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Abstract

We analyze some properties of block BVMs for ODEs and introduce blended block BVMs. The latter are implicit
methods characterized by a cheap iterative implementation, which makes them computationally very appealing. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past years, many attempts have been made in order to derive numerical methods for ODEs
obtained by combining simpler methods. A classical instance is given by the popular �-method.
Another one is given by the so-called blended methods [7,12]. In both cases, the resulting scheme is
obtained as a suitable combination of two basic methods belonging to the class of linear multistep
formulae (LMF).
In the above-mentioned examples, the main reason for combining di�erent methods was that

of getting better qualitative behavior for the resulting formula, than that of the single-component
methods. This is evident in the case of the �-method, where one tries to get a numerical scheme
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which well performs, when applied to the usual test equation, both for q ≈ 0 and for q → ∞.
Similar considerations hold true for blended methods.
In this paper we shall consider a similar approach by using block boundary value methods

(B2VMs), recently introduced by Brugnano and Trigiante [3–5], which have been used in the code
GAM written by Iavernaro and Mazzia [11]. In particular, we shall show that suitable combinations
of B2VMs may produce methods which:

1. may have better properties than those of the two component B2VMs;
2. allow a cheaper implementation, than that of the single-component methods.

Both aspects are, indeed, very important and will be examined in the sequel. In particular, the use
of the presented methods is intended to overcome some of the problems raised in the �nal section
in [1], as we shall see in more details in Section 6.
The structure of the paper is the following: Section 2 is devoted to state the main facts about

B2VMs. In Section 3 we introduce the new class of methods, called Blended B2VMs (B3VMs).
In Sections 4 and 5 we study two families of methods in this class. Finally, in Section 6 some
numerical tests are reported.

2. Block boundary value methods (B2VMs)

Block boundary value methods (B2VMs) have been derived as a particular implementa-
tion of boundary value methods (BVMs), which is a relatively new class of numerical methods
for di�erential equations (see [5] for a complete treatment of this subject). In order to
brie
y sketch such methods, let us consider the following initial value problem for
ODEs,

y′ = f(t; y); t ∈ (t0; T ]; y(t0) = � ∈ Rm; (1)

to be approximated over the discrete set of points ti = t0 + ih, i = 0; : : : ; N , where h =
(T − t0)=N is the stepsize. One may then obtain an approximation over the �rst s6N points
by using a B2VM based on k-step formulae, which de�nes the following discrete
problem:

A⊗ Im y− hB⊗ Im f = hb⊗ f(t0; �)− a ⊗ �; (2)

where Im is the identity matrix of size m (the dimension of the continuous problem), and the
vectors y and f contain the discrete solution and the corresponding values of the function f,
respectively: evidently, once problem (2) has been solved, the last block entry of y will pro-
vide the initial condition for the subsequent integration, and so on. Finally, the augmented
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matrices

Â ≡ [a |A] =




�(1)0
...

�(k1−1)0

�(k1)0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�(1)1 : : : �(1)k
...

...

�(k1−1)1 : : : �(k1−1)k

�(k1)1 : : : �(k1)k

�(k1)0 �(k1)1 : : : �(k1)k

. . . . . . . . .

�(k1)0 �(k1)1 : : : �(k1)k

�(k1+1)0 �(k1+1)1 : : : �(k1+1)k

...
...

...

�(k)0 �(k)1 : : : �(k)k



s×(s+1)

(3)

and

B̂ ≡ [b |B] =




�(1)0
...

�(k1−1)0

�(k1)0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�(1)1 : : : �(1)k
...

...

�(k1−1)1 : : : �(k1−1)k

�(k1)1 : : : �(k1)k

�(k1)0 �(k1)1 : : : �(k1)k

. . . . . . . . .

�(k1)0 �(k1)1 : : : �(k1)k

�(k1+1)0 �(k1+1)1 : : : �(k1+1)k

...
...

...

�(k)0 �(k)1 : : : �(k)k



s×(s+1)

(4)

are de�ned such that the corresponding LMF,
k∑
i=0

�( j)i yn+i = h
k∑
i=0

�( j)i fn+i ; j = 1; : : : ; k; (5)

all have a O(hp+1) truncation error, i.e. order p. In such a case, it is not di�cult to prove that the
block method has order of convergence at least p (see [10,13]). Among the previous formulae, the
k1th one is repeated s − k + 1 times in the two matrices (3) and (4) (even though, each repetition
acts on di�erent components of the vectors y and f ). This method is called main method, whereas
the remaining ones are called additional methods. Concerning the value of k1, we shall here consider
the following choice:

k1 = � for k ∈ {2�− 1; 2�}: (6)
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From (3)–(4), one obtains that any blocksize s¿k is allowed for a B2VM based on k-step
formulae. So far, blocksizes strictly greater than k have been successfully used (for example, in the
code GAM). Nevertheless, we shall often consider the value s = k, which is the minimum value
allowed.

