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Abstract: It is well known that in the last forty years one of most stud-
ied phenomenon in Numerical Analysis has been the problem of stiffness for
ODEs. A precise mathematical characterization of it, however, has not yet
been given. There are at the moment many definitions and, far from tending
to unifications, the newer of them tend to diverge. In this paper, by using two
measures of the conditioning of the continuous problem, a definition which
seems to cover the most important facets of the phenomenon will be given.
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1. Introduction

As pointed out by Dahlquist [3], the binary alternative “well posed”-“ill
posed” problems, used by pure mathematicians to classify differential prob-
lems, is insufficient for the purposes of Numerical Analysis. As matter of
fact, such discipline needs a more refined classifications. Even very stable,
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and therefore well conditioned, problems may originate serious difficulties
when attempting to approximate them by discrete models. Such stable but
numerically difficult problems are usually called stiff, even if the term is often
also used to denote a wider class of problems, as shown later.

Such problems arise in an countless amount of applications and their so-
lutions have challenged professional Numerical Analysts as well as Applied
Mathematicians, Theoretical Physicists, Electrical Engineers, etc. Their nu-
merical treatment has been studied during the last forty years: a large num-
ber of symposiums, mini symposiums, etc., have been dedicated to them; a
complete list of papers devoted to their study would certainly fill a book of
the dimension of a dictionary.

One would expect that, after such amount of activity, what a stiff problem
is should be out of question. On the contrary, not only it is still an open
problem, but it seems that the opinions of some experts tend to diverge on
the characterization of the phenomenon. In the recent edition of his book
(1991), Lambert, one of the leading experts, gives five different definitions of
stiffness, each of them capturing some important features of it. A recent book
[4], the most comprehensive on the subject, gives a negative definition saying
that “stiff equations are problems for which ezplicit (numerical) methods don’t
work”. This is an empirical definition, which certainly is not mathematically
acceptable. In a recent paper, Higham and Trefethen propose to rely the
stiffness on the non-normality of the coefficient matrix. Even if the raised
question is numerically important (see Section 5), such definition cannot be
accepted as well. In fact,

1. in the literature there are many examples of stiff problems having sym-
metric coefficient matrices;

9. even a single scalar equation may be stiff.

In attempting to formulate a unifying definition, let us go back briefly to
the historical development of the concept. From the early time of such story,
it was clear that stiffness was related to different time scales present in the
problems. The term itself derives from such peculiarity. In fact it seems to
descend from mechanical models of systems of weights connected with springs
having very different rigidity constants (stiff constants). The solutions of the
corresponding equations are characterized by fast modes, corresponding to
the effect of the stronger springs, and slow modes, corresponding to the effect
of the soft ones.

This feature is clearly stressed in the following description of stiff problems
given by Liniger in 1972 (translated from French [8]):
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“... they represent coupled physical systems having components vary-
ing with very different time scales: that is they are systems having
some components varying much more rapidly than the others ... ”.

The same picture is extendible to models from chemical reactions, where
the different time scales come from the different reaction rates of the compo-
nents, and to many other similar models in many branches of the applications.

The presence of at least two time scales is then the main characteristic of
stiffness. This is even true for a single equation such as

!
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y(to)

Ay, tet,T], A<, (1)
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Here the two time scales are T' — to and |A|™!. It is quite obvious that if
T —to & |A|™!, any numerical method would be able to do a good job in
few steps. The problem arises when T — tp >> |A]7}. In this case an explicit
method would require the use of a large amount of steps to give a solution
whose qualitative behavior mimics that of the continuous solution eMt=to)y,.

For many years the ratio between the extreme time constants of the prob-
lem was considered a measure of stiffness. In the above example such ratio
is (T — to)| Al

So far, so clear. The extension to more complicated models such as
nonautonomous problems, singular perturbation problems, nonlinear prob-
lems, semi discretization of PDEs by means of the method of lines, etc., have
enormously varied the phenomenon and the original definition has become
insufficient, giving rise to the flourishing of the new ones.

In this paper, by imbedding the analysis of stiffness in the more general
setting of conditioning analysis, we give a definition which encompasses all
the aspects of the phenomenon. To avoid unnecessary complications, we shall
restrict our initial analysis to linear problems. The extension to nonlinear
problems will be briefly sketched in Section 5.

