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Abstract 

A new parallel solver for ODES implementing a “parallelism across the steps” has been recently proposed in 
(Amodio and Brugnano, 1997; Brugnano and Trigiante, 1998), where it is shown that it is able to obtain an almost 
perfect speed-up on linear problems, and given mesh. A possible way to adapt this algorithm to efficiently handle 
nonlinear initial value problems has been studied in the companion paper (Brugnano and Trigiante, this issue). The 
corresponding algorithm is here analyzed in details, in order to show its parallel efficiency. Numerical tests on a 
distributed memory parallel computer are also included. 0 1998 Published by Elsevier Science B.V. and IMACS. 
All rights reserved. 
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1. Introduction 

Finding methods and strategies for solving the problem 

Y’ = f(t, Y), t E 00, n YOO) = rl E Rrnl 
on parallel computers has been the matter of several researches in the last thirty years (see [8] for a more 
complete overview). Such methods have been classified in different classes, according to the way they 
exploit the potentialities of a parallel machine. In particular, when the gain from parallelism consists 
in looking for simultaneous approximations to the solution at different grid points, one speaks about 
paruZZeZism acrus~ the steps. A new method of this kind has been recently proposed [ 1,2] (see also [6]). In 
the above references the proposed algorithm is able to reach an almost perfect speed-up when problem (1) 
is linear and the mesh is fixed. This is achieved by constructing the whole discrete problem, consisting in 
a lower block bidiagonal linear system, whose solution can be efficiently obtained on a parallel computer. 
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The extension of this approach to general nonlinear problems, requiring a variable mesh, needs 
additional efforts. In particular, the convergence of the iterative procedure used for solving the discrete 
problem must be handled. This matter has been recently studied in [7] where, essentially, a two-step 
procedure has been proposed. Suppose then that the vectors y and h contain the discrete solution and the 
stepsizes defining the optimal mesh to be used, respectively. Both vectors are in general unknown and 
are obtained by solving a discrete problem of the form 

WY, h) = 0, (2) 

where G depends on the chosen method and on the function f in (1). Problem (2), however, is not easily, 
nor cheaply solvable. Consequently, an efficient parallel procedure cannot in general rely on the direct 
solution of such equation. For this reason, in [7] it has been proposed to first solve a much simpler (and 
cheaper) problem, 

Gi (5, h) = 0, (3) 

in order to derive a suitable mesh h and an initial solution y. Then, one solves iteratively the problem 

G~(Y> =O, (32(y) = G(y,h), 

starting from the vector y(O) = y. 

(4) 

The solution of problem (3) is obtained by using an almost sequential procedure, called DLGSM [7]. 
On the other hand, problem (4) can be efficiently handled in parallel by using the modified Newton 
procedure, since the same approach described in [ 1,2] can be used at each iteration of such method. 

The structure of the paper is the following: Sections 2 and 3 are devoted to study the complexity of the 
two steps of the above procedure. Since this paper is strictly related to the companion paper [7], we use 
the same notation defined there. In Section 4 a model for the expected speed-up of the whole algorithm 
is derived. Finally, Section 5 contains some numerical tests carried out on a distributed memory parallel 
computer, along with some concluding remarks. 

2. Analysis of the DLGSM step 

In this section, we analyze the implementation of the first step of the procedure described above. The 
goal of this starting procedure is twofold: 

(1) determine a suitable coarse mesh, 

to ES to < tl < . . . < tp < T, 

and a corresponding fine mesh, 

tni = ri_1 + nhi, Iz= l,...,s, hi=(ti-Xi__1)/S, i=l,...,p; 

(2) determine an approximate solution 

YniXY(tni), n=l,..., S, i=l,..., p, 

such that the vectors 

(5) 

i;=(h,, hz, . . . . h,)T@E,y, E,=(l,..., l)T~RS, (6) 
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and 

Y= (%Yll T..., Ys ,,..., y,p ,..., y,JT (7) 

satisfy Eq. (3). This is achieved by performing, over each subinterval [ri_r , ti], i = 1, . . . , p, s steps of 
the trapezoidal rule with stepsize hi. Such operations are performed by the ith processor, assuming 
that p processors are available. The choice of the trapezoidal rule is due both to its relatively low 
computational cost, and to its stability properties, which are similar to those of GAMs [5,6]. the methods 
used in the second step. 