De�nition 1. A B2VM based on k-step methods and having blocksize s = k is called a minimal
B2VM.

We observe that, for minimal B2VMs, the two matrices (3) and (4) become, respectively,

Â ≡ [a |A] =




�(1)0
...

�(k)0

∣∣∣∣∣∣∣∣∣

�(1)1 : : : �(1)k
...

...

�(k)1 : : : �(k)k



k×(k+1)

; (7)

B̂ ≡ [b |B] =




�(1)0
...

�(k)0

∣∣∣∣∣∣∣∣∣

�(1)1 : : : �(1)k
...

...

�(k)1 : : : �(k)k



k×(k+1)

: (8)

Concerning the matrices Â and B̂, the following result holds true.

Theorem 2. Let the two matrices Â and B̂ be de�ned according to (3)–(4); and let the correspond-
ing B2 VM have a O(hp+1) truncation error. Then one has

W (0 : s)
p Â

T
= HpW (0 : s)

p B̂
T
; (9)

where

W (0 : s)
p =




00 10 : : : s0

01 11 : : : s1

...
...

...

0p 1p : : : sp



; Hp =




0 0 : : : : : : 0

1 0 : : : : : : 0

0 2
. . .

...
...
. . . . . . . . .

...

0 : : : 0 p 0




:

Proof. In fact, (9) is nothing but the expression of the order conditions for each method correspond-
ing to a given row of Â and B̂.

Other simple properties, to be used later, can be derived from the above result.

Corollary 3. Suppose that the minimal B2 VM given by the two matrices (7)–(8) has a O(hk+2)
truncation error. Then A is nonsingular if and only if B is nonsingular.



L. Brugnano / Journal of Computational and Applied Mathematics 116 (2000) 41–62 45

Proof. In fact, from Theorem 2, for s= k and p= k + 1 one obtains that

W (0 : k)
k+1 Â

T
= Hk+1W

(0 : k)
k+1 B̂

T
:

By neglecting the �rst two equations, one has then

O=W (0 : k)
k−1 (D

(0 : k))2 Â
T − D(2 : k+1)W (0 : k)

k−1 D
(0 : k)B̂

T

=W (1 : k)
k−1 (D

(1 : k))2AT − D(2 : k+1)W (1 : k)
k−1 D

(1 : k)BT;

where, in general, D(i : j) = diag(i; i + 1; : : : ; j). From the above relations, it then follows that

AT = (D(1 : k))−2(W (1 : k)
k−1 )

−1D(2 : k+1)W (1 : k)
k−1 D

(1 : k)BT; (10)

from which the thesis follows, by considering that W (1 : k)
k−1 is a Vandermonde matrix.

We observe that B2VMs have the matrix A nonsingular by construction (this is a minimal re-
quirement, in order to reproduce constant solutions). If they are also consistent (which we obviously
assume) they can be also rewritten as Runge–Kutta methods. In fact, in (2) multiplication on the
left by A−1 ⊗ Im gives

Is ⊗ Im y− hA−1B⊗ Im f = hA−1b⊗ f(t0; �) + e ⊗ �; (11)

where e ≡ −A−1a is the vector with all unit entries, from consistency. The expression (11) de�nes
the following RK method with s+ 1 stages [5] used with stepsize sh,

0 0Ts+1
1=s
... (1=s)A−1B̂
s=s

eTs (1=s)A
−1B̂

(12)

where es is the last unit vector in Rs, and 0s+1 is the zero vector in Rs+1.

Remark 4. From the previous arguments, it follows that the matrix A−1B̂ uniquely de�nes tableau
(12). Actually, because of consistency conditions, the above method is uniquely determined once the
matrix A−1B is given. In such a case, in fact, the vector A−1b (see (4)) is �xed. Consequently, we
may consider as equivalent B2VMs having the same matrix A−1B. It must be stressed, however, that
the discrete problems generated by equivalent B2VMs are di�erent. As a consequence, the methods
for their e�cient solution may greatly vary, depending on the particular problem, i.e. on the speci�c
form of the matrices A and B.

