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When numerically integrating canonical Hamiltonian systems, the long-term conservation
of some of its invariants, for example the Hamiltonian function itself, assumes a central
role. The classical approach to this problem has led to the definition of symplectic methods,
among which we mention Gauss–Legendre collocation formulae. Indeed, in the continuous
setting, energy conservation is derived from symplecticity via an infinite number of infini-
tesimal contact transformations. However, this infinite process cannot be directly trans-
ferred to the discrete setting. By following a different approach, in this paper we
describe a sequence of methods, sharing the same essential spectrum (and, then, the same
essential properties), which are energy preserving starting from a certain element of the
sequence on, i.e., after a finite number of steps.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In order to make easier the following considerations, it is necessary to stress the differences between a continuous prob-
lem and a discrete problem obtained by applying to it a whatever numerical method. In the case of ODEs, the main difference
between them, very often underrated by many authors, is the lack of continuity in time. The latter does not affect many as-
pects such as, e.g., the study of the qualitative behavior of solutions around asymptotically stable critical points (stability
analysis). In fact, the respective theories, with minor changes, are very similar (see, e.g., [22]). As a consequence, many tools,
already devised in the continuous analysis, can be transferred to the discrete analysis almost unchanged. This is the case, for
example, of the linearization around asymptotically stable critical points, which has been extensively used in the numerical
analysis of methods for differential problems (linear stability analysis). There are, however, other aspects for which continu-
ity plays an essential role. For example, two solutions of the continuous problem need to stay away from each other while, in
the discrete case, they may interlace (without having common points, of course). This fact has many mathematical and even
physical implications (see, e.g., [20]). In this paper we shall deal with another case in which continuity plays an essential role.
It regards the role of symplecticity which is central in discussing energy conservation in continuous Hamiltonian problems,
while it is less crucial in the energy conservation of discrete problems. This depends on the interplay between infinitesimal
contact transformations and the need of infinite processes (number of iterations) which cannot be operatively used in
Numerical Analysis. This question has been already discussed in previous papers (see, e.g., [7]). Here, after a rapid introduc-
tion to the subject, we shall focus on a particular aspect, although very important, which concerns a property of the
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numerical methods, in the general class of collocation methods, which comes out by no more requiring symplecticity but still
providing conservation of the Hamiltonian functions on a subset of points of the mesh. Clearly, this permits to avoid the drift
of energy experienced when using many numerical methods proposed in the recent literature.

With this premise, the structure of the paper is the following: in Section 2 we recall the basic facts about canonical Ham-
iltonian problems and the approaches used for their numerical solution; one of them, resulting in the recently introduced
class of Hamiltonian Boundary Value Methods (HBVMs), is then sketched in Section 3; in Section 4 we state the main result
of this paper, concerning the isospectral property of such methods; in Section 5 such property is further generalized to study
the existing connections between HBVMs and Runge–Kutta collocation methods; a few concluding remarks are finally given
in Section 6.

2. Canonical Hamiltonian problems

Canonical Hamiltonian problems are in the form
_y ¼ JrHðyÞ; yðt0Þ ¼ y0 2 R2m; ð1Þ
where J is a skew-symmetric constant matrix, the Hamiltonian H(y) is assumed to be sufficiently differentiable, and the state
vector splits into two blocks, y ¼ ðqT ; pTÞT ; q; p 2 Rm where, for mechanical systems, q denote the positions and p the (gen-
eralized) momenta. Such problems are of great interest in many fields of application, ranging from the macro-scale of celes-
tial mechanics, to the micro-scale of molecular dynamics. They have been deeply studied, from the point of view of the
mathematical analysis, since two centuries. Their numerical solution is a more recent field of investigation, where the main
difficulty in dealing with them numerically stems from the fact that the meaningful isolated critical points of such systems
are only marginally stable: neighboring solution curves do not eventually approach the equilibrium point either in future or
in past times. This implies that the geometry around them critically depends on perturbations of the linear part. Conse-
quently, the use of a linear test equation, which essentially captures the geometry of the linear part, whose utility has been
enormous in settling the dissipative case, cannot be of any utility in the present case.

