could
be, in principle, considered. Usually, the order properties of such methods are studied through the classical theory of Butcher
on rooted trees (see, e.g. [8, Chapter 3]), almost always resorting to the so called simplifying assumptions (see, e.g. [8, Sec-
tion 321]). For the methods derived in the new framework (see Section 2), such analysis turns out to be greatly simplified.
Similar arguments apply to the linear stability analysis of the methods, here easily discussed through the Lyapunov method.
Then, we apply the same procedure to the case where (1) is a canonical Hamiltonian problem, i.e., a problem in the form:
. All rights reserved.
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dy
dt
¼ JrHðyÞ; J ¼

0 Im

�Im 0

� �
; yð0Þ ¼ y0 2 R2m; ð2Þ
where H(y) is a smooth scalar function, thus obtaining, in Section 3, an alternative derivation of the recently introduced class
of energy preserving methods called Hamiltonian BVMs (HBVMs, see [2–4] and references therein). A few numerical exam-
ples concerning such methods are then provided in Section 4, in order to make evident their potentialities. Some concluding
remarks are then given in Section 5.

2. Local Fourier expansion of ODEs

Let us consider problem (1) restricted to the interval [0,h]:
y0 ¼ f ðyÞ; t 2 ½0;h�; yð0Þ ¼ y0: ð3Þ
In order to make the arguments as simple as possible, we shall hereafter assume f to be analytical. Let us consider an ortho-
normal polynomial basis fbPjg1j¼0 over the interval [0,1]: i.e., the shifted Legendre polynomials over the interval [0,1], scaled
in order to be orthonormal. Consequently,
Z 1

0

bPiðxÞbPjðxÞdx ¼ dij; deg bPj ¼ j; 8 i; j P 0;
where dij is the Kronecker symbol. We can then rewrite (3) by expanding the right-hand side:
y0ðchÞ ¼
X1
j¼0

bPjðcÞcjðyÞ; c 2 ½0;1�; cjðyÞ ¼
Z 1

0

bPjðsÞf ðyðshÞÞds: ð4Þ
The basic idea is now that of truncating the series after r terms, which turns (4)2 into:
x0ðchÞ ¼
Xr�1

j¼0

bPjðcÞcjðxÞ; c 2 ½0;1�; cjðxÞ ¼
Z 1

0

bPjðsÞf ðxðshÞÞds: ð5Þ
By imposing the initial condition, one then obtains:
xðchÞ ¼ y0 þ h
Xr�1

j¼0

cjðxÞ
Z c

0

bPjðxÞdx; c 2 ½0;1�: ð6Þ
Obviously, x is a polynomial of degree at most r. The following question then naturally arises: ‘‘how close are y(h) and x(h)?’’
The answer is readily obtained, by using the following preliminary result.

Lemma 1. Let g : ½0;h� ! Rm be of class Cj([0,h]).3 Then
R 1

0
bPjðsÞgðshÞds ¼ OðhjÞ:
Proof. Assume, for sake of simplicity, that g(sh) can be expanded in Taylor series at the origin. Then, for all j P 0, by con-
sidering that bPj is orthogonal to all polynomials of degree n < j:
Z 1

0

bPjðsÞgðshÞds ¼
X1
n¼0

gðnÞð0Þ
n!

hn
Z 1

0

bPjðsÞsnds ¼ OðhjÞ:
For a given fixed j P 0, the above arguments can be easily adapted, by considering the Taylor expansion of g with remainder
at the jth term, provided that g is of class Cj([0,h]). h

As a consequence, one has that (see (5)) cj(x) = O(hj). To express the dependence of the solutions of y0 = f(y) on the initial
values, for any given ~t 2 ½0;h�, we will denote by yð�;~t; ~yÞ the solution satisfying the initial condition yð~t;~t; ~yÞ ¼ ~y.4 Similarly,
we set:
Uðs;~t; ~yÞ ¼ @

@~y
yðs;~t; ~yÞ; ð7Þ
also recalling the following standard result from the theory of ODEs:
@

@~t
yðs;~t; ~yÞ ¼ �Uðs;~t; ~yÞf ð~yÞ: ð8Þ
simplify the notation, we avoid to adopt the more complete notation cj(f(y),h) to denote the coefficients involved in the Fourier expansion.
g has j continuous derivatives in the interval [0,h].

arly, since the problem is autonomous, then yðs;~t; ~yÞ ¼ yðs� ~t;0; ~yÞ.
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We can now state the following result, whose proof is essentially based on that of [15, Theorem 6.5.1 on pp. 165–166].

