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a b s t r a c t

We introduce a family of fourth-order two-step methods that preserve the energy function of canonical
polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative
of the new formulae is that the associated nonlinear systems to be solved at each step of the integration
procedure have the very same dimension of the underlying continuous problem.

The key tools in the new methods are the line integral associated with a conservative vector field
(such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of
a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact,
which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the
degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed
and a number of test problems are finally presented in order to compare the behavior of the newmethods
to the theoretical results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and background

We consider canonical Hamiltonian systems in the form

dy
dt

= J∇H(y), J =


0 Im

−Im 0


, y(t0) = y0 ∈ R2m, (1)

where H(y) is a smooth real-valued function. Our interest is in
researching numerical methods that provide approximations yn ≃

y(t0 + nh) to the true solution along which the energy is precisely
conserved, namely

H(yn) = H(y0), for all stepsizes h ≤ h0. (2)

The study of energy-preserving methods form a branch of geo-
metrical numerical integration, a research topic whose main aim is
preserving qualitative features of simulated differential equations.
In this context, symplectic methods have had considerable atten-
tion due to their good long-time behavior as compared to standard
methods forODEs [1–3]. A related interesting approach basedupon
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exponential/trigonometric fitting may be found in [4–6]. Unfor-
tunately, symplecticity cannot be fully combined with the energy
preservation property [7], and this partly explains why the latter
has been absent from the scene for a long time.

Among the first examples of energy-preserving methods, we
mention discrete gradient schemes [8,9] which are defined by
devising discrete analogs of the gradient function. The first
formulae in this class had order at most two but recently discrete
gradient methods of arbitrarily high order have been researched
by considering the simpler case of systems with one-degree of
freedom [10,11].

Here, the key tool we wish to exploit is the well-known line
integral associated with conservative vector fields, such us the one
defined at (1), as well as its discrete version, the so called discrete
line integral. Interestingly, the line integral provides a manner for
checking the energy conservation property, namely
H(y(t1)) − H(y0)

=


y0→y(t1)

∇H(y)dy

= h
 1

0
y′(t0 + τh)T∇H(y(t0 + τh))dτ

= h
 1

0
∇

TH(y(t0 + τh))JT∇H(y(t0 + τh))dτ = 0,

with h = t1 − t0, that can be easily converted into a discrete analog
by considering a quadrature formula in place of the integral.

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
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The discretization process requires to change the curve y(t) in
the phase spaceR2m to a simpler curve σ(t) (generally but not nec-
essarily a polynomial), which is meant to yield the approximation
at time t1 = t0 + h, that is y(t0 + h) = σ(t0 + h) +O(hp+1), where
p is the order of the resulting numerical method. In a certain sense,
the problemof numerically solving (1)while preserving theHamil-
tonian function is translated into a quadrature problem.

For example, consider the segment σ(t0+ch) = (1−c)y0+cy1,
with c ∈ [0, 1], joining y0 to an unknown point y1 of the phase
space. The line integral of ∇H(y) evaluated along σ becomes

H(y1) − H(y0) = h(y1 − y0)T
 1

0
∇H((1 − c)y0 + cy1) dc. (3)

Now assume thatH(y) ≡ H(q, p) is a polynomial of degree ν in the
generalized coordinates q and in the momenta p. The integrand in
(3) is a polynomial of degree ν − 1 in c and can be exactly solved
by any quadrature formula with abscissae c1 < c2 < · · · < ck in
[0, 1] andweights b1, . . . , bk, having degree of precision d ≥ ν−1.
We thus obtain

H(y1) − H(y0) = h(y1 − y0)T
k

i=1

bi∇H((1 − ci)y0 + ciy1).

To get the energy conservation property we impose that y1 − y0
be orthogonal to the above sum, and in particular we choose (for
the sake of generality we use f (y) in place of J∇H(y) to mean that
the resulting method also makes sense when applied to a general
ordinary differential equation y′

= f (y))

y1 = y0 + h
k

i=1

bif (Yi),

Yi = (1 − ci)y0 + ciy1, i = 1, . . . , k.

(4)

Formula (4) defines a Runge–Kutta method with Butcher tableau
c cbT

bT
, where c and b are the vectors of the abscissae and

weights, respectively. The stages Yi are called silent stages since
their presence does not affect the degree of nonlinearity of the
system to be solved at each step of the integration procedure: the
only unknown is y1 and consequently (4) defines a mono-implicit
method. Mono-implicit methods of Runge–Kutta type have been
researched in the past by several authors (see, for example,
[12–15] for their use in the solution of initial value problems).

Methods such as (4) date back to 2007 [16,17] and are called
k-stage trapezoidal methods since on the one hand formula (4)
reduces to the trapezoidal rule for k = 2, c1 = 0, c2 = 1 and
b1 = b2 = 1/2 and on the other hand all other methods become
trapezoidal in the linear case under assumption that their order is
at least 2.