It is then natural to look for other properties of Hamiltonian systems that can be imposed on the discrete methods in order
to make them effective. The first property which comes to mind is the symplecticity of the flow ut :¼ y0 ´ y (t) associated with
(1). This property can be described either in geometric form (invariance of areas, volumes, etc.) or in analytical form:
@ut

@y0

� �T

J
@ut

@y0

� �
¼ J:
In one way or the other, it essentially consists in moving infinitesimally on the trajectories representing the solutions. Infin-
itesimally means retaining only the linear part of the infinitesimal time displacement dt. It can be shown that this produces
new values of the variables q + dq, p + dp which leave unchanged the value of the Hamiltonian H(q + dq,p + dp) = H(q,p) (Infin-
itesimal Contact Transformation (ICT), see [13, p. 386]). Consequently, since the composition of such infinitesimal transforma-
tions maintains the invariance, so does an infinite number of them.

It is not surprising that the first numerical attempts to design conservative methods have tried to transfer similar argu-
ments to discrete methods, i.e. to design symplectic integrators [27,12] (see also the monographs [28,23,14] for more details
on the subject; related approaches can be also found in [29,25]). A backward error analysis has shown that symplecticity
seems somehow to improve the long-time behavior properties of the numerical solutions. Indeed, for a symplectic method
of order r, implemented with a constant stepsize h, the following estimation reveals how the numerical solution yn may de-
part from the manifold H(y) = H(y0) of the phase space, which contains the continuous solution itself:
HðynÞ � Hðy0Þ ¼ O nhe�
h0
2hhr

� �
; ð2Þ
where h0 > 0 is sufficiently small and h 6 h0. Relation (2) implies that a linear drift of the energy with respect to time t = nh
may arise. However, due to the presence of the exponential, such a drift will not appear as far as nh 6 e

h0
2h: this circumstance

is often referred to by stating that symplectic methods conserve the energy function on exponentially long time intervals (see, for
example, [14,8.1, p. 367]). This is clearly a surrogate of the definition of stability in that the ‘‘good behaviour’’ of the numer-
ical solution is not extended on infinite time intervals.

As matter of fact, since symplecticity requires an infinite sequence of infinitesimal contact transformations it cannot be
transferred ‘‘sic et simpliciter’’ to the discrete methods, simply because infinite processes are not permitted in Numerical
Analysis. A more efficient approach would require to design methods which avoid the necessity of using infinite processes
while preserving the constant of motion, i.e., yielding a numerical solution belonging to the manifold H(y) = H(y0). In this
paper we consider a recently introduced class of methods of any high order that provide energy conservation. More specif-
ically, with any given order, one can associate an infinite sequences of methods, differing from each other for the number of
internal mesh points that cover the same time window, say [ti, ti + h]: the more points we include, the better the conservation
properties of the method. However, we show that, at least for polynomial Hamiltonian functions, such a process of increasing
the number of internal points is not infinite. In fact we show that there exists a finite value of new added points starting from
which the method become conservative, whatever is the stepsize h used.
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The evolution of the approaches to the problem, i.e. to get efficient energy-conserving methods, has been slow. As a mat-
ter of fact, the first unsuccessful attempts to derive energy-preserving Runge–Kutta methods culminated in the wrong gen-
eral feeling that such methods could not even exist [21]. One of the first successful attempts to solve the problem, outside the
class of Runge–Kutta methods, is represented by discrete gradient methods (see [24] and references therein) which are second
order accurate. Purely algebraic approaches have been also introduced (see, e.g., [11]), without presenting any energy pre-
serving method. A further approach was considered in [26], where the averaged vector field method was proposed and shown
to conserve the energy function, although it is only second order accurate. As was recently outlined in [10], approximating
the integral appearing in such method by means of a quadrature formula (based upon polynomial interpolation) yields a
family of second order Runge–Kutta methods. These latter methods represent an instance of energy-preserving Runge–Kutta
methods for polynomial Hamiltonian problems: their first appearance may be found in [16], under the name of s-stage trap-
ezoidal methods. Additional examples of fourth and sixth-order conservative Runge–Kutta methods (for polynomial Ham-
iltonians of suitable degree) were presented in [17,19]. All such energy-conserving methods have been derived by means
of the new concept of discrete line integral.

