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The block preconditioned conjugate gradient (BPCG) methods, even if very effective for solving 
the linear systems deriving from the discretization of partial differential equations, are not efficient 
for parallel computers. The bottleneck for their parallel implementation is represented by the 
solution of the linear system to obtain the preconditioned residual. Here, we present a parallel 
version of some BPCG algorithms. They are based on an approximate solver for tridiagonal 
systems, which utilizes an incomplete 2 X 2 block odd-even reduction. The stability properties 
of the approximate solver are investigated. Some numerical tests, on a net of transputers, are also 
included. 0 1991 Academic press, Inc. 

1. INTRODUCTION 

Block incomplete Cholesky factorizations are used to obtain very effective 
preconditionings for the conjugate gradient method [ 41. In particular, we 
consid.er the INV ( 1) preconditioning previously published [ 4, 5 1, even if the 
same approach can be extended to other preconditionings in this class. 

It is, well known that the obstacle to a significant parallel speed-up for a 
BPCG algorithm using block preconditioning like INV is the solution of the 
linear system to calculate the preconditioned residual. The BPCG algorithm 
is inte,nded to be used for the solution of the linear system 

Ax = b, (1.1) 
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where A is a symmetric M-matrix with the structure 

(1.2) 

and the blocks Bj are tridiagonal m X m. 
If(Dja . . Dk) are the m X m tridiagonal blocks of the approximate block 

factorization, then the solution of the linear system to calculate the precon- 
ditioned residual follows from the solution of 2k - 1 linear sub-systems, 
which have the blocks D; as coefficient matrices. For the INV preconditioning, 
these blocks [ 41 are tridiagonal, symmetric, strictly diagonally dominant A4- 
matrices [ 8 ] . 

As the preconditioner itself is an approximation of the inverse of the matrix 
( 1.2)) instead of exactly solving such tridiagonal subsystems [ 71, one can try 
to make use of an “approximate” solution reached with a more parallel method 
(this is equivalent to using a slightly different preconditioner). The chosen 
approximation is obtained by means of an incomplete block cyclic reduction. 

2. APPROXIMATINGTHESOLUTIONOFTHE 
TRIDIAGONAL~UBSYSTEMS 

The basic idea is to use an incomplete 2 X 2 block odd-even reduction to 
approximately solve the tridiagonal linear subsystems needed to compute the 
preconditioned residual. If PO is the block permutation matrix m X m which 
first takes the odd couples of lines, and then the even ones, we have (let To 
be the original tridiagonal coefficient matrix) 

7’ PoToPo = Bo S,’ 1 1 so co ' 
(2.1) 

where B. and Co are block diagonal, with 2 X 2 diagonal blocks, while So is 
upper diagonal. The LU block factorization of (2.1) is given by 

where 

1 T T, = Co-SOB; So. (2.2) 
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It is evident that Bg’ is a block diagonal matrix, and T1 is again tridiagonal 
of dimension 1 m/ 2 J X Lm/2]. Therefore we can repeat iteratively the above 
operations. Moreover, at every step of the reduction, the elements that make 
Ti different from a 2 X 2 block diagonal matrix tend to 0 exponentially as 
the process of reduction continues. It follows that after a few steps of reduction 
one can approximate the tridiagonal block (the Schur complement (2.2) of 
the last. reduced matrix) with a 2 X 2 block diagonal matrix. Then the solution 
of the linear system to calculate the preconditioned residual, can be split 
among processors working in parallel. In particular, if m = 2’, and we have 
made :F steps of the cyclic reduction before making the approximation, we 
can use 2 r-s-’ processors to solve the linear system (each processor will deal 
with 2 X 2 blocks) with a constant degree of parallelism. Otherwise, we can 
use 2’-’ processors, with a degree of parallelism increasing from 2’-‘-’ 
to 2’-=. 

Remark. We have chosen an incomplete 2 X 2 block cyclic reduction, 
instead of an incomplete pointwise cyclic reduction, for the following reasons: 

( 1) the computational cost of the resulting algorithms is the same; 
(I!) the stability properties are similar (see Section 3) ; 
(3) the error made in the approximation is much smaller with the 2 

X 2 block cyclic reduction than with the pointwise cyclic reduction, when 
the matrix is at least weakly diagonally dominant. 

3. ANALYSIS OF STABILITY 

We now investigate the properties of the reduced matrices Ti considering 
the simpler case of TO symmetric Toeplitz matrix. Let 

m=2’. 

It follows that the generic reduced matrix Ti, at the ith step, has the structure 

T, = 

a, b 
b U; Si 

si ai b 
b . . . . 

. ai b 
b a -ml2’xm12’ 

(3.1) 
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where the a, and S, satisfy the following first order recurrences: 

s;?-, a,-, 
ai = u,-1 - 2 - 62 ’ a0 = a, 

ai-1 

s:-, b 
(3.2) 

s, = 
a’-, - b’ ’ 

so = b. 

To simplify the notations, we consider the quantities zi = a,/ b, ui = s,/ 6. 
It follows that the matrix (3.1) becomes 

T,=b. 

where 

(3.3) 

‘V, / 2 ‘x n, / 2 

2 
U,-I Zi-I 

z, = Z,-l - - 2 
Zi-I -1’ 

zo = alb, 

2 
ui-I u. = ~ I 

Zf-] - 1 ’ 
uo= 1. 