Generalizations of (4) to higher orders require the use of a
polynomial σ of higher degree and are based upon the same
reasoning as the one discussed above. Up to now, such extensions
have taken the form of Runge–Kutta methods [18–20]. It has been
shown that choosing a proper polynomial σ of degree s yields a
Runge–Kutta method of order 2swith k ≥ s stages. The peculiarity
of such energy-preserving formulae, called Hamiltonian Boundary
Value Methods (HBVMs), is that the associated Butcher matrix
has rank s rather than k, since k − s stages may be cast as linear
combinations of the remaining ones, similarly to the stages Yi in
(4).2 As a consequence, the nonlinear system to be solved at each
step has dimension 2ms instead of 2mk, which is better visualized
by recasting the method in block-BVM form [18] (see also [22]).

2 A documentation about HBVMs, Matlab codes, and a complete set of references
is available at the url [21].

In the case where H(y) is not a polynomial, one can still get a
practical energy conservation by choosing k large enough so that
the quadrature formula approximates the corresponding integral
to within machine precision. Strictly speaking, taking the limit as
k → ∞ leads to limit formulae where the integrals come back
into play in place of the sums. For example, letting k → ∞ in
(4) just means that the integral in (3) must not be discretized at
all, which would yield the Averaged Vector Field method y1 =

y0 + h
 1
0 f ((1 − c)y0 + cy1) dc , (see [23–25] for details on such

limit formulae and [19] for their relation with HBVMs).
In this paper we start an investigation that follows a different

route. Unlike the casewithHBVMs,wewant now to take advantage
of the previously computed approximations to extend the class
(4) in such a way to increase the order of the resulting methods,
much as the class of linear multistep method may be viewed as a
generalization of (linear) one-step methods. The general question
we want to address is whether there exist k-step mono-implicit
energy-preserving methods of order greater than two. Clearly, the
main motivation is to reduce the computational cost associated
with the implementation of HBVMs.

The purpose of the present paper is to give an affirmative
answer to this issue in the case k = 2. More specifically, the
method resulting from our analysis, summarized by formula (15),
may be thought of as a nearly linear two-step method in that it is
the sum of a fourth-order linear two-step method, formula (17),
plus a nonlinear correction of higher order.3

The paper is organized as follows. In Section 2 we introduce
the general formulation of the method, by which we mean that
the integrals are initially not discretized to maintain the theory at
a general level. In this section and in Appendix we report a brief
description of the HBVM of order four, since its properties will be
later exploited to deduce the order of the newmethod: this will be
the subject of Section 3. Section 4 is devoted to the discretization
of the integrals, which will produce the final form of the methods
making them ready for implementation. A few test problems are
presented in Section 5 to confirm the theoretical results.

2. Definition of the method

Suppose that y1 is an approximation to the true solution y(t) at
time t1 = t0 + h, where h > 0 is the stepsize of integration. More
precisely, we assume that

(A1) y(t1) = y1 + O(hp+1) with p ≥ 4;
(A2) H(y1) = H(y0), which means that y1 lies on the very same

manifold H(y) = H(y0) as the continuous solution y(t).

The two above assumptions are fulfilled if, for example, we
compute y1 by means of a HBVM (or an ∞-HBVM [19]) of order
p ≥ 4. The new approximation y2 ≃ y(t2) ≡ y(t0 + 2h) is
constructed as follows.

Consider the quadratic polynomialσ(t0+2τh) that interpolates
the set of data {(t0 + jh, yj)}j=0,1,2. Expanded along the Newton
basis {Pj(τ )} defined on the nodes τ0 = 0, τ1 =

1
2 , τ2 = 1, the

polynomial σ takes the form (for convenience we order the nodes
as τ0, τ2, τ1)

σ(t0 + 2τh) = y0 + (y2 − y0)τ + 2(y2 − 2y1 + y0)τ (τ − 1). (5)

As τ ranges in the interval [0, 1], the vector γ (τ) ≡ σ(t0 + 2τh)
describes a curve in the phase space R2m. The line integral of the

3 Here the term linear refers to the linear combination involving the vector field
∇H(y). Notice however that, as is the case with one-leg methods, each function
is evaluated at points that are linear combinations of the two previous computed
approximations and the current one.
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conservative vector field ∇H(y) along the curve γ will match the
variation of the energy function H(y), that is

H(y2) − H(y0)

=


y0→y2

∇H(y)dy

=

 1

0


γ ′(τ )

T
∇H(γ (τ )) dτ

= (y2 − y0)T
 1

0
∇H(γ (τ )) dτ + 2(y2 − 2y1 + y0)T

×

 1

0
(2τ − 1)∇H(γ (τ )) dτ .