Theorem 1. Let y(ch) and x(ch), c 2 [0,1], be the solutions of (4) and (5), respectively, satisfying the initial condition
y(0) = x(0) = y0. Then, y(h) �x(h) = O(h2r+1).
Proof. By virtue of Lemma 1 and (7) and (8), one has:5
5 In t
analogo
yðhÞ �xðhÞ ¼ yðh;0; y0Þ � yðh;h;xðhÞÞ ¼ �
Z h

0

d
ds yðh; s;xðsÞÞds ¼ �

Z h

0

@

@~t
yðh; s;xðsÞÞ þ @

@~y
yðh; s;xðsÞÞx0ðsÞ

� �
ds

¼ h
Z 1

0
Uðh; ch;xðchÞÞðf ðxðchÞÞ �x0ðchÞÞdc ¼ h

Z 1

0
Uðh; ch;xðchÞÞ

X1
j¼r

cjðxÞbPjðcÞ
 !

dc

¼ h
X1
j¼r

Z 1

0

bPjðcÞUðh; ch;xðchÞÞdc
� �

cjðxÞ ¼ h
X1
j¼r

OðhjÞOðhjÞ ¼ Oðh2rþ1Þ: �
The previous result reveals the extent to which the polynomial x(t), solution of (5), approximates the solution y(t) of the
original problem (3) on the time interval [0,h]. Obviously, the value x(h) may serve as the initial condition for a new IVP in
the form (5) approximating y(t) on the time interval [h,2h]. In general, setting ti = ih, i = 0,1, . . . , and assuming that an
approximation x(t) is available on the interval [ti�2, ti�1], one can extend the approximation to the interval [ti�1, ti] by solving
the IVP:
x0ðti�1 þ chÞ ¼
Xr�1

j¼0

bPjðcÞ
Z 1

0

bPjðsÞf ðxðti�1 þ chÞÞds; c 2 ½0;1�; ð9Þ
the initial value x(ti�1) having been computed at the preceding step. The approximation to y(t) is thus extended on an arbi-
trary interval [0,Nh], and the function x(t) is a continuous piecewise polynomial. As a direct consequence of Theorem 1, we
obtain the following straightforward result.

Corollary 1. Let T = Nh, where h > 0 and N is an integer. The approximation to the solution of problem (1) by means of (9) at the
grid-points ti = ti�1 + h, i = 1, . . . ,N, with x(t0) = y0, is O(h2r) accurate.

We now want to compare the asymptotic behavior of x(t) and y(t) on the infinite length interval [0,+1) in the case where
f is linear or defines a canonical Hamiltonian problem. To this end we introduce the infinite sequence (xi) � (x(ti)).

Remark 1. Though in general, the sequence (xi) cannot be formally regarded as the outcome of a numerical method, under
special situations, this can be the case. For example, when f is a polynomial, the integrals in (5) may be explicitly determined
and the IVP in (5) is evidently equivalent to a nonlinear system having as unknowns the coefficients of the polynomial x
expanded along a given basis (for example, the polynomial x may be computed by means of the method of undetermined
coefficients). This issue, as well as details about how to manage the integrals in the event that the integrands do not admit an
analytical primitive function in closed form, will be thoroughly faced in Section 3.
Remark 2. We observe that a different choice of the orthonormal basis would, in general, modify the above arguments. In
more details, for any given basis, a result analogous to Lemma 1 would be needed. The result of Theorem 1 is then modified
accordingly. Different choices of the basis will be considered in future investigations.
2.1. Linear stability analysis