(3.4) 

We can summarize our results as follows: 

THEOREM. If To is weakly (strictly) diagonally dominant, then T, is weakly 
(strictly) diagonally dominant. 

Proof The proof is obtained by induction. The thesis holds for i = 0. If 
Iz~I = 1 + IuiI,thenO<ui+,=u~/(~2- l)< l.Itfollowsthat 

= (Izil - 1)2(lZ~l + I>- UZ IZLI _ UT 
z’ - 1 2 Z* -1 

,u 
ItI . 

, 

In a similar manner 1 zi+, I > 1 + ) uI+] ( if I z, I > 1 + I u, I. n 
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COROLLARY. If To is weakly diagonally dominant, ui tends to 0 exponen- 
tially. 

Proof: At each step of the reduction we have 1 z, 1 = 1 + ui. Let us consider, 
for the sake of simplicity, the case zo > 0. It follows that z. > zi > 0, i 2 1 (if 
zo < 0, then zo < zi < 0 holds). From the previous theorem we have Zi = 1 
+ uI, and (3.4) can be split into two distinct equations: 

2 ’ Zi-1 z. = - I Zi-1 + 1 ’ 
zo = 2, 

u,-I u. = - I u;-, + 2 ’ 
z& = 1. 

The la.tter is a Riccati equation [ 6 1, whose solution is given by 

Ui = (2’+’ - I)-‘* n 

Remark. We observe that Zi tends to 1, as u; approaches 0. Moreover, it is 
clear that if To is strictly diagonally dominant, then Ui tends to 0 at least 
exponentially (by the comparison theorem [ 6]), while zi tends to some 
z* > 1. 

4. NUMERICALTESTS 

The numerical tests here reported are obtained from the discretization of 
three test problems. The acronym INV,’ is used for the modified INV algo- 
rithm with s-steps of an incomplete 2 X 2 cyclic reduction. All the tests were 
carried out on a net of transputers T800-20. The programming language used 
was Fortran, with the Express communication library [ 91. 

The first test problem derives from the discretization of 

-Au=f, in 9=(0,1)X(0,1) 

Ulan = 0. 

By using the step of discretization h = ( 1 + 2’)-‘, one obtains m = k = 2’. 
The dimension of the resulting linear system ( 1.1) is m * k = 2 2r. In Table 1, 
the number of iterates to obtain convergence is reported for INV, INV,, 
INV2, INV3. 

The stop criterion used is, for all the problems, II ri II 2 / II r. II 2 <: 10 P6 (where 
ri is the current true residual, while ro is the initial one), and the chosen 
starting point is x0 = 0. 
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TABLE I 

r INV INV, INVz INV, 

4 7 I 7 9 
5 12 12 12 14 
6 20 20 20 23 
1 36 36 36 42 
8 69 69 69 81 

From the above Table 1, it results that INVz is the best compromise between 
efficiency and degree of parallelism. By recalling that INVz can be efficiently 
implemented on a parallel machine with at most p = 2’P3 processors, in Fig. 
1 the speed-ups with respect to INV are outlined for p = 2 r-36( + ) and 
Q = 2’-46(o). 

The second test problem derives from the discretization of 

-A- Au = f, in c? = (0,2) x (0, 1) 

Ulan = 0, 

FIG. 1. Speed-up of problem 1 for INV2. 
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TABLE II 

r INV INV, INVz INV, 

4 6 6 6 I 
5 10 10 10 11 
6’ 18 18 18 21 
I 32 32 32 39 
8 62 62 62 15 

i 
1, in (0, 1) x (0, 11, 

A= 
1000, in (1, 2) x (0, 1). 

By using the steps of discretization h = 2 - ( 1 + 2 r)P1, one obtains m = 2k 
= 2 r. The dimension of the resulting linear system ( 1.1) is m - k = 2 2rp’. In 
Table 2, the number of iterates to obtained convergence is reported for INV, 
INV, , INV2, INV3. 

In Fig. 2, the obtained speed-ups for INV2 with respect to INV are outlined 
forp =- 2r-3b(+) andp = 2’P4b(0). 

18 

16 - 

14 - 

12 - 

8- 

6- 

5 10 1.5 20 25 30 35 

processors 

FIG. 2. Speed-up of problem 2 for [NV*. 
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TABLE III 

I INV INV, INV2 INV, 

4 11 11 11 13 
5 18 18 19 23 
6 34 34 34 43 
7 65 65 65 81 
8 127 127 127 160 

The third test problem derives from the discretization of: 

-h.Au-I-u.u=a, in fl = (0,2) x (0, 1) 

au 0 - = 
dn an ’ 

(0, .25] x (0, I), 

(3, 11 x (0, I), 
(1,2)X(0, l), 

processors 

FIG. 3. Speed-up of problem 3 for IN&. 
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where n is the unit vector normal to d8. By using the step of discretization h 
= 2 - ( I. + 2’))‘, one obtains m = 2k = 2’. The dimension of the resulting 
linear system (1.1) is m- k = 22r-‘. In Table 3, the number of iterates to 
obtain convergence is reported for INV, INV, , INV2 , INV3. 

In Fig. 3, the obtained speed-ups for INV2 with respect to INV are outlined 
forp = 2’-36(+) andp = 2’-46(o). 
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