The energy conservation condition H(y2) = H(y0) yields the
following equation in the unknown z ≡ y2

(z − y0)T
 1

0
∇H(γ (τ )) dτ = −2(z − 2y1 + y0)T

×

 1

0
(2τ − 1)∇H(γ (τ )) dτ . (6)

The method we are interested in has the form y2 = Ψh(y0, y1),
where Ψh is implicitly defined by the following nonlinear equation
in the unknown z

z = y0 + 2hJa(z) +
r(z)

∥a(z)∥2
a(z), with a(z)

=

 1

0
∇H(γ (τ )) dτ , (7)

where, here and in the following, ∥ · ∥ denotes the Euclidean norm
and the residual r(z) is defined as

r(z) ≡ −2(z − 2y1 + y0)T
 1

0
(2τ − 1)∇H(γ (τ )) dτ . (8)

A direct computation shows that any solution z∗ of (7) also satisfies
(6). In the next section we will show that (7) admits a unique
solution y2 ≡ z∗ satisfying the order condition y2 = y(t0 +

2h) + O(h5). Such a result will be derived by regarding (7) as a
perturbation of the HBVM of order four and, in turn, by comparing
the two associated numerical solutions. The HBVM of order four
(see [17,18]), applied on the interval [t0, t2] of length 2h, is the one-
step method

u2 − y0 = 2hJ
 1

0
∇H(γ (τ )) dτ ,

u2 − 2u1 + y0 = 3hJ
 1

0
(2τ − 1)∇H(γ (τ )) dτ ,

(9)

where we have used u1 and u2 in place of y1 and y2 to denote
the approximations generated by the method at times t1 and t2
respectively. In particular, it may be shown that u2 = y(t0 + 2h)+

O(h5) and u1 = y(t0 + h) + O(h4). To better explain the genesis of
such a formula and how it relates to (7), a brief description of the
HBVM of order four has been introduced in Appendix.

Evidently, the implementation of (7) on a computer cannot
leave out of consideration the issue of solving the two integrals.
To maintain the theory at a general level, we will defer this
question to Section 4 (see also Appendix for the related problem
concerning (9)).

3. Analysis of the method

Results on the existence and uniqueness of a solution of (7) as
well as on its order of accuracy will be derived by first analyzing

the simpler nonlinear system

z = y0 + 2hJa(z), with a(z) =

 1

0
∇H(γ (τ )) dτ , (10)

obtained by neglecting the correction term r(z)
∥a(z)∥2

a(z). For z ∈ R2m

we set (see (5))
γz(τ ) = y0 + (z − y0)τ + 2(z − 2y1 + y0)τ (τ − 1), (11)
and (see (10))
Φ(z) = y0 + 2hJa(z). (12)

Remark 1. The method defined at (10) also makes sense when
applied to a general initial value problem y′(t) = f (y(t)). In
such a case, since γ (τ) may be interpreted as a continuous linear
combination of the approximations at previous grid points y0, y1
and the current approximation y2, considering that Ja(z) = 1
0 f (γ (τ )) dτ , the method may be thought of as a generalization

of one-leg methods.

Lemma 1. There exist positive constants ρ and h0 such that, for h ≤

h0, system (10) admits a unique solution ẑ in the ball B(y0, ρ) of center
y0 and radius ρ .
Proof. We show that constants h0, ρ > 0 exist such that the
function defined in (12) satisfies the following two conditions for
h ≤ h0:
(a) Φ(z) is a contraction on B(y0, ρ), namely

∀z, w ∈ B(y0, ρ),

∥Φ(z) − Φ(w)∥ ≤ L∥z − w∥, with L < 1;
(b) ∥Φ(y0) − y0∥ ≤ (1 − L)ρ.
The contraction mapping theorem can then be applied to obtain
the assertion.

LetB(y0, ρ)be a ball centered at y0 with radiusρ.We can choose
h′

0 and ρ small enough that the image set Ω = {γz(τ ) : τ ∈

[0, 1], z ∈ B(y0, ρ), h ≤ h′

0} is entirely contained in a ballB(y0, ρ ′)

which, in turn, is contained in the domain of ∇2H(y).4 We set

Mρ = max
w∈B(y0,ρ′)

∇
2H(w)

 .

From (10) and (11) we have

∂a(z)
∂z

=

 1

0
∇

2H(γz(τ ))
∂γz

∂z
dτ =

 1

0
∇

2H(γz(τ )) τ (2τ − 1) dτ

and hence∂a(z)
∂z

 ≤ Mρ

 1

0
τ |2τ − 1| dτ =

1
4
Mρ .

Consequently (a) is satisfied by choosing

L =
h
2
Mρ (13)

and h0 < min{
2
Mρ

, h′

0}. Concerning (b), we observe that

Φ(y0) − y0 = 2hJa(y0)

= 2hJ
 1

0
∇H(y0 + 4(y0 − y1)τ (τ − 1)) dτ ,

hence ∥Φ(y0) − y0∥ = 2h∥a(y0)∥ with ∥a(y0)∥ bounded with
respect to h. Since L vanishes with h (see (13)), we can always tune
h0 in such a way that 2h∥a(y0)∥ ≤ (1 − L)ρ. �

4 Notice that, by definition, the set Ω is an open simply connected subset of R2m

containing B(y0, ρ) while, from the assumption (A1), decreasing h causes the point
y1 to approach y0 .
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Lemma 2. The solution ẑ of (10) satisfies y(t + 2h) − ẑ = O(h5).