2. Classification of problems

Even though the notion of stiffness originated in the ambit of dissipative
initial value problems, there are many instances in the literature where such
notion has been extended to wider ambits such as boundary value problems,
singular perturbation problems, etc. Therefore, we shall consider the more
general setting of boundary value problems, such as,
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Yy = L)y, yeR’, (2)
«Boy(to) + Biy(T) = 1,

where By and B, are s x s matrices. In the case of initial value problems
By and B; will be the identity matrix and the null matrix, respectively. The
solution of (2) is

y(t) = B(t,20)Q™ ",

where ®(%,%;) is the fundamental matrix and

Q = Bo + Blfb(T,to).

A perturbation 67 of the boundary condition will cause a perturbation éy to
the solution which is bounded by (see, for example, [1])

syl < ll2(t, to)@ lll6nll.

Here || - || is any norm in R®. We define
$(t) = l|12(, 1)@l ©)
and
= t ,
SR S
(4)
1 T
T = Fogn A P(t)dt.

Of course, k and 7 are, respectively, the uniform norm and the L; norm in
the space Clto, 7.

Consider the following three cases, which will represent three typical
classes of problems:

1. both & and v are of moderate size and x = v,
2. v is of moderate size and £ 3> 7,

3. both parameters are large.
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We shall classify the problems according to their belonging to one of the
previous classes.’ In the first case, the problems are well conditioned in both
norms, while in the second case they are well conditioned at least in the
L; norm. Finally, in the third case the problems are ill conditioned in both
norms.

Definition. Stiff problems are those having a large ratio

g =—
v

(at least for one of the modes of the problem).

The quantity o will be called stiffness ratio. The part of the definition
enclosed in parentheses will be clarified later. Let us first comment the cases
where o is large for the entire problem. It is obvious that the scalar problem
(1) may belong either to the first class or to the second one, according to the
value of |A[(T — to). In fact, it is easily checked that for such problem « =1
and )

1 — eA(T—t(])
T T )

More generally, for A complex with negative real part, one obtains:

o = |A|(T - to).

1 — eReQNT-t0)
7= TReMIT - t0)

The given definition then agrees with the analysis made in the Section 1.
It is also worth to note that our definition does not exclude the possibility
that A > 0 (or Re()) > 0). Some people would not agree to consider the
problems with positive A as stiff. However, recently some authors do (see
e.g. [9, p.402].) In such case one easily obtains,

o = |Re(A)|(T - to).

eRe()\)(T—to) -1

— Re(M)(T~t0) -
K= 7T ReO)T —to)

o % Re(A)(T — to).

Then, the stiffness ratio continues to depend on the quantity |Re(A)|(T" ~to).
The only difference with the previous case is that now the problem is also il
conditioned (since both « and v are large, when T is not very small).

Note that the given definition is independent of a time rescaling. That
is, a change of variable t = ar leaves &, v and, therefore, ¢ unchanged.
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Figure 1: Function ¢(t) for a stiff problem.

The above example permits to give a simple geometric description of our
definition. In fact, it only states that the average value of ¢(t) is, for stiff
problems, much smaller than its maximum value (see Figure 1).

How many of the problems quoted as stiff in the literature are embraced by
our definition? It is quite obvious that all problems for which ||®(t,%0)Q |
assumes huge values in short subintervals have ¥ much smaller than «, and
then they are stiff. This is the case, for example, of singular perturbation
problems. Let us see this with an example.

Consider the following singular perturbation problem:

ey’ +ty = 0, (5)
y(—l) =0, y(l) =1.

It can be stated as a first order problem by posing:
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Figure 2: Solution of problem (5), € = le ~ 5.

QOne verifies that

@@—U=(é¢ﬁ@”),

where

21 ¢
pa(t) = e 77, d1(t,t0) = /t $2(s)ds.

Moreover, the matrix @ is given by:

Qz(} m&—n>’
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so that one obtains:

~ 1 1 ¢ (l,t) ¢ (t)'—l)
26, -1Q7 = g7 ( Zolt) a0 )

Finally, by using the infinity norm, and supposing € < 0.1, one has,
Ke) = ——  1<H(e)< s
- 1 52 d 3 — 7 2 N

In the following Table 1 we report the values of x(g) and of the stifiness
ratio o(¢) for different values of ¢, from which one deduces that the problem
becomes stiff as ¢ tends to zero. In fact, the problem falls in the second class
of our classification.

