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Abstract 

Recently a new parallel ODE solver implementing a “parallelism across the steps” has been proposed (Amodio 
and Brugnano, 1997; Brugnano and Trigiante, 1998). In the mentioned references, the attention was devoted to 
some essential features of the parallel method, which are already present in the case where it is used to approximate 
linear continuous problems. In this paper, the previous analysis is completed by discussing questions which 
typically arise when approximating nonlinear continuous problems. In particular, we shall study, for the parallel 
solver, the problem of the mesh selection and the convergence of the nonlinear iteration. o 1998 Elsevier Science 
B.V. and IMACS. All rights reserved. 
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1. Introduction 

The study of new methods for the numerical solution of initial value problems (IVPs) for ODES, 

y’ = f(t, y), t E (to, Tl, YGO) = 77 E Rrn, (1) 

suitable for parallel computers has been the object of much research in the last thirty years (see [ 1 I] 
for a complete overview). In particular, methods trying to approximate the solution of problem (1) 
simultaneously at different grid points, are classified as having a parallelism across the steps. A new 
method implementing this kind of parallelism has been recently proposed in [ 1,2,9]. The parallel 
solver is based on block Boundary Value Methods (BzVMs), recently introduced by the authors for 
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the approximation of Hamiltonian problems [8-lo]. The same methods have been also considered for 
constructing a very efficient sequential code [12], which compares well with the most reliable existing 
ones (for example, RADAUS). 

The analysis carried out in [ 1,2] concerns the application of the methods to linear continuous problems. 
In such case, in fact, one may not consider, in a simplified analysis, matters which arise when dealing 
with nonlinear problems. Among them, the most important are the mesh selection and the choice of the 
starting approximation to the solution for the iterative process involved. The aim of the present paper 
is the study of such problems. As a result, a complete scheme for the parallel solver will be derived. 
The actual implementation of the proposed method on a parallel computer, along with the analysis of its 
parallel performances, will be considered in a companion paper [3]. 

The structure of the paper is the following: in Section 2 we recall the main facts about BzVMs and 
their parallel implementation; Section 3 is devoted to the mesh selection and the derivation of the starting 
approximation for the nonlinear iteration, whose convergence is studied in Section 4. Finally, Section 5 
contains some numerical tests carried out by using a Matlab prototype of the parallel solver. 

2. Block Boundary Value Methods (B2VMs) 

For a complete description of BVMs we refer to the book [9]. Here we shall confine ourselves to a 
very short introduction. 

2.1. Boundary Value Methods (BVMs) 

The shortest way of introducing Boundary Value Methods (BVMs) is to consider the approximation 
of problem (1) by using a k-step LMF, 

k 

c Qi Yn+i =heDi.fn+it (2) 
i=O i=O 

where, as usual, h = (T - to)/N is the stepsize, y, is the discrete approximation to y(t,) and fn = 
f(tn,yn),tn =to+nh.T o get a discrete problem from Eq. (2), k independent conditions must be imposed. 
They are chosen by fixing the first kl < k initial points, yo, yr, . . . , yk, -1, of the discrete solution, and 
k2 = k - kl final ones, y,&_k2+t, . . . , ye . In other words, we are approximating the continuous IVP (1) by 
means of a discrete boundary value problem. The latter defines a BVM with (k, , k2) -boundary conditions, 
which may be stable and have arbitrarily high order [6]. As matter of fact, the Dahlquist barriers are 
overcome, when kl < k. 

In particular, we shall consider the so called Generalized Adams Methods (GAMs) [4,7,9], which are 
methods having the following form: 

k-v 

Y~-Y,-I=~ C#h+vfn+ij n=v,...,N-k+v, 
i=-v 

where 

for odd k, 
for even k. 

(3) 
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For all k 3 1, the coefficients { j3i } are uniquely determined by imposing that the formula has order k + 1. 
The resulting method must be used with (u, k - u)-boundary conditions. We observe that for k = 1 we 
get the usual trapezoidal rule. 

In principle, the boundary conditions for (3) require the following values: 

Yo, 4’19 . . . . yu-1, YN-k+v+l. . . . > 4’N, 

of the discrete solution. Of such values, only yo is available from the initial condition of the continuous 
problem. However, we can treat the remaining values as unknowns, provided that an equal number of 
equations is introduced. This is done by means of a suitable set of additional initial and jnal methods. 
For GAMs they are conveniently chosen in the following form: 

Yj -yj-l =hkp(“h, j=l,...,u-1, (4) 
i=O 

yj -yj_l =h&pt!ifN-i, j=N-k+u+l,...,N. (5) 
i=O 

The coefficients of the additional methods (4), (5) are uniquely determined by imposing that each formula 
has the same order k + 1 of the main method (3). 