It is remarkable to observe that the window [to, tP] in (5) is dynamically determined in order to 
guarantee the convergence of the modified Newton iteration, used for solving (4), within a given number 
of steps [7]. This implies that in general more than one window may be required to cover the interval 
[to, T] of problem (1). However, the control of the convergence of the nonlinear iteration for solving (4) 
requires an additional computational effort, with respect to that needed to solve (3). The latter equation 
is solved by using an iterative procedure, called Diagonally Linearized Gauss-Seidel Method or, shortly, 
DLGSM. On the ith subinterval it is defined by the following iteration where, hereafter, Z,. is the identity 
matrix of size r, 

n=l,... ,s, j = 1,2,3. (8) 

In (8) Jai = J (ri-1, yoi), where J(t, y) denotes the Jacobian of the function f evaluated at (t, y), j is 
the index of the DLGSM iteration, and f,‘i” = f (tni , yy’). Finally, the starting vectors are given by 
y’?’ = y nr s., 9 ‘_, 12 = 0 .., s, where for i = 1, yso = q is the initial condition of problem (I), and, in general, 
ys,i-1 E YOi z y(til;) is known from the previous subinterval. 

In [7] a complete convergence analysis for such iteration is done, resulting in a mesh selection strategy 
which determines the new stepsize hi+1 in order to have the error at the third DLGSM iteration adequately 
small. Such stepsize selection, done by controlling the convergence of DLGSM, is also able to control the 
truncation error (or the local error), with the exception of some pathological cases. The latter are avoided 
by switching to the control of the truncation error when either one of the following two conditions holds 
true (the norm used is the infinity norm): 

llfli - fOi II II fdl II 
h 

> l. l II JOi fOi II 9 
(llfdf - J~fOiIIIIlfOill>3’2 ’ “’ 

(9) 

where f;i is an approximation to the second derivative of f at (toi, yoi), and ur is a fixed tolerance. 
In such a case, the new stepsize is determined by taking into account suitable error estimates (see [7, 
Section 3.31). 

The arithmetic complexity of the step is summarized in the following list, where we count as 1 jlop 
one of the four basic binary joating operations: 

(9 
(ii) 

(iii) 

(iv) 

1 Jacobian evaluation; 
s function evaluation per iteration; 
irn3 + O(m*) flops for the factorization of the matrix I, - 0.5hi Joi; 
4sm* + O(sm) flops per iteration for both evaluating the right-hand side and solving the linear 
system (8). 
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Consequently, if three iterations are performed, we obtain a total of x $m3 + 12sm2 flops, 1 Jacobian 
and 3s function evaluations. After that, the checks (9) are performed, requiring approximately 4m2 flops, 
and, when needed, the computation of the truncation error (or the local error), that requires an additional 
cost of O(sm) flops (respectively, 0(sm2) flops). However, on a parallel computer the quantities needed 
for checking (9) can be computed by the (i + 1)st processor, while processor i performs the computations 
in (i)-(iv). 

After the above operations, by considering that the ith subinterval is handled by the ith processor, the 
final point (tsi 9 ysi) and the new stepsize h;+t are sent to processor i + 1, which starts the same procedure 
for the next subinterval. In the meantime, the ith processor carries out the procedure for the dynamic 
determination of the window of integration, where the convergence of the modified Newton method 
for solving (4) should be assured. This is done by computing approximations to the two parameters 
ai and yi (see [7, Section 4.11 for further details), used to control the convergence of the nonlinear 
iteration. It requires an additional Jacobian evaluation (at the final point tsi) plus the solution of 2s linear 
systems with the same coefficient matrix factored in step (iii) (X 4sm2 flops) and the transmission of 
two auxiliary vectors. However, if implemented on a sequential computer, the new Jacobian evaluation 
does not introduce additional overhead, since it should be evaluated anyway to carry out the iteration 
over the next subinterval. Similarly, the whole additional cost is not effective in the implementation on 
a parallel computer, since all the operations are executed when the subsequent processor performs the 
operations (i)-(iv) previously listed (obviously, corresponding to the next subinterval). The following 
diagram summarizes the operations which can be executed concurrently on processors i - 1, i, i + 1, 
i=l,... , p, where, for simplicity, processors 0 and p, as well as processors 1 and p + 1, coincide. 