The evolution of this idea eventually led to the definition of Hamiltonian Boundary Value Methods (HBVMs) [2–4], which is
a wide class of methods able to preserve, for the discrete solution, polynomial Hamiltonians of arbitrarily high degree (and
then, a practical conservation of any sufficiently differentiable Hamiltonian). In more details, in [3] HBVMs defined at Lobatto
nodes have been analysed, whereas in [4] HBVMs defined at Gauss–Legendre abscissae have been considered. In the last ref-
erence, it has been actually shown that both formulae are essentially equivalent to each other, since the order and stability
properties of the methods turn out to be independent of the abscissae distribution, and both methods are equivalent, when
the number of the so called silent stages tends to infinity. In this paper this conclusion is further supported, since we prove
that HBVMs, when cast as Runge–Kutta methods, are such that the corresponding matrix of the tableau has the nonzero
eigenvalues coincident with those of the corresponding Gauss–Legendre formula (isospectral property of HBVMs). This prop-
erty will be also used to further analyse the existing connections between HBVMs and Runge–Kutta collocation methods.

3. Hamiltonian Boundary Value Methods

The arguments in this section are worked out starting from those used in [3,4] to introduce and analyse HBVMs. Starting
from the canonical Hamiltonian problems (1), the key formula which HBVMs rely on, is the line integral and the related prop-
erty of conservative vector fields:
Hðy1Þ � Hðy0Þ ¼ h
Z 1

0

_rðt0 þ shÞTrHðrðt0 þ shÞÞds; ð3Þ
for any y1 2 R2m, where r is any smooth function such that
rðt0Þ ¼ y0; rðt0 þ hÞ ¼ y1: ð4Þ
Here we consider the case where r(t) is a polynomial of degree s, yielding an approximation to the true solution y(t) in the
time interval [t0, t0 + h]. The numerical approximation for the subsequent time-step, y1, is then defined by (4). After introduc-
ing a set of s distinct abscissae,
0 < c1; . . . ; cs 6 1; ð5Þ
we set
Yi ¼ rðt0 þ cihÞ; i ¼ 1; . . . ; s; ð6Þ
so that r(t) may be thought of as an interpolation polynomial, interpolating the fundamental stages Yi, i = 1, . . . ,s, at the
abscissae (5). We observe that, due to (4), r(t) also interpolates the initial condition y0.

Remark 1. Sometimes, the interpolation at t0 is explicitly required. In such a case, the extra abscissa c0 = 0 is formally added
to (5). This is the case, for example, of a Lobatto distribution of the abscissae [3].

Let us consider the following expansions of _rðtÞ and r(t) for t 2 [t0, t0 + h]:
_rðt0 þ shÞ ¼
Xs

j¼1

cjPjðsÞ; rðt0 þ shÞ ¼ y0 þ h
Xs

j¼1

cj

Z s

0
PjðxÞdx; ð7Þ
where {Pj(t)} is a suitable basis of the vector space of polynomials of degree at most s � 1 and the (vector) coefficients {cj} are
to be determined. We shall consider an orthonormal polynomial basis on the interval [0,1] (though, in principle, different
bases could be also considered [4,16,19,17]):
Z 1

0
PiðtÞPjðtÞdt ¼ dij; i; j ¼ 1; . . . ; s; ð8Þ
where dij is the Kronecker symbol, and Pi(t) has degree i � 1. Such a basis can be readily obtained as
PiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� 1
p bPi�1ðtÞ; i ¼ 1; . . . ; s; ð9Þ
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with bPi�1ðtÞ the shifted Legendre polynomial, of degree i � 1, on the interval [0,1] (see, e.g., [1]). We shall also assume that
H(y) is a polynomial, which implies that the integrand in (3) is also a polynomial so that the line integral can be exactly com-
puted by means of a suitable quadrature formula. It is easy to observe that in general, due to the high degree of the integrand
function, such quadrature formula cannot be solely based upon the available abscissae {ci}: one needs to introduce an addi-
tional set of abscissae fĉ1; . . . ; ĉrg, distinct from the nodes {ci}, in order to make the quadrature formula exact:
Z 1

0

_rðt0 þ shÞTrHðrðt0 þ shÞÞds ¼
Xs

i¼1

bi _rðt0 þ cihÞTrHðrðt0 þ cihÞÞ þ
Xr

i¼1

b̂i _rðt0 þ ĉihÞTrHðrðt0 þ ĉihÞÞ; ð10Þ
where bi, i = 1, . . . ,s, and b̂i; i ¼ 1; . . . ; r, denote the weights of the quadrature formula defined at the abscissae fcig [ fĉig.
Then, according to [3,4], we give the following definition.