Table 1.
€ 10~° 10-1° 10~1° 10-%°
k(e) | 2.52e2 7.98¢4  2.52e7  7.98¢9
o(e) | >1.6e2 >5.3e4 >1.6e7 >5.3¢9

As an example, the function ¢(¢) plotted in Figure 1 is that of problem (5),
for ¢ = le — 5. The maximum value () is reached at ¢t = 0. The function
is almost everywhere equal to 1, except for a small neighborhood of ¢ = 0.
This facts reflects in the solution of the problem, which has a layer at ¢t = 0
(see Figure 2).

Concerning boundary value problems, it seems to us that our definition
embraces all the possibilities, since in this case the interval of integration is
fixed in advance. More subtle is the case of initial value problems.
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3. The case of Initial Value Problems

Consider now the initial value problem. For sake of clarity we assume the
matrix L in (2) to be diagonal and independent of time. Suppose that

)\ma:c:/\1<’\2<~-</\s:/\min

are its eigenvalues, which we suppose to be real, for simplicity. Moreover, as
almost usual in the theory of stiff equations, they are supposed to be negative.
Consider now the single uncoupled equations and let ~1,v2,...,7s be the
corresponding values defined by (4). It is easily checked that k; = ... =
ks = 1. According to the previous definition, some scalar equations will be
stiff, some others not. Suppose, for example, that the equation corresponding
to A is stiff, while the one corresponding to A, is not stiff.

By looking at the values & and 4 for the whole problem, the information
that a single equation is stiff is lost, since in this case one obtains k =1
and ¥ ~ ¥,. In conclusion, considered as a whole the problem lies in the first
class of our classification, while considered as a set of decoupled problems, it
contains problems in the second class.

According to the previous definition, problems either belonging to the
second class, or with at least one of its decoupled problems in the second
class, are stiff.

Observe that our definition embraces the usual one, for the present class of
problems. In fact one usually integrates until a complete information about
the behavior of the solution has been reached, that is until the solution
has reached the steady state. This requires to assume T — ¢ = [As|~t.
Consequently 71 & |A;/A1] and then

Amaz

)

o R ’ :
man
thus giving the usual stiffness ratio which, for a long time, has been used to
define stiffness.
When L is not diagonal, but diagonalizable by means of a constant matrix
M, then both x and v may grow by a factor k(M), the condition number
of the matrix M. As consequence, a problem which is stiff because it has a
stiff mode, may also become ill conditioned, since & and y may become large
(note that o may not vary sensibly).
The case where M is not constant is more interesting since it permits
to show that our definition is able to give the right classification, not well
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evidenced by the usual definitions. For example, let us consider the following
example taken from [9, p. 409]:

= a0u+ e, tebird, w0=(g),  ©

where

0= ) -+0 (50,

v is a nonnegative parameter, and

A1) :M(t)( —100(1) _(1) )MT(t), M) = ( cos(vt) sin(vt) >

—sin(vt) cos(vt)

The solution of the problem is given by y(t) = (cos(t) sin(¢))7, independently
of the value of the parameter v. Despite the fact that the solution is very
smooth, the problem is stiff. In fact, the eigenvalues of the matrix A, (t) are
A1 = —1 and Ay = —1001 for all » and ¢. However, the problem becomes
more difficult as the parameter v grows, but this fact can not be recovered
by the usual analysis based on the eigenvalues of the “frozen” Jacobian.
Nevertheless, by using the transformation

2(t) = MT (t)y(2),
one obtains the equation
7 = Az 4+ MT()f(),
where
i= ( -1001 -v )
v -1

The eigenvalues of the matrix A are
A1j2 = —501 £ /5002 — 2.
As consequence, one has that

1. when v = 0 we get the results obtained by the usual analysis based on
the eigenvalues of the “frozen” Jacobian;
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2. for v > 0, the problem becomes increasingly more stiff for the given
interval [0, 107].

