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Abstract 

Brugnano, L. and D. Trigiante, A parallel preconditioning technique for boundary value methods, Applied 
Numerical Mathematics 13 (1993) 277-290. 

The boundary value methods (BVMS) are a class of numerical methods for solving initial value problems for 
ODES [3,7,14]. One reason that prevented their diffusion in the past years was their higher cost, with respect 
to the standard initial value methods. We show that BVMs may become competitive when they are efficiently 
implemented on parallel or vector computers. 

Since they require the solution of large, sparse block linear systems, usually obtained by using an iterative 
method, a preconditioning technique is needed for their efficient implementation. In this paper we introduce 
and study a new preconditioning technique. 

Some numerical tests on a distributed memory parallel computer are reported. 

1. Introduction 

Let us consider the problem of solving the initial value problem: 

Y’(l) =Ly(t) +qq, Y(4)) =yo, f E po, q > (1) 

where y(t), b(t): [to, T] + R” and L E Rmx” is a constant matrix. Moreover, we shall assume 
that all the eigenvalues of L have negative real part and b(t) is a smooth and uniformly 
bounded function, 

A three-point BVM [2-4,7,13,14] is obtained by first considering a partitioning of the interval 
[to, T], to < t, < t, < . . . < t, = T, such that ti = t,_l + hi, i = 1,. . . , k. The problem (1) is then 
discretized by using a two-step method (main method), while in the last step it is discretized by 
using an implicit one-step method (lust-point method). 

In [5] the stability properties of three particular BVMs have been examined. They utilize, as 
main and last-point method, the couples: 
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mid-point method and implicit Euler method, 
Simpson’s method and trapezoidal rule, 
Adams’ method and trapezoidal rule. 

stability properties were studied in the case of variable stepsizes defined by 

hi+l=rhi, i=l,..., k-l, (2) 

where r > 1 is a fixed parameter, and h, < II L II -’ ( w h en not specified, ]I - II may be I] * II 1, or 
II * II 2, or II . IIJ. 

The discrete problem originated by a BVM for problem (1) is the linear system 

Ay =c. (3) 

The matrix A is block tridiagonal for the three BVMs considered above. In fact, if the 
integration steps are chosen according to (21, A can be written as 

A=T,@I-T2@hh,L, (4) 

where 8 denotes the right Kronecker product (see [ll]), and the matrices T1 and T2 both 
depend on the main and last-point methods chosen. For example 

(1 - r-‘) rm2 

-1 *. *. 
T, = 

..I (l-ree2) r- 

\ -1 1 

and 

‘(1 +r-‘) 

T, = D 

I 

(1 -r-l) 

1 

(6) 

where 

D = diag(1, r, r2, . . * 7 
rk-l 

>, (7) 
define the BVM which utilizes the mid-point method as main method and the implicit Euler 
method as last-point method. If the Simpson method is used as main method and the 
trapezoidal rule as last-point method, then T, and D are the matrices defined above and 

I 

2 

I 

(5) 

T2 = D 

$(l + r-l) +r-’ 
1 

? 

1 

7 i(l + i-l) +r-’ 
1 1 
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Lastly, if the Adams method is used as main method and the trapezoidal rule is used as 
last-point method, then one obtains: 

1 1 
-1 

T,= . . 

\ -; 1 

and 

T2 = (6r(r + l))-‘D 

(9) 

(1+3r)(r+l) -1 

r(2+3r) 

\ 

r(2+3r) (1+3r)(r+l) -1 

3r(r + 1) 3r(r +l)j 

(10) 

where D is the same matrix as defined in (7). 
When the size m of the matrix L is small, the solution of the linear system (3) may be 

conveniently obtained by using a direct method [2]. Conversely it is more convenient to use an 
iterative solver. In both cases, it is possible to efficiently implement the method on a parallel 
computer. In this paper we shall analyze the iterative solution of (3). We stress that in general 
the iterative solver converges very slowly, making the BVMs not competitive with respect to 
other known ODE solvers. In order to improve the convergence of the iterative solver we need 
to precondition the linear system (3). For this reason a new preconditioner will be introduced 
in Section 2. Its properties will be examined in Section 3. In Section 4 its parallel implementa- 
tion will be outlined, while in Section 5 a device to reduce the computational cost of the 
corresponding algorithm in the case of L constant is presented. Finally, in Section 6 some 
numerical tests are reported, from which one realizes that the BVMs are competitive especially 
for very stiff problems. 