Definition 1. The method defined by the polynomial r(t), determined by substituting the quantities in (7) into the right-
hand side of (10), and by choosing the unknown coefficient {cj} in order that the resulting expression vanishes, is called
Hamiltonian Boundary Value Method with k steps and degree s, in short HBVM(k,s), where k = s + r.

According to [18], the right-hand side of (10) is called discrete line integral associated with the map defined by the
HBVM(k,s) method, while the vectors
bY i � rðt0 þ ĉihÞ; i ¼ 1; . . . ; r; ð11Þ
are called silent stages: they just serve to increase, as much as one likes, the degree of precision of the quadrature formula, but
they are not to be regarded as unknowns since, from (7) and (11), they can be expressed in terms of linear combinations of
the fundamental stages (6).

Because of the equality (10), we can apply the procedure described in Definition 1 directly to the original line integral
appearing in the left-hand side. With this premise, by considering the first expansion in (7), the conservation property reads
Xs

j¼1

cT
j

Z 1

0
PjðsÞrHðrðt0 þ shÞÞds ¼ 0;
which, as is easily checked, is satisfied if we impose the following set of orthogonality conditions:
cj ¼
Z 1

0
PjðsÞJrHðrðt0 þ shÞÞds; j ¼ 1; . . . ; s: ð12Þ
Then, from the second relation of (7) we obtain, by introducing the operator
Lðf ; hÞrðt0 þ chÞ ¼ rðt0Þ þ h
Xs

j¼1

Z c

0
PjðxÞdx

Z 1

0
PjðsÞf ðrðt0 þ shÞÞds; c 2 ½0;1�; ð13Þ
that r is the eigenfunction of L(JrH;h) relative to the eigenvalue k = 1:
r ¼ LðJrH; hÞr: ð14Þ
According to [4], (14) is called the Master Functional Equation defining r: it characterizes HBVM(k,s) methods, for all k P s.
Indeed, such methods are uniquely defined by the polynomial r, of degree s, the number of steps k being only required to
obtain the exact quadrature formula (10).

To practically compute r, we set (see (6) and (7))
Yi ¼ rðt0 þ cihÞ ¼ y0 þ h
Xs

j¼1

aijcj; i ¼ 1; . . . ; s; ð15Þ
where
aij ¼
Z ci

0
PjðxÞdx; i; j ¼ 1; . . . ; s:
Inserting (12) into (15) yields the final formulae which define the HBVMs class based upon the orthonormal basis {Pj}:
Yi ¼ y0 þ h
Xs

j¼1

aij

Z 1

0
PjðsÞJrHðrðt0 þ shÞÞds; i ¼ 1; . . . ; s: ð16Þ
For sake of completeness, we report the nonlinear system associated with the HBVM(k,s) method, in terms of the funda-
mental stages {Yi} and the silent stages fbY ig (see (11)), by using the notation
f ðyÞ ¼ JrHðyÞ: ð17Þ
It represents the discrete counterpart of (16), which may be directly retrieved by evaluating, for example, the integrals in
(16) by means of the (exact) quadrature formula introduced in (10):
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Yi ¼ y0 þ h
Xs

j¼1

aij

Xs

l¼1

blPjðclÞf ðYlÞ þ
Xr

l¼1

b̂lPjðĉlÞf ðbY lÞ
 !

; i ¼ 1; . . . ; s: ð18Þ
From the above discussion it is clear that, in the non-polynomial case, supposing to choose the abscissae fĉig so that the sums
in (18) converge to an integral as r � k � s tends to infinity, the resulting formula is (16), which has been named1-HBVM of
degree s or HBVM(1,s) in [4]. This implies that HBVMs may be as well applied in the non-polynomial case since, in finite
precision arithmetic, HBVMs are undistinguishable from their limit formulae (16), when a sufficient number of silent stages
is introduced, so that a practical energy conservation is obtained, for k large enough [3,4,16,19]. On the other hand, we
emphasize that, in the non-polynomial case, (16) becomes an operative method only after that a suitable strategy to approx-
imate the integrals appearing in it is taken into account. In the present case, if one discretizes the Master Functional Equation
(13) and (14), HBVM(k,s) are then obtained, essentially by extending the discrete problem (18) also to the silent stages (11).
In more details, by using (17) and introducing the following notation:
fsig ¼ fcig [ fĉig; fxig ¼ fbig [ fb̂ig;
yi ¼ rðt0 þ sihÞ; f i ¼ f ðrðt0 þ sihÞÞ; i ¼ 1; . . . ; k;
the discrete problem defining the HBVM(k,s) method becomes,
yi ¼ y0 þ h
Xs

j¼1

Z si

0
PjðxÞdx

Xk

‘¼1

x‘Pjðs‘Þf‘; i ¼ 1; . . . ; k: ð19Þ
By defining the vectors y ¼ yT
1; . . . ; yT

k

� �T and e ¼ ð1; . . . ;1ÞT 2 Rk, and the matrices
X ¼ diagðx1; . . . ;xkÞ; I s;Ps 2 Rk�s; ð20Þ
whose (i, j)th entry are given by
ðI sÞij ¼
Z si