By looking at the two parameters k and ¢ for this problem, one obtains the

results in Table 2, where the || - ||2 norm is used.
Table 2.
v 0 10 100 500 10060 2000
K 1 1 1 1 1 1

o | 3.1el 34el 3.4e2 6.3e3 1l.led 1.3e4

As one can see, the problem fits in the second class of our classification,
since it is not ill conditioned and the stiffness ratio is much larger than 1.
Moreover, this ratio increases as v increases, thus reflecting the increasing
difficulty in the integration of the continuous problem.

The above example permits to outline another important question. In
fact, problem (6) is a stiff one, even if its solution is very smooth. This is due
to the fact that the initial condition (1 0)7 does not activate the fast modes
of the equation.

Such situation is also evidenced in the following example, taken from ([7,

p. 217]),

y = ( —1_.9299 0,;99 >y+ < 0.999(si2ns(i$(t—) cos(t)) ) ’

whose solution is given by

do-ue(1 2o )+ (2.

To the initial condition (2 3)T it corresponds 8 = 0 so that the slowest mode
is not activated, and in a short interval of time the solution will decay to
(sin(t) cos(t))?. However, a small perturbation of the initial condition will
give B # 0 and, then, in order to get a complete information, a much longer
interval of time would be needed.

One could then define stiffness by considering only the activated modes.
We prefer, however, to maintain the definition given above, since it is inde-
pendent of the initial conditions. In fact, small numerical errors in the initial
condition may activate all the modes. This means that it is not correct to
look at the solution to decide whether a problem is stiff or not. In fact,
neglecting the non activated modes may be potentially more dangerous than
one would infer from the previous example. This is stressed in the following
problem [9, p. 388],
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;{0 1 B 1
y"‘<100 O)y’ OStST, y(O)"‘(_lo)v

whose solution is given by
_ -0t 1
y(t) =e ( —-10 3

so that the steady state solution is quickly reached and the problem is stiff
if T' is large enough. However, the general solution of the problem is

- 1 1
et () ).

so that a slightly different initial condition may activate the unstable mode.
Obviously, finite precision computation always activates the increasing mode,
so that the problem becomes unstable. This is promptly recovered by our
definition, since one obtains:

K=e ", 7%%, o=~ 10T,

so that the problem fits in the third class of our classification (il conditioned
problems) and it is also stiff for large values of T'.

Anyway, a problem is not only defined by the equation but also by the
interval of integration and by the initial (or boundary) conditions. Once the
problem is fixed, our definition defines uniquely if it is stiff or not.

4. Stiffness and stability

In literature it is very frequent the statement “stiff problems are very sta-
ble.” This is certainly true for dissipative linear autonomous problems for
which stiffness was first studied, since for such problems the steady state
solution is asymptotically stable. Our definition, as far as such problems are
concerned,; agrees with the mentioned statement. However, the statement is
no longer valid for boundary value problems or for nonautonomous initial
value problems. In such cases the concept of conditioning is more appro-
priate, with respect to that of stability. Our definition of stiffness applies
to ill conditioned problems as well. In fact a situation where both « and
v are large and moreover o > 1 is certainly possible. Such problems are
both ill conditioned and stiff. Of course, they must be handled with care,
since they are very sensitive to perturbations.
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Figure 3: Function ¢(t) for problem (7), = 50 and N = 25,50, 100.

In order to illustrate the question, we shall provide with two examples: the
former chosen among initial value problems and the latter among boundary
value problems.

Example 1. Consider the following problem,

y = y,  0<t<1000, (7)

1/ nun

where n > 1 is a parameter, and the initial condition y(0) is given. It may
seem that the length of the interval of integration is artfully large: observe,
however, that as N increases the solutions need increasingly larger intervals
to approach the steady state solution. This is shown in Figure 3 where we
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Figure 4: Solution of problem (8).

report the function ¢(¢) (see (3)) for problem (7), n = 50 and N = 25,50, 100.
In Table 3 we report the parameters «, v and the stiffness ratio o for ¥ = 10,
for different values of the parameter 7.

Table 3.
1 10 50 100
1 15e8 2.6eld 1.3el7
1.0e-2 1.1e6 2.0el2 1.0eld
9.5el  1.3e2 1.3e2 1.3e2

QR 3|3

As one can see, the stiffness ratio of the problem remains almost constant
and the problem can be classified as moderately stiff. However, it migrates
from well-conditioning to ill-conditioning as 7 increases. It is evident that
ill-conditioning is not due to the spectrum of the matrix, but to its non-
normality (see also [5]).