Proof. Under the assumption (A1), (10) may be regarded as a
perturbation of system (9), since y1 and u1 are O(h5) and O(h4)
close to y(t + h) respectively.5 Since u2 = y(t + 2h) + O(h5), we
can estimate the accuracy of ẑ as an approximation of y(t + 2h) by
evaluating its distance from u2.

Let γ̃ (τ ) be the underlying quadratic curve associated with the
HBVM defined by (9), namely

γ̃ (τ ) ≡ y0 + (u2 − y0)τ + 2(u2 − 2u1 + y0)τ (τ − 1). (14)

Considering that (see (11))

γu2(τ ) ≡ y0 + (u2 − y0)τ + 2(u2 − 2y1 + y0)τ (τ − 1)
= γ̃ (τ ) + 4(u1 − y1)τ (τ − 1),

from the first equation in (9) and (12) we get

Φ(u2) = y0 + 2hJ
 1

0
∇H(γu2(τ )) dτ

= y0 + 2hJ
 1

0
∇H(γ̃ (τ )) dτ + 8hJ

×

 1

0
∇

2H(γ̃ (τ ))τ (τ − 1) dτ · (u1 − y1)

+O(∥u1 − y1∥2)

= u2 + O(h5).

If h is small enough, u2 will be inside the ball B(y0, ρ) defined in
Lemma 1. The Lipschitz condition yields (see (13))

∥ẑ − u2∥ = ∥Φ(ẑ) − Φ(u2) + O(h5)∥ ≤
h
2
Mρ∥ẑ − u2∥ + O(h5),

and hence ∥ẑ − u2∥ = O(h5). �

The above result states that (10) defines a method of order 4
which is a simplified version of our conservative method defined
at (7). In Section 5 the behavior of these two methods will
be compared on a set of test problems. We stress that (10) is
not conservative and, in fact, it is the introduction of a suitable
correction term that restores the conservation property without
causing a loss of order, as the next theorem shows.

Theorem 1. Under the assumption (A1), for h small enough,
equation (7) admits a unique solution z∗ satisfying y(t + 2h) − z∗

=

O(h5).

Proof. Consider the solution ẑ of system (10). We have (see (14))

γẑ(τ ) − γ̃ (τ ) = (ẑ − u2)τ (2τ − 1) + 4(u1 − y1)τ (τ − 1)
= O(h5),

and

ẑ − 2y1 + y0 = u2 − 2u1 + y0 + O(h5).

Hence, by virtue of (9),

r(ẑ) = −2

(u2 − 2u1 + y0) + O(h5)

T
×

 1

0
(2τ − 1)∇H(γ̃ (τ )) dτ + O(h5)


= O(h5).

Since a(ẑ) is bounded with respect to h, it follows that, in a
neighborhood of ẑ, system (7) may be regarded as a perturbation
of system (10), the perturbation term being R(z, h) ≡

r(z)
∥a(z)∥2

a(z).

5 This also implies that u1 − y1 = O(h4).

Consider the ball B(ẑ, R(ẑ, h)): since ẑ = y0 + O(h), and
R(ẑ, h) = O(h5), this ball is contained in B(y0, ρ) defined in
Lemma1 and the perturbed functionΦ(z)+R(z, h) is a contraction
therein, provided h is small enough. Evaluating the right-hand side
of (7) at z = ẑ we get

y0 + 2hJa(ẑ) + R(ẑ, h) = ẑ + R(ẑ, h),

which means that property (b) listed in the proof of Lemma 1,
with ẑ in place of y0, holds true for the perturbed function y0 +

2hJa(z) + R(z, h), and the contraction mapping theorem may be
again exploited to deduce the assertion. �

4. Discretization

As was stressed in Section 2, formula (7) is not operative unless
a technique to solve the two integrals is taken into account. The
most obvious choice is to compute the integrals by means of
a suitable quadrature formula which may be assumed exact in
the case where the Hamiltonian function is a polynomial, and to
provide an approximation to within machine precision in all other
cases.

Hereafter we assume that H(q, p) is a polynomial in q and p of
degree ν. Since γ (τ) has degree two, it follows that the integrand
functions appearing in the definitions of a(z) and r(z) at (7) and (8)
have degree 2ν − 2 and 2ν − 1 respectively and can be solved by
any quadrature formulawith abscissae c1 < c2 < · · · < ck in [0, 1]
and weights b1, . . . , bk, having degree of precision d ≥ 2ν − 1.
In place of (7) we now consider the equivalent form suitable for
implementation

y2 = y0 + 2hJ
k

i=1

bi∇H(γ (ci)) + G(y0, y1, y2), (15)

where

G(y0, y1, y2) =

−2(y2 − 2y1 + y0)T
k

i=1
bi(2ci − 1)∇H(γ (ci)) k

i=1
bi∇H(γ (ci))

2

2

×

k
i=1

bi∇H(γ (ci)).