computes c”i _ 1 and yi _ 1, 
,m 

then communicates to 

I I 
if the integration continues, 

processor i if the - sends (t,i, y,i) and 
integration continues 

processor i - 1 

hi+] to processor i + 1 

processor i processor i + 1 

The DLGSM procedure is stopped as soon as the product aiyi exceeds a given upper bound, chosen 
in order to have the modified Newton iteration converging in a given number of steps. In such a case, the 
window is chosen as the interval [to, ri+i]. 

We conclude summarizing that the first step of the procedure has a sequential complexity of 1 Jacobian 
evaluation, 3s function evaluations and im3 + 16sm2 + O(sm) + O(m2) flops, whereas the parallel 
complexity (three processors are active at each time) amounts to 1 Jacobian evaluation, 3s function 
evaluations and $m3 + 12sm* + O(sm) + O(m*) flops. 

For what concerns communications, processor i reads one scalar flag from processor i + 1 (i.e., the 
flag for the stepsize control, containing the sum of the Boolean values of (9)). From processor i - 1, it 
reads the starting point (ts,i-i, y,,i-i), the stepsize hi, the two SC&WS ai- and yi-i plus the two auxiliary 
vectors that are needed to compute CX~ and yi. After that, it sends to processor i + 1 the final point (tsi, y,i), 
the new stepsize hi+i, and the two parameters ai, yi, along with two auxiliary vectors. Consequently, 
assuming a ring topology connecting the p processors, we have a total complexity of (3m + 4)p data 
transmitted among adjacent processors (which reduce to (m + 4)p if we consider that the transmission 
of 2mp data overlaps the remaining workload). 



The second step of the procedure, as sketched in the introduction, consists in applying the modified 
Newton procedure for solving Eq. (4), starting from the vector y(O) = y obtained by the DLGSM 
procedure. This amounts to solve the linear systems of equations (see [7, Section 3]), 

Mz(j) = g(j) , j=o,i ,...( (10) 

then updating 

y(j+i) = y(j) _ z(j) (11) 

until a suitable stopping criterion is satisfied. The matrix M turns out to be lower block bidiagonal, 

Il?l 
VI Ml 

M= 

( .J 

V2 M2 (12) 
-. . . 

VP MIJ 

P. Amodio, L. Brugnano /Applied Numerical Mathematics 28 (1998) 95-106 99 

3. Analysis of the second step 

where, for any allowed index i, the matrices M; and Vi are sm x sm, 

Jli 
Mi=A,s@~m-hi(Bs@~m) 

( 1 

. . . 7 
Jsi 

Vi = [O 1 vi], Vi =u, @ Zm -bib, @ Js.i_1, 

[a, A,y] and [b, B,] contain the coefficients of the used k-step GAM (having order k + l), and 
Jni = J(t,i, y,i). The rightmost lower index of each quantity usually denotes the subinterval in the coarse 
mesh. When using a distributed memory parallel computer, it also identifies the processor where the 
given quantity has to be stored. Indeed, processor i deals with the computational load corresponding to 
the subinterval [+I, q] in the coarse mesh (5), when p processors are available. 

In order to efficiently solve the linear system (10) on a parallel computer with p processors, according 
to [ 1,2] we consider the factorization M = D T, 

&?I 
WI Is, 

D= T= 

i ..I* 

w2 IsIn 
. . . . 

wp L 

where the blocks Wi are sm x sm, Wi = [ 0 1 Wi], and Wi is the solution of 

MiWi=Vi, i=l,...,p. (13) 

The above factorization is indeed able to produce a very efficient parallel algorithm on p processors. In 
fact, the two factors can be easily computed in parallel. Moreover, since the matrix D is block diagonal, 
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the p subsystems corresponding to its diagonal blocks can be solved independently. 
T can be permuted to get 

I(s-1)m 6 0, 
*. . . 1. 