2. Preconditioning techniques 

To precondition the matrix A in (3) two ways may be essentially followed: 

l looking for an approximation of the inverse matrix itself; 
l using a suitable approximation of the differential operator from which the matrix A 

originates. 

In a previous paper [4] a preconditioner of the first type was discussed. In this paper we have 
chosen the latter way to obtain a cheaper preconditioner. In particular, when all the eigenval- 
ues of the matrix L in (1) have negative real part, the simplest numerical scheme which 
approximates the differential operator while preserving the qualitative properties of the 
solution is the implicit Euler method. The preconditioner is then obtained by applying this 
method on the same partitioning of the interval of integration considered for the original BVM. 
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The corresponding matrix is the block lower bidiagonal matrix: 

-4 
-I 

(11) 

This matrix is easily invertible. Therefore, we shall solve the linear problem 

P-‘As, = P-k, (12) 

if a left preconditioner is used. Alternately, a right preconditioner may be used: in this case the 
linear systems 

AP-‘z= c, y = p-5 

need to be solved. Since the two approaches are practically equivalent [6], we shall only analyze 
left preconditioning. 

If variable stepsizes in (2) are used, then the preconditioner (11) can be written as: 

P=B@I-D@hh,L, (13) 

where B is the lower bidiagonal matrix defined in (9), and the matrix D is the diagonal matrix 
defined in (7). 

We observe that the term D @ h,L in (13) is a good approximation of the term T2 @ h,L in 
(4). Moreover, if the mid-point method or Simpson’s method are used as main method, then 
the larger Y is, the better B approximates T, (see (9) and (511, while this is always true for the 
Adams method. It follows that we should expect smaller values for K(P-~A), the condition 
number of P-‘A, when r is large. The worst case is Y = 1, corresponding to the use of a 
constant integration step. 

3. Properties of the preconditioned matrix 

In this section we shall study the properties of the preconditioned matrix P-‘A. In 
particular, we are interested in the conditioning of this matrix and in the distribution of its 
eigenvalues. The spectrum of the preconditioned matrix is important since an iterative solver 
belonging to the class of oblique projection methods is used for solving (12): to have fast 
convergence it is desirable to have the spectrum contained in the right half of the complex 
plane, and clustered in a region which does not contain the origin [16,17]. 

Concerning the conditioning of the matrix P-!A, we shall prove that it does not depend on 
the number k of the integration steps, but only on the matrix L which defines problem (1). In 
fact, the following result holds: 

Theorem 3.1. If all the eigenualues of the matrix L have negative real part, then, for the BVM.. 
defined by (4)--(10) and the preconditioning matrix defined by (131, the matrix P - ‘A is well-condi- 
tioned Vr > 1, provided that the imaginary part of each complex eigenvalue is “sufficiently” small. 
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The proof will follow as an easy consequence of the next two lemmas. In the above theorem 
well-conditioned has the following meaning: 

Definition 3.2. A nonsingular matrix is said to be well-conditioned if its condition number is 
bounded by a quantity independent on the size of the matrix. If this quantity depends as a 
polynomial of low degree (1 or 2) on the size of the matrix, then the matrix is said to be weakly 
well-conditioned. 

In [5] the following result is proved: 

Lemma 3.3. If all the eigenvalues of the matrix L have negative real part, then, for the BVMs 
defined by (4)-(lo), the matrix (D -I 8 I)A is well-conditioned Vr > 1, provided that the imagi- 
nary part of each complex eigenvalue is “sufficiently” small. 

Since 

k(P-‘A) = k((P-‘(D @I)(D-‘cW)A) 

<K((D-~ @I)P)K((D-’ @Z)A), 

it follows that Theorem 3.1 will be true if the following result holds: 

Lemma 3.4. If all the eigenvalues of the matrix L have negative real part and P is the matrix 
defined by (131, then the matrix (D -’ 8 I)P is well-conditioned Vr > 1. 

Proof. Let L be a normal matrix and L = QAQT its Schur decomposition, where A = 
diag(A,, . . . , A,) and Q is a unitary matrix. Then, instead of the matrix P, we can consider the 
following matrix: 

(I@QT)P(Z@Q)=B@Z-DDh$=:P,. (14) 
Denoting qi = h,A,, it follows that we can study the conditioning of PN by analyzing the k x k 
lower bidiagonal matrices B - qiD, i = 1,. . . , m. For this reason, let us consider the generic 
matrix 

P,=B-qD, 

where q is a complex number with negative real part. It is straightforward to verify that, in this 
case, the matrix D-‘P4 is diagonally dominant on both rows and columns for every r 2 1. This 
implies that both D-‘P4 and (D-’ @ I)P,,, are well-conditioned. 