For the linear stability analysis, one needs to consider the celebrated test equation:
y0 ¼ ky; RðkÞ 6 0: ð10Þ
By setting
k ¼ aþ ib; y ¼ x1 þ ix2; x ¼ ðx1; x2ÞT ; A ¼
a �b

b a

� �
;

with i the imaginary unit, problem (10) can be rewritten as:
x0 ¼ Ax; t 2 ½0;h�; xð0Þ given: ð11Þ
he sequel, the notation such as @
@~t

yðh; s;xðsÞÞ will denote the partial derivative of yðs;~t; ~yÞ with respect to ~t, evaluated at s ¼ h; ~t ¼ s and ~y ¼ xðsÞ and
usly for the partial derivative of yðs;~t; ~yÞ with respect to ~y.
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Consequently, the corresponding truncated problem (5) becomes:
x0ðchÞ ¼ A
Xr�1

j¼0

bPjðcÞ
Z 1

0

bPjðsÞrVðxðshÞÞds; c 2 ½0;1�; ð12Þ
where
VðxÞ ¼ 1
2

xT x ð13Þ
is a Lyapunov function for (11). From (12) and (13) one readily obtains:
DVðxð0ÞÞ ¼ VðxðhÞÞ � Vðxð0ÞÞ ¼ h
Z 1

0
rVðxðshÞÞTx0ðshÞds

¼ h
Xr�1

j¼0

Z 1

0

bPjðsÞrVðxðshÞÞds
� �T

A
Z 1

0

bPjðsÞrVðxðshÞÞds
� �

¼ ah
Xr�1

j¼0

Z 1

0

bPjðsÞxðshÞds
���� ����2

2
:

The last equality follows by taking the symmetric part of A. We observe that:
x – 0)
Xr�1

j¼0

Z 1

0

bPjðsÞxðshÞds
���� ����2

2
> 0;
since, conversely, this would imply xðchÞ ¼ q � bPrðcÞ for a suitable q – 0 and, therefore (from (12)), bP 0r � 0 which is clearly
false. Thus, for a generic y0 – 0,
DVðxð0ÞÞ < 0() RðkÞ < 0 and DVðxð0ÞÞ ¼ 0() RðkÞ ¼ 0:
Again, the above computation can be extended to any interval [ti�1, ti] and, from the discrete version of the Lyapunov theo-
rem (see, e.g. [15, Th. 4.8.3 on p. 108]), we have that the sequence xi tends to zero if and only if RðkÞ < 0, while it remains
bounded whenever RðkÞ ¼ 0, whatever is the stepsize h > 0 used. The following result is thus proved.

Theorem 2. The continuous solution y(t) of (10) and its discrete approximation xi have the same stability properties, for any
choice of the stepsize h > 0.
2.2. The Hamiltonian case

For Hamiltonian problems in the form (2), the approximation provided by the polynomial x in (5) and (6) inherits a very
important property of the continuous problem, i.e., energy conservation. Indeed, it is very well known that for the exact solu-
tion of (2) one has:
d
dt

HðyðtÞÞ ¼ rHðyðtÞÞT y0ðtÞ ¼ rHðyðtÞÞT JrHðyðtÞÞ ¼ 0;
due to the fact that matrix J is skew-symmetric. Consequently, H(y(t)) = H(y0) for all t. For the truncated Fourier problem, the
following result holds true.

Theorem 3. H(x(h)) = H(x(0)) � H(y0).
Proof. From (5), considering that f(x) = JrH(x) and JTJ = I, one obtains:
HðxðhÞÞ � Hðy0Þ ¼ h
Z 1

0
rHðxðshÞÞTx0ðshÞds ¼ h

Z 1

0
rHðxðshÞÞT

Xr�1

j¼0

bPjðsÞcjðxÞds

¼ h
Xr�1

j¼0

Z 1

0
rHðxðshÞÞbPjðsÞds

� �T

cjðxÞ ¼ h
Xr�1

j¼0

cjðxÞ
T JcjðxÞ ¼ 0;
since J is skew-symmetric. h
3. Discretization

Clearly, the integrals in (5), if not directly computable, need to be numerically approximated. This can be done by intro-
ducing a quadrature formula based at k P r abscissae ci, thus obtaining an approximation to (5):
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u0ðchÞ ¼
Xr�1

j¼0

bPjðcÞ
Xk

‘¼1

b‘bPjðc‘Þf ðuðc‘hÞÞ; c 2 ½0;1�; ð14Þ
where the b‘ are the quadrature weights, and u is the resulting polynomial, of degree at most r, approximating x. It can be
obtained by solving a discrete problem in the form:
u0ðcihÞ ¼
Xr�1