2.2. Block version of the methods and parallel implementation 

From the above arguments one has that a BVM can be considered as a composite method made up by 
a main method coupled with an appropriate set of additional methods. An instance is given by (3)-(5). 
In this formulation, the method only requires one value, i.e., yo. This feature has led to define a block 
version of BVMs [8], which has been successfully used for approximating Hamiltonian problems. 

Thus, the block version consists in discretizing the interval [to, T] by using two different meshes: 
a coarser one and a finer one. Let the coarser mesh contain the p + 1 points 

ri = ri_1 +h^i, i=l,...,p, To - to, tp E T. 

Then, on each subinterval [ri_ 1, ti], i F 1, . . . , p, we apply the same (composite) BVM as described 
above, by using thefiner stepsize hi = hi/s. 

As a consequence, the points in the finer mesh belonging to the subinterval (ri-i , ti], are given by 

tji = ti-1 + jhj, j=l,..., s, i=l,..., p. (6) 
They are called internal steps and the rightmost lower index of tji identifies the ith subinterval. In the 
following it will be convenient to use the notation toi to denote ri_1. In this case, it must be observed that 

to1 = ro, t()i E ti_1 E ts,i-1, i = 1,. . . , p. (7) 

The global discrete problem is then given by 

(A @ 1,)~ - (H. B C3 Ldf = q, (8) 

where the following notation has been used: Z, is the identity matrix of size m (the size of the continuous 
problem), r~ = el @ I], ei is the first unit vector in lRPS+i, and 

Y’(YoT YT ... r;,‘, f=(foT fT ... 
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where 

Yj =($ ... ygT, fi = (.fz . . . fJ)Ty fji = fCtji, Yji). 

Finally, 

A = A,., = 

B= 

i 

1 
-1 1 

*. 1. 

-1 1 

0 

bs & c, 

h 

where (see (3)-(5)), 

[bJ&Ic,] 

= 

(1) 
PO 

BY) 
PO 

(1) B1 -*’ 

#II’“-” . . . 

Bl ... 

PO 

. . 

f HzH/,= 

’ (ps+l)x(ps+l) 

is cs 
. . . . . . 

&l) 

0 

hlzs 

\ 

(ps+l)x(ps+l) 

. . . . 

Bo .‘. 

&-k+v+l) . . . 

(s) 
BO . . . 

bk 

B:s-k+“+‘) 

(s) 
pk 

(9) 

We observe that, because of consistency conditions, the above matrix has unit row sums. 
When the continuous problem (1) is linear, the discrete problem (g) is a lower block bidiagonal linear 

system, whose solution can be efficiently obtained in parallel on p processors. This is, in fact, the basic 
idea exploited in [ 1,2], where it is shown that an almost perfect speed-up can be obtained, provided that 
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the number of steps k of the main method and/or the blocksize s are large enough. This is welcome since 
the higher k, the higher the order of the method. 

When problem (1) is nonlinear, a corresponding linear system having the same structure as in the 
linear case can still be obtained by applying, for example, the Newton method for solving (8). In this 
case, however, the following two problems arise: 

(1) determine an efficient way for choosing the appropriate mesh (i.e., to define the finer stepsizes 
h,...,Q; 

(2) get a good starting point, say y (‘1 for the nonlinear iteration. , 
As matter of fact, both requirements are crucial for the convergence of the nonlinear iteration. 

3. Diagonally Linearized Gauss-Seidel Method (DLGSM) 

In order to solve the above mentioned problems, we propose to use a very cheap sequential method. 
This allows to get the mesh and the starting approximation y (‘) After that, a more accurate discrete . 
solution is obtained by applying the simplified Newton iteration, 

Mz”’ = g(i) , y(i+l) = y(i) _ $1, i = 0, 1, . . . , (11) 

where (see (8)) 

gCi) = g(y(‘)) = (A @I Z,)y ’ - (H . B @ I 

M=(A@Z )-,,,,:I), 

m )jCi) - q, 
(0) m m , 

and J(O) is the block diagonal matrix with the Jacobians of the function f at y(O). 
In Section 4 we study the convergence of the outer iteration (11). For the moment, we analyze the 

starting procedure for determining the mesh points and the vector y (O). This is achieved by using the 
trapezoidal rule, which has stability properties similar to those of higher order GAMs, implemented in 
block form. Namely (see (6)), by considering s consecutive steps with the same stepsize hi. Since this is 
a sequential procedure, we can study it over any subinterval [ti-t , ti] of the coarse mesh. For this reason, 
in order to simplify the notation, we shall skip the index for the subinterval itself. 