This result can be extended to more general matrices L. In fact, let L = Q<A + N)QT be the 
Schur decomposition of L, where N is strictly upper triangular and nilpotent of order m (the 
size of the matrix L). Then, instead of the matrix (13), we can consider the matrix 

(I@QT)P(I@Q)=B@I-D@hlA-D@hlN 

=P,(I@I-PP,-‘(D@hlN)), 
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where PN is the matrix defined in (14). The matrix (D- ’ ~3 I)P, is well-conditioned, as seen 
above. Moreover one has 

P,-‘(D@h,N)=(B@I-Dc3h,A)-‘(Dc3h1N) 

=(IeI-B-‘D@h,A)-‘(B-‘Doh,N) 

km-l 

c bi(B-‘Dfc3n~ (B-‘D@hh,N), 

i=o 

for some scalars b,, . . . , bkm_r (see [ll, Chapter 931, and then 
km-l 

P;l(D ~3 h,N) = h, c bi(B-‘Qi+’ @A’N 
i=O 

km-l 

=: h, c b@-‘I$+’ @i$ 

i=O 

It follows that the matrix is nilpotent of order m, since the matrices fii are strictly upper 
triangular. As a consequence, we have that the matrix (I @J Z - Pi ‘(D 8 h,N)) is invertible 
(since all its eigenvalues are equal to one) and well-conditioned. q 

The spectrum of the preconditioned matrix P-l! will not include the origin, since the matrix 
is well-conditioned. The following considerations will provide some asymptotic (for k z+ 0) 
bounds for the location of the eigenvalues. By using arguments similar to those used in the 
proof of Lemma 3.4, one could show that it is sufficient to analyze the eigenvalue distribution 
of the matrix obtained from problem (1) with L = A, where A is a complex number with 
negative real part. In this case, by posing q = h,h, we obtain the matrix (see (4) and (13)) 

G(q, r, k) = (B - @)-‘(T, -&), 

where q has negative real part. We know that G(0, r, k) = B-‘T, has a multiple eigenvalue of 
multiplicity k which is equal to 1, since this matrix is similar to 

T,B-’ = 

c2 
1 

rp2 

1 

) L II -l, it follows that I q I < 1 must hold. Although it Moreover, since we choose (see [5]) h, < 
is difficult to locate exactly each eigenvalue of G(q, r, k) for q # 0, it is nevertheless possible 
to show that, for r > 1 and k “large”, most of the eigenvalues are clustered near 1. In fact, if p 
is an eigenvalue of matrix G(q, Y, k), then the relation 

D-‘(T, - qT2)x = p(D-lB - qZ)x 

holds for some nonzero vector n = (x1,. . . , xkjT. For the mid-point 
is given by: 

-+5_r + (r I-‘(1 - r-2) + q(l + r-‘)).Xi + Y-i-lXi+l 

=p(-r 1-ixi_l + (F + l)Xi). 

(15) 
method the ith row of (15) 
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Let us suppose now that k B 0. Then, since Y > 1, for i greater than a suitable index i*, since 
the previous relation can be approximated by 

q(1 + Y-‘)q = q/_&xi, 

which shows that p = (1 + r-‘> is an eigenvalue of G(q, r, k) and 

ej= 0 ,..., 0, 1 ( ,O ,..., - OIT 

is the corresponding eigenvector. 
For Simpson’s method and Adams’ method similar arguments hold. Let us briefly sketch 

them for the Simpson method. The ith row of (15) is now given by: 

(fq - ++_i + (r’-‘(1 -Y-2) + $q(l + Y-‘))Xi + ($14 + r-i-l)Xifl 

= j_&( -Yl-%_, + (Pi +q)xJ. 

Let us suppose now that k B 0. Then, since r > 1, for i greater than a suitable index i*, the 
previous relation can be approximated by 

&Xi_, + &(l + r-‘)q + +lqxi+, =qj.Lxi, 

that is 

+ql + i(l + Y-‘)q + +Y-lXi+l =&Xi. 

This means that most of the eigenvalues will be contained in the pseudospectrum of the matrix 
D-‘T2 (see (8)), h h w ic is given by the region enclosed in the ellipse (see [12, p. 1701) 

+(l + yP1)(2 + cos(0)) + it(l -r-l) sin(e), 0 < 8 < 2~. (16) 

Similarly, for the Adams method one obtains that, for Y > 1 and k z=- 0, most of the eigenvalues 
of the preconditioned matrix lie in the region enclosed in the ellipse given by (see (10)) 

1+3r Y(2 + 3Y) - 1 Y(2 + 3Y) + 1 

6r + - 6r(r+ 1) 
cos(f3) + i 

6r(r + 1) 
sin(e), 0<8<2n. 