The above consideration allows us to state the following result (see also [13]).

Corollary 5. The maximum order of the k-step formulae (5) de�ning a minimal B2 VM is p=k+1.
All minimal B2VMs satisfying such a property have the same matrix A−1B. They are; therefore;
equivalent.
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Proof. In the above hypothesis, it follows that the truncation error of the B2VM is O(hk+2). Conse-
quently, the result of Corollary 3 applies and, from (10), one obtains

A−1B= (D(1 : k))2(W (1 : k)
k−1 )

T(D(2 : k+1))−1(W (1 : k)
k−1 )

−T(D(1 : k))−1: (13)

The thesis then follows by considering that the right-hand side is independent of the particular
method.

Moreover, it can be shown (see [13]) that the order of convergence of minimal B2VMs having a
O(hk+2) truncation error is k + 1 for k odd, and k + 2 for k even. When the B2VM is nonminimal,
the order is k + 1 for all k¿1.
Equality (13) allows us to get some additional consideration concerning stability issues for minimal

B2VMs. In fact, let us consider the usual test equation,

y′ = �y; y(t0) = �: (14)

The application of (2) then gives the following discrete problem:

(A− qB)y= (qb− a)�; q= h�: (15)

The study of the above equation permits to derive the linear stability properties of B2VMs [5,10].
In particular, the method is A-stable when |eTs y|¡ |�|, for all q ∈ C−. Nevertheless, this requires the
above problem to be well posed for all such q. For this reason, we give the following de�nition.

De�nition 6. A B2VM is said to be pre-stable if the spectrum of the corresponding matrix pencil
A− �B is contained in C+.

By direct inspection, from (13) one may verify that the corresponding minimal B2VMs have the
spectrum of the matrix A−1B contained in C+ up to k = 8; in particular, it is possible to prove that
such methods are perfectly A-stable (see, for example [13]). In general, for nonminimal B2VMs we
refer to [10].

3. Blended block boundary value methods (B3VMs)

In this section, we introduce methods obtained as the combination of a couple of B2VMs. For
sake of simplicity, we shall at �rst describe them when they are applied to the test equation (14).
Then, we look for methods generating a discrete problem in the following form:

M (q)y ≡ (A(q)− qB(q))y= (qb(q)− a(q))�; (16)

where, being �= �(q) a suitable “weight” function, M (q) is a s× s matrix,
A(q) = �A1 + (1− �)A2; B(q) = �B1 + (1− �)B2; (17)

a(q) = �a1 + (1− �)a2; b(q) = �b1 + (1− �)b2; (18)

and the couples of augmented matrices

Â1 = [a1 |A1]; B̂1 = [b1 |B1]; Â2 = [a2 |A2]; B̂2 = [b2 |B2]; (19)
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de�ne two suitable B2VMs. Namely, the method is obtained as the combination of two component
B2VMs, with the weights of the combination depending on q. In analogy with [12], we call such a
method blended block boundary value method (B3VM). We observe that the B3VM (16) is uniquely
de�ned by the following couple of augmented matrices depending on q:

Â(q) = �Â1 + (1− �)Â2; B̂(q) = �B̂1 + (1− �)B̂2: (20)

The previous De�nition 6 of pre-stability for B2 VMs generalizes to B3VMs as well, by requiring
the matrix M (q) in (16) to be nonsingular for all q ∈ C−.
Our concern is now that of appropriately choosing the two component B2VMs, along with the

function �(q). They will be chosen by looking for methods which allow to solve linear systems in
the form (see (16))

M (q)x= c (21)

by using an iterative procedure,

N (q)xr+1 = (N (q)−M (q))xr + c; r = 0; 1; : : : ; (22)

where the linear system with the matrix N (q) is much simpler to solve than (21). The above iteration
converges to the solution of (21) if and only if the spectral radius, say �(q), of the iteration matrix

(Is − N (q)−1M (q))
is smaller than 1. According to [8,9], the region of convergence of the iteration (22) is given by

� = {q ∈ C: �(q)¡ 1}:
Moreover, the iteration is said to be A-convergent if C− ⊆� (A(�)-convergence is similarly de�ned).
A-convergence is a very remarkable property, as also stated by the following result.

Theorem 7. Suppose that iteration (22) is A-convergent. Then the corresponding B3 VM (16) is
pre-stable.

Proof. In fact, suppose that for a given q ∈ C− the matrix M (q) de�ned in (16) is singular. This
means that the linear system (21) has either no solution or more than one solution. In both cases,
this contradicts the fact that iteration (22) converges.