&)rrl WP 0, 
b?l 
Wsl L 

0 -. *. 

WSP Ln 

Finally, the matrix 

where 0, is the m x m zero matrix, and (see (13)) 

wi E wi c-1 Wsi 
9 W.yi E lRmx”. 

Consequently, we still have perfect parallelism on p processors, once the reduced system with the reduced 
matrix 

Ll 
ws1 &I 

( 4 

. . . . 

WSP 4tl 

has been solved. We observe that such matrix has dimension (p + 1)m x (p + l)m, and then the 
(sequential) solution of the reduced system only requires 2pm2 + pm flops plus p data transmissions 
of length m, which are the only transmissions needed in the second step of the procedure. It is worth 
noting that, in practice, the whole computational load for solving the reduced system is negligible. This 
also because it is hidden by the asynchronous workload of the processors, due to the sequential nature of 
DLGSM. 

For what concerns the check of the exit condition for the Newton iteration, since the matrix M in 
(10) is blo$ bidiagonal (see (12)), on processor i we only consider the norm of the first i blocks, say 

(j) 
ZI ,...,Zi , of the vector z(j). This means that, in general, processor i may require a number of Newton 
iterations smaller than that required by processors i + 1, . . . , p. Consequently, the size of the bidiagonal 
system depends on the the number of processors for which the Newton iteration is not yet completed. 

The following list summarizes the sequential computational cost of this section where k is the number 
of steps of the GAM chosen and, for brevity, we neglect the smaller terms: 

(1) p(s - 1) additional Jacobian evaluations for constructing the matrix M; 
(2) ~0 - k/W 2m3 flops for the factorization of the blocks Mi ; 
(3) 3pskm3 flops for constructing the block vectors wi (see (13)); they are not required if the code is 

run sequentially; 
(4) ps function evaluations plus 3pksm2 flops for each iteration (lo)-( 11); 
(5) x 2pm2 flops plus p transmissions of length m for the solution of the reduced system in each 

Newton iteration (sequential section). 
After the new, more accurate, discrete solution has been obtained, an approximation to the global error 

over the whole window is also computed. This requires a computational cost equal to that needed for one 
iteration (lo)-( 11). In fact, the vector e whose entries are the (estimate) global errors at the grid points, 
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is obtainable through deferred correction by solving a linear system with the same coefficient matrix in 
(12), whose right-hand side is obtained by using the block GAM of order k + 2 [3,6]. 

4. Expected speed-up 

We are now in the position of deriving a simplified model for the expected speed-up of the whole 
procedure (first and second step) when executed on p (p > 1) processors. In the expression, we use the 
following ratios: 

.L 
time for 1 Jacobian evaluation 

f^= 
time for 1 function evaluation 

time to execute 1 flop ’ time to execute 1 flop ’ 

and 

d^= 
time to send/receive 1 datum 

time to execute 1 flop . 

We neglect the smaller terms, in order to avoid a huge expression. Moreover, we assume to get 
convergence for the modified Newton iteration (lo)-( 11) in at most three iterations. Consequently, by 
considering all the arguments in the previous sections, we obtain that the speed-up S, is given by 

S,(k. s, m> 
(ps + l)f+ 7psf+ (12k + 16)spm2 + ((s - $)k’+ $)pm’ 

= (p +s)J^+ (3p +4)sf^+Spmi?+ (12ks + 12~s + 8p)m2 + ((s - $)k2 + 3sk + fp)m” 
(14) 

where we recall that: 
?? p is the number of subintervals in the window, which equals the number of the processors used; 
?? k is the number of steps of the GAM used; 
?? s is the number of points in each subinterval; 
?? m is the size of the ODE. 
In order to make some prediction, we can consider the case where each entry of the Jacobian matrix, 

as well as each entry of the function f, requires O(1) flops, so that ? = O(m’) and f^ = O(m). 
Consequently, for m sufficiently large, we have that 