To give an idea of the effectiveness of the above bounds, we shall consider the Simpson 
method plus the trapezoidal rule applied to problem (1) with 

I 

le4 le3 le2 
L=- 0 lel le0 . 

0 0 le-5 1 

The parameters used are h, = 5e-5, Y = 1.2, k = 150. In Fig. 1 the spectrum of the precondi- 
tioned matrix P-‘A is plotted, along with the ellipse given by (16): 273 of the 450 eigenvalues 
lie inside the ellipse. Moreover, for larger values of k, the number of eigenvalues which lie 
outside the ellipse (177) does not increase: for example, for k = 200 one finds 423 eigenvalues 
(of 600) inside the ellipse. For comparison, in Fig. 2 the spectrum of the non-preconditioned 
matrix A is shown. 
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Fig. 1. Eigenvalues of the preconditioned matrix; the ellipse is the one described by (16). 
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Fig. 2. Eigenvalues of the non-preconditioned matrix. 
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4. Parallel implementation of the preconditioner 

Each application of the preconditioner (11) requires the solution of a block lower bidiagonal 
linear system. Therefore, the natural implementation of the preconditioner is not parallel, since 
the multiplication u := P-‘U is equivalent to the solution of the following block recurrence: 

u1 := (wzlL)-lul, 

ui:=(I-hiL)-‘(u,+Ui_l), i=2 )...) k. 

To get a parallel preconditioner, we consider the following splitting of the matrix (11): 

P=I;-E, (17) 

whece P^ is a block diagonal matrix and E is a nilpotent matrix. The number of diagonal blocks 
of P equals the number of parallel processing units, say p, while matrix E has just p - 1 
non-zero block entries on the lower subdiagonal. From (17) it follows that 

p-1 = (&+E)-‘p-’ =~-‘(~_E~-‘)-l. 
(18) 

The matrix P^-’ is easily obtainable in parallel, while the two matrices (I - E$^-')-' and 
(I,- P-'E)-' ar_e obtainable with expansions which have only the first p terms (since both 
(P-'E) and (EP-') are nilpotent of order p). Therefore, if s <p - 1, (18) is approximated by 

p-1 = i (~-1+1=$-l k (Ep-$ 
(19) 

i=O i=O 

The choice between the two approximations depends on the implementation. For the numeri- 
cal tests reported in Section 6, the first one is used. 

The computational cost of the preconditioner increases with S. However, the minimum value 
of s in (19) needed to obtain an effective approximation is an increasing function of p. It 

follows that an optimal balance between the size of the problem and the number of parallel 
processors needs to be found. A good choice seems to be s =p/2. 

5. Tridiagonalization of the transformation matrix 

We observe that the count of scalar operations needed for the product of A by a vector 
(matvec) is 0(km2). Moreover, the construction of the preconditioner requires 0(km3) flops, 
and the multiplication by P^-’ (see (19)) has a cost of 0(km2) flops. 

The above computations are the most time-consuming operations needed for the iterative 
solution of (12). However, their cost can be reduced when the matrix L in (1) is constant. In 
fact, if L is a tridiagonal matrix, the cost for the matvec, the multiplication by P^-‘, and the 
construction of P-', is reduced to O(km) flops, since all the blocks of the matrices A and P 
are tridiagonal. It follows that the computational cost reduces dramatically, if L is transformed 
to tridiagonal form by means of a similarity transformation. It is known that, when L is 
symmetric, it can be reduced to tridiagonal form by means of orthogonal similarity transforma- 
tions with a cost of 0(m3) flops. However, when L is unsymmetric one cannot rely on the use 
of orthogonal similarity transformations to lead L to tridiagonal form, nor is a general 
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procedure of tridiagonalization known (see [15]). Nevertheless, in [8] an algorithm which 
utilizes Gauss similarity transformations for reducing L to tridiagonal form is described, along 
with a procedure to overcome possible breakdowns that may occur during the basic procedure. 
The whole algorithm has a cost of O(m3) flops and it turns out to be quite robust. This 
algorithm has been considered in the implementation of the BVM used for the numerical tests. 

6. Numerical tests 

In the following tests we shall consider the BVM which uses the Simpson method as main 
method and the trapezoidal rule as last-point method. The iterative method Bi-CGSTAB [19] is 
used for solving the linear system (3). Both left and right preconditioning will be considered. 