j¼0

bPjðciÞ
Xk

‘¼1

b‘bPjðc‘Þf ðuðc‘hÞÞ; i ¼ 1; . . . ; k: ð15Þ
Let q be the order of the formula, i.e., let it be exact for polynomials of degree less than q (we observe that q P k P r). Clearly,
since we assume f to be analytical, choosing k large enough, along with a suitable choice of the nodes ci, allows us to approx-
imate the given integral to any degree of accuracy, even though, when using finite precision arithmetic, it suffices to approx-
imate it to machine precision. We observe that, since the quadrature is exact for polynomials of degree q � 1, its remainder
depends on the q-th derivative of the integrand with respect to s. Consequently, considering that bP ðiÞj ðcÞ � 0, for i > j, one has:
DjðhÞ �
Z 1

0

bPjðsÞf ðuðshÞÞds�
Xk

‘¼1

b‘bPjðc‘Þf ðuðc‘hÞÞ ¼ Oðhq�jÞ; ð16Þ
j = 0, . . . ,r � 1. Thus, (14) is equivalent to the ODE,
u0ðchÞ ¼
Xr�1

j¼0

bPjðcÞ cjðuÞ � DjðhÞ
� �

; c 2 ½0;1�; cjðuÞ ¼
Z 1

0

bPjðsÞf ðuðshÞÞds; ð17Þ
with u(0) = y0, in place of (5). The following result then holds true.

Theorem 4. Under the above hypotheses: y(h) � u(h) = O(hp+1), with p = min (q,2r).
Proof. The proof is quite similar to that of Theorem 1; by virtue of Lemma 1 and (16) and (17), one obtains:
yðhÞ � uðhÞ ¼ yðh;0; y0Þ � yðh; h; uðhÞÞ ¼ �
Z h

0

d
ds

yðh; s;uðsÞÞds ¼ �
Z h

0

@

@~t
yðh; s;uðsÞÞ þ @

@~y
yðh; s;uðsÞÞu0ðsÞ

� �
ds

¼ h
Z 1

0
Uðh; ch;uðchÞÞðf ðuðchÞÞ � u0ðchÞÞdc ¼ h

Z 1

0
Uðh; ch;uðchÞÞ

Xr�1

j¼0

bPjðcÞDjðhÞ þ
X1
j¼r

cjðuÞbPjðcÞ
 !

dc

¼ h
Xr�1

j¼0

Z 1

0

bPjðcÞUðh; ch;uðchÞÞdc
� �

DjðuÞ þ h
X1
j¼r

Z 1

0

bPjðcÞUðh; ch;uðchÞÞdc
� �

cjðuÞ

¼ h
Xr�1

j¼0

OðhjÞOðhq�jÞ þ h
X1
j¼r

OðhjÞOðhjÞ ¼ Oðhqþ1Þ þ Oðh2rþ1Þ: �
As an immediate consequence, one has the following result.
Corollary 2. Let q be the order of the quadrature formula defined by the abscissae c1, . . . ,ck. Then, the order of the method (15) for
approximating (1), with y1 = u(h), is p = min (q,2r).

Concerning the linear stability analysis, Theorem 2 implies that method (15) is perfectly A-stable6 as soon as the condition
q P 2r is satisfied. In fact, in such a case, the quadrature formula based upon the abscissae c1, . . . ,ck is exact when the integrand
is a polynomial of degree at most 2r � 1 and hence will match the integrals appearing in (12).

In the case r = 1, the above results apply to the methods in [12] (see also [13]).

3.1. Runge–Kutta formulation

By setting, as usual, ui ¼ uðcihÞ; u0i ¼ u0ðcihÞ; f i ¼ f ðuiÞ; i ¼ 1; . . . ; k, (15) can be rewritten as:
ui ¼ y0 þ h
Xr�1

j¼0

Z ci

0

bPjðsÞds
Xk

‘¼1

b‘bPjðc‘Þf‘; i ¼ 1; . . . ; k: ð18Þ
Moreover, since q P r P degu, one has y1 ¼ uðhÞ � y0 þ h
Pk

‘¼1b‘u0‘. Consequently, the methods which Corollary 2 refers to are
the subclass of k-stage Runge–Kutta methods with the following tableau:
its absolute stability region coincides with the left-half complex plane, C� , [7].
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ð19Þ
In particular, in [5] it has been proved that when the nodes ci coincide with the k Gauss points on the interval [0,1], then:
A ¼ APPTX; ð20Þ
where A 2 Rk�k is the matrix in the Butcher tableau of the k-stage Gauss method, P ¼ ðbPj�1ðciÞÞ 2 Rk�r , and X = diag
(b1, . . . ,bk). In such a way, when k = r, one obtains the classical r-stage Gauss collocation method. Consequently, (19) can
be regarded as a generalization of the classical Runge–Kutta collocation methods, (15) being interpreted as extended collo-
cation conditions.