Another important property which iteration (22) should enjoy is that

�(q)→ 0; as q→ ∞: (23)

Such a property, in fact, is desirable in order to have iteration (22) rapidly converging when the
method is applied to sti� problems [8,9].
Taking into account all the above facts, we now give some practical criteria to de�ne the com-

ponent methods and the function �(q) of the B3VM (16). The latter function will be chosen so
that

�(0) = 1; �(∞) = 0: (24)
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Namely, for q “small” the B3VM behaves essentially as the method de�ned by the matrices Â1 and
B̂1, whereas the method de�ned by Â2 and B̂2 is the most e�ective when q is “large”. From (24)
one has that a good candidate for the weighting function �(q) is in the form

�(q) = (1− �q)−1; �¿ 0: (25)

The fact that � is strictly positive, implies that the matrix M (q) is well de�ned for all q ∈ C−,
which is a necessary condition for A-convergence.
Let us now consider the problem of choosing the two B2VMs de�ned by the couples (Â1; B̂1) and

( Â2; B̂2). From (16)–(19) and (25), it follows that for q “small” the main contribute comes from
the matrix Â1. Consequently, for the �rst method, which should be more “active” in this range of q,
we choose a B2VM having such a matrix as simple as possible. Good candidates for this purpose
are then given by Block GAMs [5,10,11], for which (see (3)) one has

Â1 ≡ [a1 |A1] =




−1 ∣∣∣∣∣∣∣∣∣∣∣

1

−1 1
. . . . . .

−1 1



s×(s+1)

; (26)

and the coe�cients of the corresponding matrix B̂1 (see (4) and (5)) are uniquely determined
so that the truncation error on each equation de�ning the method is O(hk+2). For what said in
Section 2, the order of convergence of the method turns out to be k +2, for minimal methods with
k even, and k + 1 otherwise.
Hereafter, again because of what stated in Section 2, we shall consider Block GAMs up to k =8.
Similarly, for q “large”, the main contribute in (16) comes from the matrix B̂2. Consequently, for

the second component method we shall choose such matrix as simple as possible. In the following,
we shall consider two possibilities:
1. the �rst choice is

B̂2 ≡ [b2 |B2] = [B−1
1 b1 | Is]; Â2 = B−1

1 Â1 (27)

and the corresponding parameter in (25) is �=1. We call the obtained B3VMs blended block GAMs
(B2GAMS), either minimal (s=k) or nonminimal (s¿k+1). Among nonminimal B2GAMs, we shall
study in more detail the case s= k + 1;
2. the second choice that we consider is

B̂2 ≡ [b2 |B2] =




1− � �
1− � �

. . . . . .
1− � �



s×(s+1)

; � ∈ (0:5; 1]; (28)

where � is the same parameter in (25), and the entries of the matrix Â2, see (3)–(6), are uniquely
determined in order that each equation of this B2VM has a O(hk+1) truncation error. We call the
corresponding B3VMs hybrid blended block GAMs (HB2GAMs). In particular, we shall consider
minimal HB2GAMs, obtained for s= k.
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Corresponding to each one of the above possibilities, the matrix N (q) in (22) is chosen as

N (q) = A1 − qB2: (29)

Such a choice, in fact, has several advantages:

• the matrix N (q) (see (26)–(28)) is Toeplitz lower bidiagonal (block Toeplitz lower bidiagonal
when the continuous problem is not scalar) and, therefore, easily and cheaply invertible;

• the matrix (29) de�nes a �rst-order implicit method, which can be used as a predictor for iteration
(22). In more details, such method is the B2VM de�ned by the two matrices Â1 in (26) and B̂2
in (28), where it is assumed � = 1 in the case of B2GAMs;

• property (23) for iteration (22) holds true. As a matter of fact, from (16), (17), (25) and (29)
one has that

(Is − N (q)−1M (q))→ O as q→ ∞: (30)

3.1. Evaluation parameters

In order to measure the convergence properties of iteration (22), we consider the following pa-
rameters [8] associated with it. The �rst, obvious, parameter is the maximum ampli�cation factor
for q ∈ C−, which, considering that the matrix N (q)−1M (q) is de�ned for all such values of q (see
(16), (17), (25) and (29)), can be de�ned as

�∗ = sup
arg(q)=�=2

�(q): (31)

Evidently, �∗61 for A-convergent methods. Moreover, again following [8], we introduce a couple
of parameters which describe the convergence properties of the iteration (22) for q ≈ 0 and q→ ∞.
In particular, for q ≈ 0, one has that
Is − N (q)−1M (q) = N (q)−1(N (q)−M (q)) ≈ qA−1