Let t be a generic point where the approximate solution qs is known, and let h be the stepsize. The 
discrete problem defined by the trapezoidal rule at the points ti = t + ih, i = 0, . . . , s, is then given by 

(A, @ LJy, - h(4 @ L>fr = el @ II,, 

where ei is the first unit vector in IF!?+‘, and 

(12) 

Y;=(;). r.=(I). B,=; (. 0 1 1 . . . 1 . . 1 1 (s+l)x(s+l) 

Eq. (12), which we assume to have a unique solution, will be solved by using a Gauss-Seidel method with 
diagonal linearization, DLGSM hereafter (Diagonally Linearized Gauss-Seidel Method). By introducing 
the matrices 

I, = Is+1 - WT, L,=2B,-I,, 
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and denoting by Jo the Jacobian of f at the initial point, it is defined by the following splitting: 

( 
A, @In, - 21; @ Jo) yi - ;G 69 b,z).f, = el C3 vs + ;((z @ b&f, - (Is 8 Jo)Y,). (13) 

We then obtain the iterative scheme 

(14) 

where the vectors y$” and fy) contain the approximations to y, and f, (see (12)) at the jth iterate, and 
g is the maximum number of iterations allowed (see later). 

3.1. Convergence of DLGSM 

Let us now study the convergence of the iteration (14). By defining 
e(j) = y _ y’j) 5 T 5 ’ ijp = f t - f$ 

from (13) and (14) we obtain 

j=l,...,g. (15) 

By the way, we observe that if the function f (t , y) is independent of y, namely (1) is a pure quadrature 
problem, then 6 f 5 (j) = 0 and JO = 0. Consequently, one has e, (I) = 0, independently of the stepsize h. The 
same happens for linear autonomous problems. 

Assuming now that the function f is suitably smooth, it follows that 

Jo 
gfW = 5 

( I 

* . e!j’ + O([je~‘/j2) = (Is+1 @I JO + hD, @ 56 +O(h’))elj’ + 0(lley)1[2), 

JS 
where Ji is the Jacobian of f at (ti, y(ti)), Ji is the derivative of the Jacobian at (to, y(te)), and D, = 
diag(O,l,..., s). One then concludes that, if the procedure converges, Eq. (15) can be approximated as 

(A, @I, - hB,Y 63 Jo)eY’ = h 
2(( 

hD, @ Jd)e!j-” +O(jle~-1’1j2)), j = 1,. . . , g. (lo) 

The coefficient matrix (A, 63 Z, - h B,s @I JO) is nonsingular and has a bounded inverse, when JO has no 
eigenvalues with positive real part. The same applies when Jo has eigenvalues with positive real part, 
provided that h is small enough. For sake of simplicity, we shall then assume that the above mentioned 
matrix is nonsingular and with bounded inverse. By considering norms, we finally obtain 

Iley’II < clh211elj-‘)1/ + c2hlle~-“I12, j 3 1, (17) 

for suitable constants ct and c2 independent of h. 
Eq. (17) allows us to derive the following conclusions concerning the convergence of DLGSM: 
1. When Ijeij-‘) )I is large with respect to h, then the first term on the right hand side is negligible. 

Quadratic convergence is then to be expected in the initial iterations. 
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2. Conversely, as soon as the first term dominates, the iteration converges linearly. 
By taking into account that the local error of the trapezoidal rule is 0(h3), the above arguments suggest 
that the number g of iterations for the procedure (14) must be of moderate size. In fact, if we consider 
the starting vector 

y’“‘=(l. l,..., l)T@nrls, r (18) 

the assumptions on the function f imply that ]]ei’)(] z O(h). Consequently, from (17) we obtain 
]]ebj)]] x O(h’j+l), j = 0, 1,. . . , g. Therefore, by using g = 2 we can expect that the error associated with 
the convergence of iteration (14) is smaller than the local error. However, the stepsize control described 
later, based on the estimates 

(19) 

needs g = 3 iterations for the DLGSM. 
Concerning the convergence of DLGSM, it can be established by using the comparison principle [ 131. 