3.2. Hamiltonian Boundary Value Methods (HBVMs)

When considering a canonical Hamiltonian problem (2), the discretization of the integrals appearing in (5) by means of a
Gaussian formula at k nodes results in the HBVM (k,r) methods introduced in [4].7 For such methods we derive, in a novel way
with respect to [2–4], the following result.

Corollary 3. For all k P r, the HBVM (k,r) is perfectly A-stable and has order 2r. The method is energy conserving for all
polynomial Hamiltonians of degree not larger than 2k/r.
Proof. The result on the order and linear stability easily follow from Corollary 2 and the discussion in the subsequent text.
Concerning the energy conservation property, one has:
HðuðhÞÞ � Hðy0Þ ¼ h
Z 1

0
rHðuðshÞÞT u0ðshÞds ¼ h

Z 1

0
rHðuðshÞÞT

Xr�1

j¼0

bPjðsÞ
Xk

‘¼1

b‘bPjðc‘ÞJrHðuðc‘hÞÞds

¼ h
Xr�1

j¼0

Z 1

0

bPjðsÞrHðuðshÞÞds
� �T

J
Xk

‘¼1

b‘bPjðc‘ÞrHðuðc‘hÞÞ
" #

¼ 0;
provided that
Z 1

0

bPjðsÞrHðuðshÞÞds ¼
Xk

‘¼1

b‘bPjðc‘ÞrHðuðc‘hÞÞ: ð21Þ
In the case where H is a polynomial of degree m, this is true provided that the integrand is a polynomial of degree at most
2k � 1. Consequently, mr � 1 6 2k � 1, i.e., m 6 2k/r. h

For general Hamiltonian problems, by using the same argument as in the previous proof, one concludes that:
HðuðhÞÞ � Hðy0Þ ¼ Oðh2kþ1Þ; ð22Þ
that is, the Hamiltonian is approximated with order 2k on any finite interval. As a consequence, by considering the limit as
k ?1we recover formulae (5), which have been called HBVM (1, r) (or, more in general,1-HBVMs) [2,4]: in particular, (6) is
nothing but the Master Functional Equation in [2,4].

Remark 3. We observe that, due to what was shown in [4], the above analysis and arguments apply to the methods in [10],
which are obtained by using the Lagrange basis, instead of the Legendre one.
Remark 4. In the case of polynomial Hamiltonian systems, if (21) holds true for k = k⁄, then:
HBVMðk; rÞ � HBVMðk�; rÞ � HBVMð1; rÞ; 8 k P k�:
That is, (14) coincides with (5), for all k P k⁄. In the non-polynomial case, the previous conclusions continue ‘‘practically’’ to
hold, provided that the integrals are approximated within machine precision, i.e., by considering k large enough (see (22)).
However, we observe that, whatever the choice of k, matrix A in (20) has constant rank r. This implies that the k equations
defining the stages may be suitably arranged in k � r linear and r nonlinear equations. An important consequence is that the
ifferent discretization, based at k + 1 Lobatto abscissae, was previously considered in [3].



L. Brugnano et al. / Applied Mathematics and Computation 218 (2012) 8475–8485 8481
computational cost associated with the method is practically independent of the number k of the quadrature nodes (see, e.g.
[6]) and hence a practical energy conservation may be attained for any smooth Hamiltonian problem.
4. Numerical tests

We here provide a few numerical tests, showing the effectiveness of HBVMs, namely of the methods obtained in the new
framework, when the problem (1) is in the form (2).