S,(k, s, m) z P 
1 + 3sk+2(p-I)/3 ’ 

(s-k/3)kz+2/3 

(15) 

Considering that s > k, we obtain that the right-hand side in (15) for p < sk, is greater than 
p( 1 + 5.5/k)-‘, which may become significantly close to p as k grows. Anyway, this is welcome, since 
the higher k the higher the order of the method (which is equal to k + 1). Moreover, also the assumption 
p -c sk is reasonable since, for example, for k = 8 and s = 10 we obtain p < 80. In addition to this, the 
right-hand side (15) is able to provide us with the following information about the speed-up. Namely, 

(1) it increases with k; 
(2) it increases with s, provided that k 3 2 (which is trivially satisfied); 
(3) it increases with p, even though the parallel efficiency, i.e., E, = S,/p, decreases monotonically. 

Concerning the last point, it is an easy matter to verify that the values of S,,, accumulate towards 
1 + 1.5(s - k/3)k2, as p -+ co. 
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4.1. Expected speed-up for Jixed number of processors 

The previous analysis applies to the case where: 
(a) one window is required for solving problem (1); 
(b) the number of parallel processors equals the number of subintervals in the window. 

The above assumptions, however, may not hold in general since, as we have said, the width of the window 
(and then the number of subintervals needed to cover it) is dynamically determined in the first step of the 
procedure, whereas the number of processors is generally fixed. Moreover, the problem may require more 
than one window, and the number of subintervals inside each window may differ. As a consequence, it is 
appropriate to slightly modify the previous analysis to handle the more general situation. Nevertheless, 
in order to keep the analysis as simple as possible, we shall consider the simpler case of one window, 
containing e subintervals, when p processors are available, even though the arguments can be readily 
generalized to the case of multiple windows. 

By slightly modifying the analysis in the previous sections, we then obtain that the sequential execution 
time is given by 

Tt = (1 + sC)J^+ 7sef^+ (12k + 16)s&z2 + ((s - k/3)k2 + +)Em’. 

Similarly, the parallel execution time on p processors turns out to be 

(16) 

(17) 

Evidently, when C = p, (16) and (17) reduce to the numerator and the denominator of (14), respectively. 
Proceeding as done in the previous section, when m >> 1 the speed-up on p processors (i.e., the ratio 

T, / TP) is approximately given by 

s, x 
((s - k/3)k2 + 2/3)l 

(sk2 - k3/3 + 3sk) [l/p1 + (2/3)e ’ 
(18) 

The right-hand side in (18) provides the same value as the right-hand side in (15) if the ratio l/p is an 
integer, or very close to it if e >> p. Conversely, it may be much smaller. 

We also mention that the conclusions at the end of the previous section, derived from the right-hand 
side in (15), can be extended to the right-hand side in (18), provided that the term “increases” at the third 
point is replaced by “does not decrease”. 

5. Numerical tests 

We now report numerical results obtained on a few test problems taken from the literature. They have 
been obtained by using a first release of the code, written in Fortran with the Express parallel library [9]. 
The parallel platform used is an N-cube with 128 nodes connected with a hypercube topology. The 
numerical tests, however, have been carried out on subcubes of maximum dimension 5 (namely, at most 
32 parallel processors have been used). Because of stability reasons [6], we use block GAMs up to 
order 9 (k = 8). For all methods, the blocksize used is s = 10. We here report results concerning the 
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Fig. 1. Work-precision diagram for the Chemical Akzo Nobel problem. 

parallel execution of the algorithm and comparing it with the code RADAUS [ 111. We plan to port the 
final version of the code to PVM [lo] in order to improve its portability. 

We want to stress that the results are obtained by using a very preliminary version of the code, and that 
its tuning is far from to be complete. In particular, the choice of the most appropriate tolerance parameters 
deserves further investigation, as well as the study of cheaper implementations for the second step of the 
procedure. Another open problem is, for a given tolerance, the optimal choice of the order of the method 
to be used in the second step. For this reason, for each tolerance we plot the first one or two best obtained 
results, among the considered methods, in order to get the work-precision diagrams. For all tests, the 
tolerance used for DLGSM (which equals the initial stepsize) is 10” times the tolerance, say tol, used for 
the modified Newton iteration (lo)-( 11) in the second step of the procedure. 