The following sufficient condition is then derived. 

Theorem 1. For all sz@ciently small h > 0, the DLGSM iteration is convergent. 

In order to meet the requirements of Theorem 1, we start DLGSM by using a suitably small 
initial stepsize. This stepsize will be then changed, in the subsequent subintervals, depending on the 
convergence of the method. This is discussed in the following section. 

3.2. Convergence of DLGSM and stepsize selection 

In this section the problem of stepsize selection is analyzed in more detail. Namely, we study the 
determination of the new stepsize h,,,, depending on the current stepsize h and on the convergence of 
the DLGSM iteration. The following arguments assume (see (18)) that, for a suitable B > 0, lIeso)]] x fib. 
In our analysis, we shall distinguish the two cases: (i) B z 1, and (ii) /? << 1. Moreover, by considering 
the comparison equation associated with (17) namely 

xj = ~1 h2X,_l + c2hxf_1, j 3 1, x0 = Ile~"'ii, (20) 

we shall suppose that (see (19)), xj c ]]Q)I] z Ily;j+i) - $11. 
In case (i), by performing g = 3 iterations of DLGSM, we obtain estimates for x0, XI and x2. 

Consequently, from (20) we get 

x3 = B&c, + /k2)h7 
4 x-. 
.“cI 

Having fixed a tolerance E for x3, one then obtains that the stepsize 

h (21) 

can be used for the DLGSM iteration in the subsequent subinterval (or to repeat the current iteration, if 
x3 > E). 
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In case (ii), again from (20), we obtain that, for j > 1, xj x ci h2Xj_l. Consequently, one has 

x3 x c;h6xo x -_ 
x0 

This allows to predict the new stepsize as 

h 

(22) 

(23) 

We observe that, if x0 is small, one could have xj < E for j < 2. In the case j = 2, the estimate (22) 
allows to predict the new stepsize by means of (23). Obviously, we must perform at least two iterations, 
in order to predict the new stepsize. This may be not possible when both ct and c2 are close to zero, as in 
the case, for example, of pure quadrature problems (i.e., when cl = c2 = 0). This matter will be discussed 
later. For the moment, we assume that at least two iterations are performed. In such a case, we obtain 

x: 
x3 a - 

xi' 

and, consequently, the new stepsize is predicted as 

2 l/6 

h new-h Exe . 
( > x: 

(24) 

In the previous relations, by considering E = to1 . x0, one obtains a control of the relative growth of the 
error. Namely, the stepsize is predicted by imposing 

x3 
- = tol. (25) 
x0 

3.3. Accuracy control 

The most commonly used strategy for the stepsize selection is based on the control of the truncation 
error. In the case of the trapezoidal rule, it amounts to determine the stepsize in order to have 

IITtll <t& (26) 

where T, is the vector whose entries are the truncation errors at to, . . . , t,, and G is the given tolerance. 
By using the estimate 

IIT, II z k m?x IlY’3)(ti)llh3T 
we then obtain the new stepsize 

( 12.tol 

) 

113 

~"W = 
S . IIlaXi Ilyc3'(ti)jl . 

(27) 

Approximations for the values yC3)(ti) are obtainable from componentwise second divided differences of 
thefi,i=O,..., s, computed during the DLGSM iteration. 

The previous estimate (27) should then be compared with the stepsize predicted by the convergence of 
DLGSM (see (25)). Since the convergence must be always guaranteed, it should be 

h new < knew (28) 
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for a suitable tolerance tz. If this were always the case, the cost for computing ine,., could be avoided. 
Unfortunately, there are some cases where the above condition is not satisfied. For example, when the 
function f is independent of y, or it is autonomous and linear, one obtains xi = 0, independently of the 
stepsize used, whereas there is a restriction on h,,, . It is then evident that, in such cases, the strategy (27) 
is more restrictive. 

In the remaining part of this section, we shall study the cases where (28) holds true. Let us first suppose, 
for simplicity, that f = f(y) and nonlinear. Then, from the previous analysis, (25) implies that 

c3h6 x “3 = to1 1 
x0 ’ 

where, for h sufficiently small (see ( 16) and (17)), 

CI = II(A, 8 1, - hB, 8 Jo)-‘11 $s @ J;ll = $+;\I. 