0
PjðxÞdx; ðPsÞij ¼ PjðsiÞ; ð21Þ
we can cast the set of Eq. (19) in vector form as
y ¼ e� y0 þ hðI sPT
s XÞ � I2mf ðyÞ;
with an obvious meaning of f(y). Consequently, the method can be regarded as a Runge–Kutta method with the following
Butcher tableau:
ð22Þ
In particular, when a Gauss distribution of the abscissae {s1, . . . ,sk} is considered, it can be proved that the resulting
HBVM(k,s) method [4] (see also [3,5]):

� has order 2s for all k P s;
� is symmetric and perfectly A-stable (i.e., its stability region coincides with the left-half complex plane, C� [9]);
� reduces to the Gauss–Legendre method of order 2s, when k = s;
� exactly preserves polynomial Hamiltonian functions of degree m, provided that
k P
ms
2
: ð23Þ
4. The isospectral property

We are now going to prove a further additional result, related to the matrix appearing in the Butcher tableau (22), i.e., the
matrix
A ¼ I sPT
s X 2 Rk�k; k P s; ð24Þ
whose rank is s. Consequently it has a (k � s)-fold zero eigenvalue. In this section, we are going to discuss its essential spec-
trum, i.e., the location of the remaining s nonzero eigenvalues of that matrix. Before that, we state a couple of preliminary
results: their proofs follow, respectively, from [15, Theorem 5.6, p. 83] and from the properties of shifted Legendre polyno-
mials (see, e.g., [1] or the Appendix in [3]).
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Lemma 1. The eigenvalues of the matrix
Xs ¼

1
2 �n1

n1 0 . .
.

. .
. . .

.
�ns�1

ns�1 0

0BBBBB@

1CCCCCA; ð25Þ
with
nj ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j� 1Þ

p ; j P 1; ð26Þ
coincide with those of the matrix in the Butcher tableau of the Gauss–Legendre method of order 2s.
Lemma 2. With reference to the matrices in (20) and (21), one has
I s ¼ Psþ1
bXs;
where
with the nj defined by (26).
The following result then holds true.

Theorem 1 (Isospectral property of HBVMs). For all k P s and for any choice of the abscissae {si} such that the quadrature defined
by the weights {xi} is exact for polynomials of degree 2s � 1, the nonzero eigenvalues of the matrix A in (24) coincide with those of
matrix (25), characterizing the Gauss–Legendre method of order 2s.
Proof. For k = s, the abscissae {si} have to be the s Gauss–Legendre nodes, so that HBVM(s,s) reduces to the Gauss Legendre
method of order 2s, as already outlined at the end of Section 3. When k > s, from the orthonormality of the basis, see (8), and
considering that the quadrature with weights {xi} is exact for polynomials of degree (at least) 2s � 1, one obtains that (see
(20) and (21)) for all i = 1, . . . ,s and j = 1, . . . ,s + 1,
PT
s XPsþ1

� �
ij ¼

Xk

‘¼1

x‘Piðs‘ÞPjðs‘Þ ¼
Z 1

0
PiðtÞPjðtÞdt ¼ dij;
and, therefore,
PT
s XPsþ1 ¼ ðIs 0Þ:
By taking into account the result of Lemma 2, one then obtains:
ð27Þ
with the {nj} defined according to (26). Consequently, one obtains that the columns of Psþ1 constitute a basis of an invariant
(right) subspace of matrix A, so that the eigenvalues of eXs are eigenvalues of A. In more detail, the eigenvalues of eXs are those
of Xs (see (25)) and the zero eigenvalue. Then, also in this case, the nonzero eigenvalues of A coincide with those of Xs, i.e.,
with the eigenvalues of the matrix defining the Gauss–Legendre method of order 2s. h

It turns out that such methods, in the form here presented (i.e., having chosen the polynomial basis (9), can be regarded as
a generalization of Gauss methods, in the sense that, they share the same nonzero spectrum, for all k P s. In the limit k ?1,
the same essential spectrum is retained by the limit operator (see (14)). In the case of a polynomial Hamiltonian, such
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sequence of methods starts to be energy-preserving for a finite value of k. Moreover, even though for a general Hamiltonian
the method becomes energy-preserving in the limit k ?1, nevertheless, when using finite precision arithmetic, the limit is
practically obtained for a finite value of k, namely as soon as full machine precision accuracy is achieved.