4.1. The Kepler problem

We consider at first the Kepler problem, with Hamiltonian:
1

1

1

1

1

1

1

H
AM

IL
TO

N
IA

N
 E

R
R

O
R

Hð½q1; q2; p1; p2�
TÞ ¼ 1

2
p2

1 þ p2
2

	 

� q2

1 þ q2
2

	 
�1
2:
When started at
ð1� e;0;0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eÞ=ð1� eÞ

p
ÞT ; e 2 ½0;1Þ;
it has an elliptic periodic orbit of period 2p and eccentricity e. When e is not close to 1, the problem is efficiently solved by
using a constant stepsize. However, it becomes more and more difficult as e ? 1, so that a variable-step integration would be
more appropriate in this case. We first compare the following 6-th order methods for solving such a problem over a 1000
periods interval:

� HBVM (3,3), i.e., the GAUSS6 method, which is a symmetric and symplectic method;
� HBVM (4,3), which is symmetric [3] but not symplectic nor energy preserving, since the Gauss quadrature formula of

order 8 is not enough accurate, for this problem;
� HBVM (9,3), which is practically energy preserving, since the Gauss formula of order 18 is accurate within machine pre-

cision, for this problem, and for the used stepsize.

The two plots in Fig. 1 report the results obtained when e = 0.6 and a constant stepsize is used: as one can see from the left
plot, the Hamiltonian error is 6th-order accurate for GAUSS6, and 8th-order accurate for HBVM (4,3) (according to (22));
conversely, the energy is (practically) conserved for the HBVM (9,3) method. On the other hand, from the right plot one ob-
tains that all methods exhibit the same order (i.e., 6), with the error constant of the HBVM (4,3) and HBVM (9,3) methods
much smaller than that of the symplectic GAUSS6 method.

Conversely, when e = 0.99, we consider a variable stepsize implementation with the following standard mesh-selection
strategy:
hnew ¼ 0:85 � hn
tol

errn

� �1=ðpþ1Þ

; ð23Þ
where p = 6 is the order of the method, tol is the prescribed tolerance, hn is the current stepsize, and errn is an estimate of the
local error. According to what stated in the literature, this is not an advisable choice for symplectic methods, for which a drift
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Fig. 1. Kepler problem, e = 0.6; Hamiltonian (left plot) and solution (right plot) errors over 1000 periods with a constant stepsize.
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Table 1
Numerical solution of the Arenstorf’s orbit starting at (24) by using tol = 10�12 and h0 = 10�5.

Periods GAUSS6 HBVM (9,3)

Solution Hamiltonian Mesh Fixed-point Solution Hamiltonian Mesh Fixed-point

error error points iterations error error points iterations

1 3.60e�8 5.84e�11 528 4315 2.82e�7 1.40e�14 435 3780
2 2.62e�5 9.37e�11 525 4301 1.70e�6 1.58e�14 432 3808
3 8.95e�3 1.29e�10 525 4302 5.60e�3 2.62e�14 432 3814
4 1.66e0 1.69e�10 628 5098 7.28e�1 2.93e�14 410 3612

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3. Restricted three-body problem, Arenstorf’s orbit corresponding to (24).
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in the Hamiltonian appears, and a quadratic error growth in the solution is experienced, as is confirmed by the two plots in
Fig. 2. The same happens for the method HBVM (4,3), which is symmetric but not energy conserving. Conversely, for the
(practically) energy conserving method HBVM (9,3), no drift in the Hamiltonian occurs and a linear error growth in the solu-
tion is observed.
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Even though we do not discuss here the actual implementation of the methods, for sake of completeness we mention that
in the numerical tests the error estimate errn, to be used in (23), has been obtained as follows:

� for the GAUSS6 method, at each step we also compute the approximate step by means of the GAUSS8 (i.e., HBVM (4,4))
method;
� for the HBVM (k,3) method, we also compute the approximate step by means of the 8-th order HBVM (k,4) method,

k = 4,9.

In the latter case, the (approximate) solution is obtained by using the same stages as those used by the corresponding 6th
order method, so that its computation is inexpensive.