It follows that 
3 

M tol, 

that is, 

On the other hand, (26) would approximately require 

which, from (29), gives 

It is then evident that the previous inequality is satisfied with t2 x &, provided that 

Jz Il((a..roiaY)fo)fo + J:~~II 
6. ,y2m3/2 iiwoia_dfoii3’2 

(29) 

(30) 

is not too large. 
It can be shown that the above result continues to hold when f is not autonomous, but with a 

“moderate” dependence on t . We then conclude that inequality (25) is sufficient for selecting the stepsize 
when problem (1) is autonomous (or “almost” autonomous), provided that (30) is not very large. In all 
other cases, the new stepsize will be that given by (27). 

The above arguments can be summarized as follows: 
(1) 

(2) 

when both 

df -&t> Y> = JO, Y)fO, Y), 
ii~woiwfo~.fo + ~02.f~ii < v 

iiwoiwfov2 ’ ” 
(31) 

hold true, where u1 is suitably chosen, we use the requirement (25) for the mesh selection; 
conversely, we use (26). 
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In practice, (31) is assumed to hold true when both 

llfl - foil < 1.1 IIJofoll7 llf6’ll 
h (llfo” - Jo2folllll.foll)3’2 G ulr (32) 

are satisfied. Here f[ is the second derivative of f at (to, ~0). Conversely, (31) is assumed to be false. As 
a matter of fact, for the numerical tests in Section 5 the two above requirements are fulfilled at almost all 
grid points. Consequently, the mesh is essentially always selected through the convergence of DLGSM. 

We observe that the checks (32) only require to know information at the initial point. This implies 
that, in the actual implementation of the above procedure on a parallel computer [3], the corresponding 
computational load can be done in parallel by a different processor. On the contrary, the computation of 
Knew needs to be done sequentially. 

4. Convergence of the nonlinear iteration 

Next theorem is a useful tool in studying the convergence of the iteration (1 l), used for solving 

g(y) = (A @ 2,)~ - (H . B 63 LJf - q = 0. 

Theorem 2. Assume that 
(a) g is diferentiable in Da = {x: [Ix - 711 6 a}; 
(b) y(O) E 27 . 
(c) IIM-‘(g’iy) - g’(x))ull 6 wily -XII ll~((, for all x, y E Da and u such that I/y - x - VII < a; 
(d) 8~ ;a~ < 1. 

Then the simpli$ed Newton iteration (11) converges to the solution 7 at least linearly. 

Proof. We recall that the matrix M in (11) is nothing but g’(y (O)). The thesis is then proved by showing 
that 

(jy(‘) - j.11 < fQy’O’ - 711. 

For i = 1, in fact, we have 

lb (l) - yll = l/y(O) - y - iii-’ (g(y’O’) - g(y)) 11 
= IIM-’ (g’(y’O’) (y(O) - 7) - k(Y'O)) - km)) II 

< I ’ IIM-l(g’(y’o’) -g’(y+t(y(‘)-y)))(y(‘)-y)lldt 
0 

1 

G I YU -01/Y (‘) - yl12dt < ~~lyl~y’~’ - 711 < eIJy’“’ - y/l. 
0 

By induction, we now suppose true the result for i. Then, for i + 1, we get 

lly @+l) - 711 = lly(‘) _ j7 _ ~-1 (g(y(i)) _ g(j-j) Il 
= IIwd(Y’“‘) (Y(j) - 7) - (g(y(‘)) - g(B)) 11 
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< I/M-’ (g’(y’“‘) - g’(p)) (y”’ - y-) 11 
+ p-’ (d(Y"') (Y"' - 7) - (g(y"') - g(L))) 11 

6 Y llY(O) _ y(i) 11 lly(i) _ yl/ 

1 
P 

+ I IlM-’ (g’(y”‘) - g’(y + t(y"' - 7))) (y”’ - 7) 11 dt 

0 

6 Y (IIY'"' - 711 + IIYCi) - 711) IIY(') - 711 + ;Y llYCi) - Y112 

< ;Y IIY’O’ - yll lly(‘) - yj/ < L911y”’ - 711. 0 

Remark 1. It is worth noting that, since all GAMs have similar stability properties, the conditioning of 
the matrix M is almost independent of the particular method considered in this class. Consequently, it 
is reasonable to expect that the above parameter 19 does not vary sensibly for such methods. This fact 
is actually observed in practice. In fact, the simplified Newton iteration (11) requires approximately the 
same number of steps to have the same stopping criterion satisfied, independently of the method chosen. 