The first test problem is the Chemical Akzo Nobel problem from the CWI testset [12], an ODE of 
dimension 6. We have run the parallel code with tolerance to1 = lo-‘, i = 5, . . . , 10, and orders 5, . . . ,9 
(i.e., with k = 4, . . . , S), on 1, 4, 8, 16, 32 processors. In Fig. 1 we plot the work-precision diagram 
relative to the parallel code executed on p processors (BVMp, hereafter) and RADAUS (the execution 
times are in seconds). As usual, on the horizontal axis we have the number of significant computed 
digits (scd) in the obtained solution. The data for RADAUS have been obtained by using the parameters 
at01 = rtol= h0 = lo-‘, i = 7, . . . , 17. For the parallel code (BVM), since the problem has required only 
one window, the code provides the estimate of the global error, which well matches the actual error at 
the last point, where the solution is known. We observe that the poor parallel performances for large 
tolerances are due to the fact that too few mesh points are required. As a consequence, the size of the 
corresponding discrete problem is too small. For the parallel code, the measured speed-ups (with respect 
to its sequential execution) range from 2.7 to 14.4. 

The second test problem is the van der Pol problem [7] with parameter p = 10”. The tolerances used 
for the parallel code are to1 = lo-‘, i = 7, . . . , 13, with orders 4, . . . (9, while those used for RADAUS 
are at01 = rtol = h0 = 10ei, i = 5, . . . , 17. In Fig. 2 there is the work-precision diagram for this problem. 
For clarity, we have dropped the plot for BVM32, which essentially overlaps that of BVM16 (i.e., for 
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Fig. 2. Work-precision diagram for the van der Pol problem. 
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Fig. 3. Work-precision diagram for the Kepler problem. 

7 

this problem, there is no practical speed-up, when passing from 16 to 32 processors). Considerations 
similar to those made for the previous test problem also hold true now, when large tolerances are used. 
The obtained speed-ups for the parallel code range from 3.6 to 9.0. 

Finally, we consider the Kepler problem [13, pp. 6-81, with eccentricity e = 0.999. With this value 
of e, the problem is very nasty. We evaluate the accuracy at T = 4n, namely after two periods. The 
tolerances used for the parallel code are to1 = lo-‘, i = 12, . . . , 15, with the methods of order 7,8,9, 
while those used for RADAUS are atol = rtol = h0 = lo-‘, i = 11, . . . , 16. In Fig. 3 there is the plot of 
the work-precision diagram for this problem. The obtained speed-ups range from 7.5 to 11.9. 
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5.1. Conclusions and jinal remarks 

From the results in the numerical tests, one may infer that the present version of the parallel code is 
quite well scalable. As matter of fact, we get speed-ups up to z 15, when the problem allows the use of 
large windows. Moreover, the code compares favorably with existing sequential codes, at least when a 
high accuracy is required, and allows to obtain estimates of the global error. At the moment, however, for 
larger tolerances RADAUS performs generally better. This because, in such a case, too few mesh points 
are required, thus resulting in a small sized discrete problem. On the other hand, the good performances 
for high accuracies are due to the availability of high order stable methods. 

Another drawback for the parallel code consists in its memory requirements. In fact, even though 
the storage is distributed over all the parallel processors used, each processor deals at least with one 
subinterval in the coarse mesh. That is, a storage requirements of at least s(k + 2)m2 data is required, 
which is cumbersome for large problems. Moreover, to construct and factor Mi one also needs s Jacobian 
evaluation plus z (S - k/3)k 2m3 flops, which is a relatively high cost. In order to overcome both 
problems, we are currently studying a new implementation of BVMs [4], which should require only 
one Jacobian evaluation, plus the storage and factorization of one matrix of size m, for each subinterval 
in the coarse mesh. This would dramatically reduce the computational cost of the parallel solver, both for 
storage requirement and operations count. We plan to upgrade the current version of the code, after some 
additional investigation will be carried out. 
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