Notice that from (5) we get

γ (ci) = (1 − 3ci + 2c2i )y0 + 4ci(1 − ci)y1 + ci(2ci − 1)y2, (16)
that is, γ (ci) is a linear combination, actually aweighted average, of
the approximations y0, y1 and y2. Therefore, since G(y0, y1, y2) =

O(h5) (see Lemma 2 and Theorem 1), we may look at this term as
a nonlinear correction of the generalized linear multistep method

y2 = y0 + 2hJ
k

i=1

bi∇H(γ (ci)). (17)

Example 1. If H(q, p) is quadratic, we can choose k = 3, c1 = 0,
c2 =

1
2 , c3 = 1, b1 = b3 =

1
6 and b2 =

2
3 , that is we can use

Simpson’s quadrature formula to compute the integrals in (7) and
(8). Since, in such a case, γ (ci) = yi−1, method (17) becomes

y2 = y0 +
h
3
J (∇H(y0) + 4∇H(y1) + ∇H(y2)) ,

that is, the standard Milne–Simpson’s method.
In all other cases γ (ci) will differ in general from yj, j = 1, 2, 3

and may be regarded as an off-point entry in formula (17). In the
sequel we will denote the method defined at (15) by Mk and its
linear part, defined at (17), by M ′

k. Of course, the choice of the
abscissae distribution influences the energy preserving properties
of the methodMk, as is indicated in Table 1.
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Fig. 1. Numerical solution (qn, pn) versus time tn (left picture) and on the phase plane (right picture). Parameters: initial condition y0 = [0, 1]; stepsize h = 0.5; integration
interval [0, 200π ].

Table 1
Energy preserving properties of method Mk for some well-known distributions of
the nodes {ci}.

Abscissae distribution: Uniform Lobatto Gauss

Energy preserving when: degH ≤ ⌈
k
2 ⌉ degH ≤ k − 1 degH ≤ k

5. Numerical tests

Hereafter we implement the order four method Mk on a few
Hamiltonian problems to show that the numerical results are
consistent with the theory presented in Section 3. In particular, in
the first two problems the Hamiltonian function is a polynomial
of degree three and six respectively, while the last numerical test
reports the behavior of the new method on a non-polynomial
problem also in comparison with the associated HBVM of order
four (9).

Each step of the integration procedure requires the solution of
a nonlinear system, in the unknown y2, represented by (15) for the
methodMk and (17) for the methodM ′

k. The easiest way (although
not the most efficient one) to find out a solution is by means of
fixed-point iteration that, in the case of the methodMk, reads

zs+1 = y0 + 2hJ
k

i=1

bi∇H(γzs(ci)) + G(y0, y1, zs),

s = 1, 2, . . . , (18)

where γz is defined at (11) and z0 is an initial approximation of y2
which is then refined by setting y2 = zs̄ with zs̄ ≃ lims→∞ zs. From
Theorem 1 and the preceding lemmas we deduce that such a limit
always exists provided that h is small enough. The value of z0 could
be retrieved via an extrapolation based on the previous computed
points and/or by allowing a small fixed number of preliminary
iterations in the form (18) but with the terms∇H(γzs(ci)) replaced
by approximations obtained by quadratic interpolation based on
the values ∇H(y0), ∇H(y1) and ∇H(zs). Since the first two values
remain the same during the iteration, performing this prediction
only costs one function evaluation per step and results in a
considerable reduction of the total number of function evaluations
needed to advance the solution.

We will consider a Lobatto distribution with an odd number k
of abscissae {ci}. In fact, if k is odd, since y0 = γ (0) = γ (c1) and
y1 = γ ( 1

2 ) = γ (c
⌈
k
2 ⌉

), we save two function evaluations during
the iteration (18). Finally, as was emphasized at the beginning of
Section 2, we use a one-step method to produce the very first
approximation y1 ≃ y(t0 + h) and in particular, to obtain both the
order and the energy conservation property at time t1 = t0 +h, we
have chosen the HBVM formula of order four (9) with the integrals
discretized by a Lobatto quadrature (see Appendix).

Fig. 2. Hamiltonian function evaluated along the numerical solution (pn, qn)
(horizontal line) and along the numerical solution (p′

n, q
′
n) (irregularly oscillating

line).

5.1. Test problem 1

The Hamiltonian function

H(q, p) =
1
2
p2 +

1
2
q2 −

1
6
q3 (19)

defines the cubic pendulum equation. We can solve it by using
five Lobatto nodes to discretize the integrals in (7), thus getting
the method M5. The corresponding numerical solution, denoted
by (qn, pn), is plotted in Fig. 1. For comparison purposes we also
compute the numerical solution (q′

n, p
′
n) provided by the fourth-

order method, sayM ′

5, obtained by neglecting in (7) the correction
term, that is by posing r(z) ≡ 0. Fig. 2 clearly shows the energy
conservation property, while Table 2 summarizes the convergence
properties of the two methods.