The result of Theorem 2 is of practical interest, since we can get cheap estimates for the two parameters 
Q! and y during the execution of DLGSM (see next section). If necessary, this allows to split the interval 
of integration into suitable “windows”, where the convergence of the simplified Newton iteration (11) is 
assured in a given number of steps. 

In other words, having fixed an upper bound &,, for the parameter 8, we use DLGSM until the 
estimate for 8 is smaller than 8,,, . As soon as this bound is exceeded, we stop DLGSM, thus determining 
the first “window”, where the simplified Newton iteration (11) (i.e., the parallel section of the method) 
is carried out until convergence. After that, we start DLGSM again, thus repeating the above procedure 
until the whole interval of integration is covered. 

4.1. Estimates for the parameters cx and y 

In this section, we shall get estimates for both parameters a! and y defined in Theorem 2. They are 
obtained dynamically during the execution of DLGSM. In particular, we show that to each subinterval 
[ri-i , q] of the coarse mesh we can associate a couple of parameters (oi, yi) which take into account of 
all the integration up to ti . 

Suppose, for simplicity, that only one window is needed. We start considering the first parameter, 
which, in practice, is the measure of the global error up the current subinterval. In fact, by considering 
the vector p whose (block) entries are the values of the continuous solution at the grid points, one has 

a = lly - y(O)11 = (Ijj - y(O)((. 

This because 7 is the solution of the discrete problem given by a higher order method than the trapezoidal 
rule, which provides us with the starting vector y(O). 
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Let & be the vector whose entries are the errors over the i th subinterval. It is then not difficult to realize 
that, at first order approximation, it satisfies the equation (see (8) and (12)) 

(Ai., @ Zm - (HiBi., @ I,)JiO’) (33) 

where Jj”’ is the block diagonal matrix with the Jacobians of f at (to, y,$“), . . . , (tsi , y$‘), and the vectors 
{ 7”) contain the truncation errors over the corresponding subintervals of the coarse mesh. Consequently, 
by considering that (33) is a lower block bidiagonal linear system, one obtains the following recurrence 
(hereafter, see (7)), let Jjr be the Jacobian of f at (tj,, yj:‘), Jar = Js,r_l, r > 1, and JOI = JO, 

Jar 

A, @ I,,, - h,B, 8 I,,, . . . 1) 
-1 

r=1,2 ,..., i, (34) 
J ST 

where 6,.,-i is the last block entry of &_I, and &a = 0. The vectors (6,) are then obtained, provided that 
estimates for the truncation errors {T,} are available. This can be done, as previously said, by means 
of componentwise second divided difference of the function f. Alternatively, a deferred correction 
approach as described in [5,9] may be used. 

In practice, in order to reduce the computational effort, the above recurrence (34) is approximated by 

JS,,-1 

( > 6, 
= (A, ~3 Z, - h,B, C3 JOT)-’ 

( ) 
“;-l , r=1,2 ,..., i. 

The coefficient matrix turns out to be block Toeilitz lower bidiagonal, whose diagonal block, (I, - 
$hr Jar), has already been factored during the DLGSM iteration. 

By using hereafter the infinity norm, we then conclude that to the ith subinterval there corresponds a 
parameter 

ai = mm{W--l, II& II}, i 2 1, a!() = 0. 

A similar approach can be used for the parameter y. In fact, one verifies that 

g’(y) - g’(x) = (Ha B 8 hn)(J(@ - J(Y)) = (H 8 &n&W - J(Y)), (35) 

where J(x) and J(y) are the block diagonal matrices, whose diagonal blocks are the Jacobians of the 
function f evaluated at the entries of x and y, respectively. The last approximation follows from the fact 
that the matrix B (see (9), (10)) has unit row sums. 

We shall then obtain the estimate for y by fixing a particular direction x - y, and a vector u of unit 
norm. In practice, in the ith block we assume that the Jacobian matrices all coincide with Joi, which 
corresponds to the initial condition, yai (i.e., ys,i_l), for the current block. Then, after we have carried 
out the DLGSM iterations, in order to start the procedure in the subsequent block, we need to compute 
Jo.i+l s Jsi, namely the Jacobian at ya,i+i E ysi. AS a consequence, by setting E, = (1, . . . , l)T E IF!‘, we 
choose 

Z= 1 = (J(x) - J(y))u = 0 

\ Es @ (Jop - Jsp)vp 



L. Brugnano, D. Trigiante /Applied Numerical Mathematics 28 (1998) 127-141 139 

where the {vi} are the block entries of u (let yoi = yo), defined as 

uo =o, u, = YOi - Ysi 

’ IIYOi - Ysill ’ 
i = 1,. . .) p. 