5. HBVMs and Runge–Kutta collocation methods

By using the previous results and notations, we now further elucidate the existing connections between HBVMs and Run-
ge–Kutta collocation methods. Our starting point is a generic collocation method with k stages, defined by the tableau
ð28Þ
where, for i, j = 1, . . . ,k:
A ¼ ðaijÞ �
Z si

0
‘jðxÞdx

� �
; xj ¼

Z 1

0
‘jðxÞdx;
‘j(s) being the jth Lagrange polynomial of degree k � 1 defined on the set of abscissae {si}. Moreover, given a positive integer
s 6 k, and considering the matrices defined in (20) and (21), we consider the matrix
PsPT
s X 2 Rk�k
with projects into the s-dimensional subspace spanned by the columns of Ps. The class of Runge–Kutta methods we are inter-
ested in, is then defined by the tableau
ð29Þ
We note that the Butcher array A has rank which cannot exceed s, because it is defined by filtering A by the rank s matrix
PsPT

s X. The following result then holds true, which clarifies the existing connections between classical Runge–Kutta collo-
cation methods and HBVMs.

Theorem 2. Provided that the quadrature formula defined by the weights {xi} is exact for polynomials at least 2s � 1 (i.e., the
Runge–Kutta method defined by the tableau (29) satisfies the usual simplifying assumption B(2s)), then the tableau (29) defines a
HBVM(k,s) method based at the abscissae {si}.
Proof. Let us expand the basis {P1(s), . . . ,Ps(s)} along the Lagrange basis {‘j(s)}, j = 1, . . . ,k, defined over the nodes si,
i = 1, . . . ,k:
PjðsÞ ¼
Xk

r¼1

PjðsrÞ‘rðsÞ; j ¼ 1; . . . ; s:
It follows that, for i = 1, . . . ,k and j = 1, . . . ,s:
Z si

0
PjðxÞdx ¼

Xk

r¼1

PjðsrÞ
Z si

0
‘rðxÞdx ¼

Xk

r¼1

PjðsrÞair;
that is (see (20), (21), and (28)), I s ¼ APs. Consequently,
APsPT
s X ¼ I sPT

s X;
so that one retrieves the tableau (22) which defines the method HBVM(k,s). h

The resulting Runge–Kutta method (29) is then energy conserving if applied to polynomial Hamiltonian systems (1),
when the degree of H(y) is lower than or equal to a quantity, say m, depending on k and s. As an example, when a Gaussian
distribution of the nodes {si} is considered, one obtains (23) and, moreover, HBVM(k,s) is also related to the Gauss–Legendre
method of order 2k, according to (29), whose Butcher array coincides with A, with this choice of the nodes {si}.

Remark 2. It seems like the price paid to achieve such conservation property consists in the lowering of the order of the new
method with respect to the original one (28). Actually this is not true, because a fair comparison would be to relate method
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(22)–(29) to a collocation method constructed on s rather than on k stages, since the actual nonlinear system, deriving by the
implementation of HBVM(k,s), turns out to have dimension s, as it has been shown in [3].

Further implications of the isospectral property of HBVMs, among which an alternative proof for their order of conver-
gence, may be found in [6]. A further alternative proof can be found in [7,8].

6. Conclusions

In this paper, we have shown that the recently introduced class of energy-preserving methods {HBVM(k,s)}, when recast
as Runge–Kutta methods, have the matrix of the corresponding Butcher tableau sharing the same nonzero eigenvalues
which, in turn, coincides with those of the matrix of the Butcher tableau of the Gauss method of order 2s, for all k P s such
that B(2s) holds.

Moreover, HBVM(k,s) defined at the Gaussian nodes {s1, . . . ,sk} on the interval [0,1] are closely related to the Gauss meth-
od of order 2k which, although symplectic, is not in general energy-preserving.
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