4.2. The planar restricted three-body problem

This problem [17, pages 115ff] describes the motion of three bodies: two primaries with masses l and 1 � l, evolving in a
plane, and a third (virtually massless) body called planetoid, which does not affect the motion of the primaries. The primaries
move in circular orbits, and the massless body is assumed to move in the same plane of the primaries. The problem is now to
find the trajectory of the massless body. The system is described on a rotating frame with the center of mass located at the
origin and the two primaries placed at the points (0,1 � l) and (0,�l). In such a case, the Hamiltonian is given by:
Hðq;pÞ ¼ 1
2

p2
1 þ p2

2

	 

þ p1q2 � p2q1 �

1� l
q1

� l
q2
;

where
q2
1 ¼ ðq1 þ lÞ2 þ q2

2; q2
2 ¼ ðq1 � 1þ lÞ2 þ q2

2:
With this Hamiltonian, the problem can be cast in canonical form. Moreover, there exist initial values such that the solution
is periodic with period T. They are known as ‘‘Arenstorf orbits’’. One such orbit (see Fig. 3) is obtained with the data (adapted
from [11, page 186]):
l ¼ 0:012277471; T ¼ 11:124340337266085134999734047;
q1ð0Þ ¼ 0:994; q2ð0Þ ¼ p1ð0Þ ¼ 0; p2ð0Þ ¼ �1:0377326295573368357302057924:

ð24Þ
The computation of this orbit is numerically challenging since it passes very close to one of the singular points of the prob-
lem and even a small perturbation would make the periodic motion of the planetoid change drastically. As a consequence,
the use of a constant stepsize would prove highly inefficient (so that a variable stepsize is recommended) and anyway multi-
ple periods are difficult to be recovered numerically. In Table 1 we list the results obtained by using the 6th-order Gauss
method (GAUSS6) and the HBVM (9,3) method, by using the same variable stepsize strategy (23), with tol = 10�12 and initial



Table 2
Restricted three-body problem, orbit starting at (25); statistics at T = 10 when using tol = 10�10 and
h0 = 10�5.

Method GAUSS6 HBVM (9,3)

Hamiltonian error 2.3e�05 3.0e�13
Solution error 2.41e�3 1.35e�6
Mesh-points 38302 32474
Fixed-point iterations 339364 311745
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Fig. 5. Restricted three-body problem, orbit starting at (25); Hamiltonian error when using tol = 10�10 and h0 = 10�5.
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stepsize h0 = 10�5. The behavior of the two methods is conclusively similar, even though the latter method is able to obtain a
more accurate solution by using a smaller number of mesh-points and requiring less fixed-point iterations per period. We
arrive at a very different conclusion if we consider, instead of (24), the following set of data (the parameter l is kept fixed):
q1ð0Þ ¼ 0:05; q2ð0Þ ¼ p1ð0Þ ¼ 0; p2ð0Þ ¼ 1: ð25Þ
Also in this case, a constant stepsize turns out to be very inefficient, because p1(t) and p2(t) exhibit ‘‘spikes’’ with a periodicity
of about 3.6 � 10�2, as is shown in the left plot of Fig. 4. On the other hand, the solution seems to lie on a torus, as one infers
from the right plot of the same figure. We approximate the orbit starting at (25) up to T = 10 by using the GAUSS6 and HBVM
(9,3) methods, with tolerance tol = 10�10 and initial stepsize h0 = 10�5. A ‘‘reference’’ solution with a more accurate method
(HBVM (10,5), used with tolerance tol = 10�13) has been also computed, in order to compare the accuracy of the previous
methods. As one may see from the plot in Fig. 5 the numerical Hamiltonian has a drift for the GAUSS6 method, whereas
it is practically conserved for the HBVM (9,3) method. Table 2 contains some statistics, showing that the HBVM (9,3) method
turns out to be more efficient than the GAUSS6 method, since it requires less mesh-points (as well as less fixed-point iter-
ations) providing a more accurate solution, without drift in the numerical Hamiltonian.

5. Conclusions

In this paper, we have presented a general framework for the derivation and analysis of effective one-step methods,
which is based on a local Fourier expansion of the problem at hand. In particular, when the chosen basis is a polynomial
one, we obtain a large subclass of Runge–Kutta methods, which can be regarded as a generalization of Gauss collocation
methods.

When dealing with canonical Hamiltonian problems, the methods coincide with the recently introduced class of energy
preserving methods named HBVMs. A few numerical tests seem to show that such methods have interesting potentialities
when compared with symplectic, or symmetric but non energy conserving, methods.
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