5.2. Test problem 2

The Hamiltonian function

H(p, q) =
1
3
p3 −

1
2
p +

1
30

q6 +
1
4
q4 −

1
3
q3 +

1
6

(20)

has been proposed in [26] to show that symmetric methods may
suffer from the energy drift phenomenon even when applied to
reversible systems, that is when H(−p, q) = H(p, q).6 For our
experiment, we will use y0 = [0.2, 0.5] as initial condition.

Since deg(H(q, p)) = 6, we need a Lobatto quadrature based on
at least seven nodes to assure that the integrals in (7) are computed

6 In fact, the authors show that the system deriving from (20) is equivalent to a
reversible system (see also [27,28] for a discussion on the integration of reversible
Hamiltonian systems by symmetric methods).
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Table 2
MethodsM5 (with correction term) andM ′

5 (without correction term) are implemented on the cubic pendulum equation (19) on the time

interval [0, 10] for several values of the stepsize h. The order of convergence is numerically evaluated bymeans of the formula log2
error( h

2 )

error(h) .
As was expected, themaximumdisplacement of the numerical HamiltonianH(yn) from the theoretical valueH(y0) is close to themachine
precision for the methodM5 , independently of the stepsize h used.

h MethodM5 MethodM ′

5

Error Order max |H(yn) − H(y0)| Error Order max |H(y′
n) − H(y0)|

1 3.1 · 10−2 2.5 · 10−15 1.1 · 10−1 1.1008 · 10−1

2−1 3.8 · 10−4 6.373 1.9 · 10−15 3.1 · 10−3 5.183 2.9680 · 10−3

2−2 2.6 · 10−5 3.866 1.5 · 10−15 2.5 · 10−4 3.655 1.5755 · 10−4

2−3 1.6 · 10−6 4.059 8.8 · 10−16 1.8 · 10−5 3.811 8.5163 · 10−6

2−4 9.5 · 10−8 4.032 9.9 · 10−16 1.2 · 10−6 3.905 4.8883 · 10−7

2−5 5.9 · 10−9 4.017 1.1 · 10−15 7.6 · 10−8 3.952 2.9131 · 10−8

2−6 3.6 · 10−10 4.008 1.1 · 10−15 4.9 · 10−9 3.976 1.7771 · 10−9

2−7 2.3 · 10−11 4.004 2.3 · 10−15 3.1 · 10−10 3.988 1.0968 · 10−10

2−8 1.4 · 10−12 4.006 2.4 · 10−15 1.9 · 10−11 3.994 6.8121 · 10−12

exactly. Therefore we solve (20) by method M7. For comparison
purposes, it is also interesting to show the dynamics of the
symmetric non-conservativemethodM ′

7. Fig. 3 displays the results
obtained by the two methods implemented with stepsize h =

1
10

over the interval [0, 103
]. In particular, the numerical trajectories

generated by method M ′

7 and M7, are reported in the left-top and
left-bottom pictures respectively, while the right picture reports
the corresponding error in the Hamiltonian function evaluated
along the two numerical solutions, namely |H(yn) − H(y0)|.

Evidently, the numerical solution produced by M ′

7 rapidly
departs from the level curve H(q, p) = H(q0, p0) but it remain
eventually bounded and the points (qn, pn) seem to densely fill a
bounded region of the phase plane.

On the contrary, since the degree of freedom of the present
problem is one, the points (qn, pn) produced by M7 lie on the very
same continuous trajectory covered by y(t): this is also confirmed
by looking at the bottom graph in the right picture.

Table 3 shows the behavior of method M7 applied to problem
(20) as the stepsizes h goes to zero. Notice the O(h5) rate of
convergence to zero for the residual function r(z) in (8).

5.3. Test problem 3

We finally consider the non-polynomial Hamiltonian function

H(q1, q2, p1, p2) =
1
2
(p21 + p22) −

1
q21 + q22

(21)

that defines the well known Kepler problem, namely the motion
of two masses under the action of their mutual gravitational
attraction. Taking as initial condition

(q1(0), q2(0), p1(0), p2(0)) =


1 − e, 0, 0,


1 + e
1 − e

T

(22)

yields an elliptic periodic orbit of period 2π and eccentricity e ∈

[0, 1). We have chosen e = 0.6. Though the vector field fails to be
a polynomial in q1 and q2, we can plan to use a sufficiently large
number of quadrature nodes to discretize the integrals in (7) so
that the corresponding accuracy is within the machine precision.
Under this assumption, and taking aside the effect of the floating
point arithmetic, the computer will make no difference between
the conservative formulae (7) and their discrete counterparts.

The left picture in Fig. 4 explains the above argument. It reports
the error |H(yn) − H(y0)| in the Hamiltonian function for various
choices of the number of Lobatto nodes, and precisely k =

3, 5, 7, 9. We see that the error decreases quickly as the number

of nodes is incremented and for k = 9 it is within the epsilon
machine.7

The use of finite arithmetic may sometimes cause a mild
numerical drift of the energy over long times, like the one shown
in the upper line in the right picture of Fig. 4. This is due to
the fact that on a computer the numerical solution satisfy the
conservation relation H(yn) = H(y0) up to machine precision
times the conditioning number of the nonlinear system that is to
be solved at each step.