Example 2. Consider the following problem [6],
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Figure 5: Solution of problem (8), zoom at ¢t = 0.

ey’ +%' +y=0, y(-=1, y1)=2, (8)
where the parameter ¢ = le — 4. This is a very hard to solve singular
perturbation problem. In fact, its solution has a layer at ¢ = —1, so that

for t = —1 4 O(¢) it reaches a value & 7.9¢9 (see Figure 4). Moreover, the
solution heavily oscillates near ¢ = 0 (see Figure 5). The (estimated) values
of k, v and ¢ are:

K = 4el3, v & He9, o~ 8el.
One then concludes that the problem is both very ill conditioned and stiff.

5. Nonlinear problems

The currently used definitions of stiffness for nonlinear problems suffer lim-
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Figure 6: First component of the solution and function ¢(t), for problem (9).

itations similar to those mentioned when discussing about problem (6). In
that occasion it was in fact shown that the eigenvalues of the matrix were not
able to describe the increasing difficulty of the problem in correspondence of
the growth of the parameter v. Similarly, for nonlinear problems the eigenval-
ues of the Jacobian matrix may not be sufficient to precisely evidence (and
measure) stiffness. Moreover, even problems having asymptotically stable
solution sets, may show up Jacobians having eigenvalues with positive real
parts. A famous example is given by the Van der Pol equations,

Y3 Y2, 11(0) =2,
0<t<T, 9
vy = —yi+py(l-ul), y2(0) =0, == ©)

where p is a positive parameter. The initial condition lies near an asymptot-
ically stable limit cycle. It is well known that this problem becomes numer-
ically difficult as p increases. Usually, it is classified as a stiff one, even for
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Figure 7: Stiffness ratio for problem (9), with respect to the length T' of the
interval.

moderate values of u, although the eigenvalues of the Jacobian (on the limit
circle) have positive real part for some time.

The generalization of the definition given in Section 2 to the non linear
case is naturally made thru the linearization of the problem. That is, if

y' = f(t,y), y(tﬂ) =Y (10)

is the given nonlinear problem, one considers the variational problem

2 = fy(t,y(t))z, z(to) given, (11)

where f, denotes the Jacobian matrix of f. Problem (11) is linear, so that the
function ¢(t) and the parameters &, ¥ and o can be defined as in Section 2.
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Usually a non linear problem is solved by means of a sequence of linear
ones (for example, those defined by the Newton method), whose solutions
yU)(t) are better approximations, as j increases, of the solution of problem
(10). One then- defines a sequence of values kW), 4 and ¢, converging
to &, v and ¢, respectively, which describe the conditioning and the stiffness
of the intermediate linear problems. Such intermediate quantities turn out
to be very useful to design an efficient stepsize variation strategy (see next
section).

As an example, in Figure 6 we report the (estimated) function ¢(¢) for
the Van der Pol equation, with g = 10, along with the first component of
the solution, y;. As one can see, the “spikes” in the function ¢(t) are in
correspondence of the rapid variations of y;(t). In Figure 7 the stiffness ratio
o(T) is plotted as function of the length of the interval of integration. It is
clear that the problem is stiff for T' greater than half period.

Note that the function ¢(t) is able to provide, as by-product, also the
information about the periodicity of the solution.

6. Concluding remarks

We have introduced a mathematically acceptable definition of stiffness, which
is able to cover all the known aspects of this phenomenon, including its
extension to the wider class of continuous boundary value problems.

Strictly related to stiffness, is the problem of designing an efficient strat-
egy for the variation of stepsizes. Actually, such questions may be considered
as the two faces of the same medal, since, without the use of variable step-
sizes, stiff problems could not be solved accurately, even with methods giving
bounded solutions (stable methods). On the contrary, it is well known that
non stiff problems are well integrated by using constant stepsizes.

The use of the parameters x and 5 permits to design an innovative strat-
egy for the stepsize variation [2]. The usual approaches to the stepsize vari-
ation are based on the local estimates of the errors. Our approach, for the
first time, uses explicitly the definition of stiffness. The details of such proce-
dure will be discussed in a forthcoming paper. Its effectiveness may, however,
be inferred by the figures and the tables of this paper, obtained by using a
package based on it.
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