Consequently, we determine the approximation for y such that 

y ~ llwll 
Ilull ’ 

where (see (35)) 

w = M-’ (H 8 Zm)z * M-’ (g’(y) - g’(x)) u, 

and 

u = (0, ui, . . . , z.g, Ui=E,@((Yoi-ysj), i=l,...,p. 

By using as an approximation for M the matrix computed for the DLGSM iteration, we then obtain 
the following recurrence for the entries of the vector w: 

=(@‘I,-W,@Jo,)-’ , r-=1,2 ,..., i. 
Consequently, we choose the following approximation to the parameter y up to the ith subinterval: 

1 { II wi II 
max yi-” IIYs,i-1 - Ysi II I ’ Yi = 

if IlYs.i-I - Ysi II > 0, i > 1 / 3 
I Yi-13 

having set yo = 0. 

otherwise, 

We then conclude that, during the DLGSM iteration over the ith subinterval in the coarse mesh, we 
can obtain cheap estimates for ai and yi and, therefore, for the parameter 8i which determines the speed 
of convergence of the outer iteration (11). Consequently, when such estimate is larger than a fixed 0-, 
we end the sequential procedure based on the DLGSM. Namely, we have determined a window where 
we perform the simplified Newton process (11). As previously said, the whole procedure is then repeated 
until the entire interval of integration [to, T] is covered. 

5. Numerical examples 

In this section we report some numerical tests obtained by using a Matlab prototype implementing 
the procedure previously described. In all cases, we use the 9th order GAM (GAM9), after the DLGSM 
iteration. The tolerance used for the DLGSM iteration is to1 = 10e6, with tolerance to1 = lop3 in case of 
switch to the local error control. Moreover, the value 19~ is chosen in order to have convergence for the 
outer iteration (11) in at most four iteration. The stopping criterion for the Newton iteration is 

lyl’+” - y!i)( 
max 

i I + ly:i+l:l G 1O-9, 

where yy) is the jth entry of y ci). For comparison, we also report the results on the same problems by 
using the stiff solver ode23s, taken from the Matlab ODE Suite [15]. In order to have a comparable 
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Table 1 
Numerical results 

Number 

of 

Robertson van der Pol Hires 

GAM9 ode23s GAM9 ode23s GAM9 ode23 s 

windows 3 - 9 - 1 _ 

points 1010 7883 1851 86541 488 18210 

fev 2530 23654 6280 259628 1560 54629 

Jev 1010 7883 1851 86541 488 18210 

flops 3.4 x 106 2.2 x 106 2.7 x lo6 14.3 x 106 14.1 x 106 22.4 x lo6 

accuracy for both solvers, we have used ode23s with the following parameters: atol = rtol = lo-“, and 
providing analytically the Jacobian. Such parameters have been obtained by comparing the solutions 
computed for two of the following problems at selected grid points, where the values of the exact 
solutions are known. For both solvers we report the number of mesh points, function and Jacobian 
evaluations, and the number of Matlab flops. For the prototype of the parallel solver we also report 
the number of windows required to cover the integration interval. Finally, we want to mention that the 
flops count for GAM9 includes some extra work required for getting an approximation to the global error. 

The first problem we consider are the Robertson equations 

y; = -0.04yt + 104y*ys, 

y; = 0.04yt - 104y*ys - 3 x 107y;, t E [o, 10’51) 

y; = 3 x 107y;, 

Ylm = 1, Y2(0) = Y3@) = 0. 

The second problem is given by the van der Pol equations 

Y; = Y29 

y; = -Y1 + PY2(1 - Y:), 

Yl (0) = 27 Y2(0) = 0, 

where ,X = 106. 
Finally, the third problem is the Hires problem, a stiff ODE of dimension 8, taken from [14]. In 

Table 1 we report the obtained results, as described above. It is worth mentioning that for the van der 
Pol problem, whose solution has a huge spike near t = 806853, more than one window is needed to 
cover the interval [0, 106] (actually 9 of them), with the first window ending at about t = 806009. This 
confirms the reliability of the proposed procedure for detecting the intervals where the Newton iteration 
does converge. 
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