To prevent the accumulation of roundoff errors wemay apply a
simple and costless correction technique on the approximation yn
which consists in a single step of a gradient descent method (see
also [29]). More precisely, the corrected solution y∗

n is defined by

y∗

n = yn − α
∇H(yn)

∥∇H(yn)∥
, with α =

H(yn) − H(y0)
∥∇H(yn)∥

, (23)

which stems fromchoosing asα the value thatminimizes the linear
part of the function F(α) = H(yn−α

∇H(yn)
∥∇H(yn)∥

)−H(y0). The bottom
line in the right picture of Fig. 4 shows the energy conservation
property of the corrected solution.

5.4. A comparison

The analysis of a more powerful technique to solve the
nonlinear systems associated with the new methods, their
extension to a number of steps greater than two as well as
the stepsize variation strategy, will be the subject of a future
investigation.8 Nevertheless, it is interesting, even at this early
stage, to compare the behavior of the newmethodMk to the related
HBVM of order four (9), on the basis of their implementation
carried out by a fixed-point iteration procedure coupled with a
constant stepsize. To this end, we have applied the two order
four (practically) energy-preserving methods M11 and HBVM with
11 Lobatto nodes (see Appendix) to the Kepler problem (21).
We integrate the Hamiltonian system over ten periods by using
successively decreasing stepsizes and compute the error at the
final time and the total number of function evaluation required.
Fig. 5 shows that the method M11 allows a concrete reduction
of the total number of function evaluations needed to achieve a
prescribed precision in the numerical solution, which provides
a preliminary hint about the potential efficiency of the new
formulae. For comparison purposes we have also added the results
for the Gauss method of order four (which is symplectic but not

7 All tests were performed in Matlab using double precision arithmetic.
8 As is the case with linear multistep methods, the use of a Newton-like

procedure is highly recommended to take advantage of the fact that, in contrast
to Runge–Kutta methods, the nonlinear system associated with the new methods
shares the very same dimension of the underlying continuous problem.
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Fig. 3. Left pictures: numerical solutions in the phase plane computed bymethodM ′

7 (top picture) andM7 (bottompicture). Right picture: error in the numerical Hamiltonian
function |H(yn) − H(y0)| produced by the two methods. Parameters: initial condition y0 = [0.2, 0.5]; stepsize h = 0.1; integration interval [0, 1000].

Table 3
Performance of methodM7 applied to problem (20), with initial condition y0 = [0.2, 0.5], on the time interval [0, 250] for several values
of the stepsize h, as specified in the first column. The second and third columns report the relative error in the last computed point
yN ,N = T/h and the corresponding order of convergence. Since the integrals appearing in (7) are precisely computed by the Lobatto
quadrature formula with seven nodes, the error in the numerical HamiltonianH(yN ) is zero up tomachine precision. The last two columns
list the residual r(yN ) defined in (8) and its order of convergence to zero.

h MethodM7

Error Order |H(yN ) − H(y0)| Residual r(yN ) Order of r(yN )

2−1 4.47 · 10−2 1.6 · 10−16
−1.21 · 10−03

2−2 7.38 · 10−4 5.920 4.4 · 10−16
−3.23 · 10−06 8.559

2−3 3.90 · 10−5 4.243 5.8 · 10−16
−2.15 · 10−08 7.225

2−4 2.39 · 10−6 4.027 2.4 · 10−16
−6.61 · 10−10 5.029

2−5 1.49 · 10−7 4.007 2.5 · 10−15
−2.03 · 10−11 5.021

2−6 9.27 · 10−9 4.002 3.2 · 10−15
−6.27 · 10−13 5.018

2−7 5.77 · 10−10 4.006 5.5 · 10−16
−2.00 · 10−14 4.972

2−8 3.16 · 10−11 4.188 5.4 · 10−15
−5.36 · 10−16 5.219

Fig. 4. Left picture. Error in the numerical Hamiltonian function |H(yn) − H(y0)| produced by methodsMk , with k = 3, 5, 7, 9. Parameters: stepsize h = 0.05, integration
interval [0, 50]. Right picture. Roundoff errors may cause a drift of the numerical Hamiltonian function (upper line) which can be easily taken under control by coupling the
method with a costless correction procedure like the one described at (23).

Fig. 5. Error versus number of function evaluations related to methodsM11 (dots), the HBVM of order four with 11 Lobatto nodes (squares) and the Gauss method of order
four (circles). Left picture: results for the Kepler problem (21). Right picture: results for the cubic pendulum equation (19). Both problems have been integrated on the
interval [0, 20π ]. A reference solution for the cubic pendulum problem has been computed by the Gauss method of order six with a very small stepsize.
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energy preserving). That the broken line related to the Gauss
method lies below the lines of the other two methods is an
expected result for this non-polynomial problem: the energy
conservation requirement needs that a sufficient number of nodes
should be taken into account when discretizing the integrals
appearing in (7)–(8) and (9) respectively.9 In fact, a similar test
conducted on the cubic pendulum equation (19), by using five
Lobatto nodes, reveals a considerable reduction of the discrepancy
between the three lines and, in particular, between the ones related
to the method M5 and the Gauss method (see the right picture of
Fig. 5).