Let y@) be the approximation of the solution at the ith step, and rci) the corresponding 
residual. Given a tolerance E > 0, Bi-CGSTAB is stopped as soon as one of the following two 
conditions is verified: 

II rci) Ilcc < E 

or 

y;O _ yji- 1) ) 

maxjma(l, Iy,“)I) <E’ 

The implementation has been made by using the Fortran programming language with the 
Express parallel library [21] and executed on a linear array of transputers T800-20. The 
comparison algorithm used is the solver LSODE from Odepack [lo] available on Netlib. 

In the implementation of the BVM, the step of tridiagonalization of the matrix L has not 
been parallelized since it is not too expensive for the size of the considered tests (m = SO). 
Nevertheless, for larger values of m, it will be convenient to parallelize this step too. 

The construction of the test problems has been made by fixing the spectrum of L and its 
departure from normality A(L) [9]. The resulting matrix has been transformed by means of a 
similarity transformation with a random orthogonal matrix. The vectors b and y, in (1) have 
been chosen at random. 

The preconditioner for the BVM will be identified by a three-digit label 1,&l, defined as 
follows: 

l 1,: 1 for left and 2 for right preconditioning; 
l 1,: length of the truncated sum (s in (19)) used to compute the initial guess y(O) = P-k; 
l I,: length of the truncated sum (s in (19)) used in the body of Bi-CGSTAB to approximate 

P-l. 

The reference solutions have been computed by means of the matrix exponential. In all the 
three test problems reported below, the solution computed by the BVM is at least as accurate 
as the one computed by LSODE. 

A variable stepsize as in (2) is used in all the test problems. 
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-Re 

Fig. 3. Eigenvalues of matrix L, problem 1. 

The BVM has been used with the following parameters: 

i 

400, for problem 1, 

h, = E = le-5, Y = 1.1, k = 320, for problem 2, 

400, for problem 3. 

LSODE has been used on the same mesh, with the following parameters: 

mf= 21, at01 = rtol = le-5, rnxstep = 20,000. 

The spectra of the matrices L are shown in Figs. 3-5 for problems 1-3, respectively. The 
departures from normality of L for the three problems are: 

i 

1.83e0, for problem 1, 

A(L) = 7.00e0, for problem 2, 

7.00e-2, for problem 3. 

The measured execution times (in sets> of LSODE and of the BVM on 1 and 8 processors 
are reported in Table 1, along with the labels of the used preconditioners (in brackets, the 
iterates of Bi-CGSTAB to get convergence are also reported). 

In Table 2 the relative performances on 1 processor and 8 processors are reported. On 16 
processors a slightly better performance is obtainable, but in this case the step of tridiagonal- 
ization (which has not been parallelized) is no longer negligible. Finally, we observe that 
LSODE on problem 3 terminates with an error and does not compute the last part of the 
solution correctly. 
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Table 1 
Absolute performances 

Problem LSODE (1 proc) 

Time 

BVM (1 proc) BVM (8 prod 

Label Time Label Time 

1 61.19 100 70.66 (7) 153 19.00 (7) 
200 76.80 (8) 253 20.25 (8) 

2 2J25.52 100 85.71 (12) 154 24.50 (11) 
200 96.36 (14) 254 29.06 (14) 

3 84,578.41 100 142.27 (17) 164 45.03 (18) 
200 220.04 (28) 264 27.15 (10) 

Table 2 
Relative performances 

Problem 1 BVM lOO/BVM 153 
LSODE/BVM 15 3 

BVM 200/BVM 253 
LSODE/BVM 2 5 3 

Problem 2 BVM lOO/BVM 154 
LSODE/BVM 15 4 

BVM 200/BVM 254 
LSODE/BVM 2 5 4 

Problem 3 BVM lOO/BVM 164 
LSODE/BVM 164 

BVM 200/BVM 264 
LSODE/BVM 2 6 4 

3.72 
3.22 
3.79 
3.02 

3.50 
86.75 

3.32 
73.14 

3.16 
1,878.13 

8.10 
3J15.19 

7. Conclusions 

In this paper we have analyzed a preconditioning technique which makes some BVMs, when 
implemented on a parallel computer, competitive with respect to other known solvers, in 
particular for stiff problems. 

The reported results are relative to the application of the BVMs to a simple autonomous 
linear system of ODES. For this problem, the considered mesh strategy is appropriate. 
Nevertheless, it may result to be unsatisfactory for more general problems: this matter will be 
the subject of forthcoming papers. 
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