6. Conclusions

We have derived a family of mono-implicit methods of order
fourwith energy-preserving properties. Each element in the family
originates from a limit formula and is defined by discretizing the
integral therein by means of a suitable quadrature scheme. This
process assures an exact energy conservation in the casewhere the
Hamiltonian function is a polynomial, or a conservation to within
machine precision in all other cases, as is also illustrated in the
numerical tests. Interestingly, each method may be conceived as
a O(h5) perturbation of a two-step linear method.
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Appendix. HBVM of order four

This is a one-step method that may be easily retrieved from the
energy conservation condition (6) which we rewrite once again by
assuming u1 and u2 in place of y1 and y2 for consistency with the
notation we have adopted in the paper:

(u2 − y0)T
 1

0
∇H(γ (τ )) dτ

= −2(u2 − 2u1 + y0)T
 1

0
(2τ − 1)∇H(γ (τ )) dτ . (A.1)

In this case, both u1 and u2 are regarded as unknowns and the curve
γ in the phase space ismore properly defined asγ (τ) = σ(t0+τh),
with τ ∈ [0, 1], in order to cover a time interval of length h instead
of 2h and, as usual, u2 = γ (1) will bring the approximation to the
true solution y(t0 + h).

For (A.1) to be satisfied, we can now impose the two
orthogonality conditions

u2 − y0 = η1hJ
 1

0
∇H(γ (τ )) dτ ,

u2 − 2u1 + y0 = η2hJ
 1

0
(2τ − 1)∇H(γ (τ )) dτ ,

(A.2)

giving rise to a system of two block-equations. Setting the free
constants η1 and η2 equal to 1 and 3/2, respectively, confers
the highest possible order, namely 4, on the resulting method:
u2 = y(t0 + h) + O(h5) (see [17,19] for details). Notice that the
two constants appearing in (9) are scaled by a factor two with
respect to the values reported above to take into account that, for
convenience, we assumed a time interval of length 2h.

Evidently, the implementation of (9) on a computer cannot
leave out of consideration the issue of solving the integrals

9 Actually, the choice of eleven nodes is quite conservative. When the stepsize is
small, a practical conservation of energy is attained with a fewer number of nodes.
This expedient has not been considered in the numerical test.

appearing in both equations. Twodifferent situationsmay emerge:

(a) the Hamiltonian function H(y) is a polynomial of degree ν. In
such a case, the two integrals in (9) are exactly computed by a
quadrature formula having degree of precision d ≥ 2ν − 1.

(b) H(y) is not a polynomial, nor do the two integrands admit
a primitive function in closed form. Again, an appropriate
quadrature formula can be used to approximate the two
integrals to within machine precision, so that no substantial
difference is expected during the implementation process by
replacing the integrals by their discrete counterparts.

Case (a) gives rise to an infinite family of Runge–Kuttamethods,
each depending on the specific choice (number and distribution) of
nodes the quadrature formula is based upon (see [19] for a general
introduction on HBVMs and [20] for their relation with standard
collocation methods). For example, choosing k nodes according to
aGauss distribution over the interval [0, 1] results in amethod that
precisely conserves the energy if applied to polynomial canonical
Hamiltonian systems with ν ≤ k and that becomes the classical
2-stage Gauss collocation method when k = 2. On the other hand,
choosing a Lobatto distribution yields a Runge–Kutta method that
preserves polynomial Hamiltonian functions of degree ν ≤ k − 1
and that becomes the Lobatto IIIA method of order four when
k = 2.

The methods resulting from case (b) are undistinguishable
from the original formulae (9) in that they are energy-preserving
up to machine precision when applied to any regular canonical
Hamiltonian system. Stated differently, (9) may be viewed as the
limit of the family of HBVMs of order four, as the number of nodes
tends to infinity. For this reason the limit formulae (9) have been
called ∞-HBVM of order 4 (see [19]).

Remark 2. In the context of the present paper, y1 being a known
quantity, the unknown z in (6) cannot in general satisfy, at the same
time, both orthogonality conditions in (9). However, since y1 may
be thought of as an approximation of order four to the quantity
u1 in (9), should we only impose the first orthogonality condition,
namely

z − y0 = 2hJa(z), (A.3)

we would expect the residual r(z) (the right hand side of (6)) to
be very small.10 This suggests that a solution to (6) that yields
an approximation of high order to y(t0 + 2h) may be obtained
by allowing a small deviation from orthogonality in (A.3). This is
accomplished by setting z − y0 = 2hJa(z) + δa(z), and by tuning
the perturbation parameter δ in such a way that (6) be satisfied:
this evidently gives δ =

r(z)
∥a(z)∥2

and we arrive at (7).
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