1 (B1 − B2 + �A2):
Consequently, we de�ne the following non sti� ampli�cation factor,

�̃=max{|�|: � eigenvalue of A−1
1 (B1 − B2 + �A2)}: (32)

Finally, we consider the sti� ampli�cation factor,

�(∞) = lim
q→∞ �(q): (33)

From (30) it follows that �(∞) = 0.
The previous parameters are de�ned through the eigenvalues of the involved matrices. Conse-

quently, they describe the properties of the iteration (22) as r → ∞. In order to have more infor-
mation when a �nite (possibly small) number of iterations are performed, the following averaged
factors corresponding to � iterations are de�ned [8]:

�∗� = sup
arg(q)=�=2

��(q); (34)

where, given a suitable matrix norm, ��(q) = �
√‖ (Is − N (q)−1M (q))� ‖,

�̃� =
�

√
‖ (A−1

1 (B1 − B2 + �A2))� ‖ (35)
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and, �nally,

�(∞)
� = lim

q→∞ ��(q): (36)

Again from (30), one obtains that

�(∞)
� = 0; for all � = 1; 2; 3; : : : :

We observe that parameter (34) can be regarded as a particular instance of the following more
general one:

�∗�(�) = sup
arg(q)=�−�

��(q); (37)

since, evidently, �∗�(�=2) ≡ �∗�. The latter parameter may be useful in the case where the iteration
(22) is A-convergent, even though �∗� ¿ 1, for a given �nite �. In such a case, in fact, if one obtains
that �∗�(�=(2 + �))¡ 1 for a small �¿ 0, this means that the iteration is “almost” A-convergent,
with the given number of iterations �.

3.2. The general case

Let us now derive the general expression of the B3VM (16) by applying the method to problem
(1). The resulting discrete problem turns out to be

Ãy− hB̃f = hb̃f(t0; �)− ã�; (38)

where (see (19)), denoting by J the Jacobian of the function f at (t0; �),

Ã= (Is ⊗ (Im − h�J )−1)(A1 ⊗ Im − A2 ⊗ h�J );
B̃= (Is ⊗ (Im − h�J )−1)(B1 ⊗ Im − B2 ⊗ h�J );
ã= (Is ⊗ (Im − h�J )−1)(a1 ⊗ Im − a2 ⊗ h�J );
b̃= (Is ⊗ (Im − h�J )−1)(b1 ⊗ Im − b2 ⊗ h�J ):

From the above expressions, it is evident that the application of the method requires the factorization
of the matrix

Im − h�J: (39)

It is customary to solve Eq. (38) by using the modi�ed Newton method, then solving linear
systems with the matrix

M = Ã− hB̃ (Is ⊗ J ):
In place of such linear systems, we solve an inner iteration similar to (22), thus involving only
linear systems with the matrix

N = A1 ⊗ Im − hB2 ⊗ J:
The latter matrix is block Toeplitz lower bidiagonal, and its diagonal block is given by (39), which
has already been factored to form the right-hand side of the linear system. We then conclude that,
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leaving aside for simplicity function and Jacobian evaluations, the arithmetic complexity for solving
(38) when r Newton iterations are performed, each requiring � inner iterations, amounts to

2
3m

3 + O(r�sm2) 
oating operations:

The leading term is obviously due to the factorization of matrix (39). From this fact, one concludes
that the proposed methods do have a cheap implementation, at least for large-size problems.

4. Blended block GAMs (B2GAMs)

In such a case, the B3VM is obtained as the combination of equivalent B2VMs (see (27)). Conse-
quently, it has the same order and stability properties as the underlying Block GAM. Nevertheless, the
discrete problem (16) generated by the B3VM di�ers from those generated by the single-component
methods. As a matter of fact, the former may be solved by using iteration (22), which turns out to
be A-convergent, as we are going to see. Finally, we recall that, when s= k, minimal Block GAMs
are perfectly A-stable, like the usual trapezoidal rule, up to k =8. Nonetheless, they su�er the same
drawback of this formula, as q→ ∞. In fact, from (16)–(18), (25) and (27), it follows that

y ≈ −B−1
1 b1� for q� 0:

In particular, the last component of the discrete solution turns out to be given by

yk ≈ −eTk B−1
1 b1� ≡ (−1)k�:

Consequently, there is no damping as Re(q) → −∞, and it is well known that this is undesirable
for sti� problems.
Conversely, by considering the blocksize s= k+1 (i.e., both the component methods are nonmin-

imal), we obtain that the last entry of the solution vector, for q� 0, is

yk+1 ≈ −eTk+1B−1
1 b1� ≡ gk�;

where gk is listed below (the values for k even are rounded to the second decimal digit).

k 1 2 3 4 5 6 7 8

gk 1 −0:59 1 −0:74 1 −0:81 1 −0:85
Consequently, now there is some damping for k even. Moreover, also in this case, the order and
stability properties of the B2GAM coincide with those of the underlying Block GAM, namely they
are perfectly A-stable for k odd [10] and A-stable for k even (in Fig. 1 the corresponding boundaries
of the absolute stability regions are plotted, for completeness).
In Table 1 we report the evaluation parameters (31)–(33) for B2GAMs, both minimal and non-

minimal. In both cases, one concludes that the corresponding iteration (22) is A-convergent. This
implies (see Theorem 7) that B2GAMs, both minimal and nonminimal, are pre-stable methods.
In Table 2 we also list the evaluation parameters (34)–(37) for di�erent values of � (hereafter,

the norm used is the ∞-norm). From this table, one concludes that only A(�)-convergence could be
practically expected for the highest-order methods, even though �¿ 2�=5. Nevertheless, we observe
that, when a high-order method is used, usually the requested error tolerances are very small. Con-
sequently, on the imaginary axis one should “work” only for, say, q ∈ (−
i; 
i), with 
�1. In such
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Fig. 1. Boundaries of the absolute stability regions of nonminimal Block GAMs (s= k + 1), k = 2; 4; 6; 8.

Table 1
Evaluation parameters (31)–(33) for B2GAMs, both minimal (�rst column) and nonminimal
(second column)

k �∗ �̃ �(∞)

1 0.25 0.25 1.50 1.50 0 0
2 0.27 0.27 1.22 1.36 0 0
3 0.40 0.40 1.19 1.29 0 0
4 0.53 0.54 1.10 1.21 0 0
5 0.66 0.66 1.09 1.26 0 0
6 0.78 0.78 1.04 1.18 0 0
7 0.88 0.88 1.04 1.26 0 0
8 0.97 0.97 1.01 1.17 0 0

interval, iteration (22) based on B2GAMs turns out to be convergent, even though the parameter �∗�
may be greater than 1.
The coe�cients of Block GAMs may be found in [10]. The entries of Â2 and B̂2 are then

determined according to (27).

Remark 8. It is worth noting that B2GAMs turn out to be A-convergent for all s¿k. As matter of
fact, in Table 3 we list the value of the parameter (31) for k = 1; : : : ; 8, and s = k; : : : ; k + 10. As
one can see, in each row of the table the value of the parameter �∗ is almost constant, after the �rst
few values of s. From Theorem 7 one then concludes that B2GAMs are pre-stable methods, for all
allowed values of s.
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Table 2
Evaluation parameters (34)–(37) for B2GAMs, both minimal (�rst column) and nonminimal (second column)

k �∗1 �∗3 �∗5 �∗9
1 0.25 1.38 0.25 0.61 0.25 0.47 0.25 0.38
2 1.51 2.95 0.45 0.43 0.35 0.41 0.30 0.33
3 3.84 6.94 0.80 0.93 0.58 0.67 0.49 0.53
4 6.97 11.00 1.20 1.26 0.83 0.89 0.69 0.71
5 12.52 22.32 1.51 1.88 1.06 1.13 0.86 0.89
6 22.04 34.80 1.76 2.21 1.23 1.26 1.01 1.01
7 38.32 68.02 2.03 3.30 1.32 1.38 1.10 1.10
8 67.33 111.54 2.50 4.02 1.40 1.49 1.14 1.13

k �∗1 (�=2:5) �∗3 (�=2:5) �∗5 (�=2:5) �∗9 (�=2:5)
1 0.19 1.05 0.19 0.47 0.19 0.36 0.19 0.29
2 1.15 2.25 0.34 0.31 0.26 0.30 0.22 0.24
3 2.88 5.37 0.59 0.67 0.42 0.49 0.36 0.38
4 5.33 8.38 0.86 0.86 0.59 0.63 0.49 0.50
5 9.60 17.01 1.07 1.34 0.73 0.78 0.61 0.62
6 16.83 26.68 1.24 1.59 0.84 0.86 0.70 0.69
7 29.34 52.13 1.41 2.45 0.90 0.94 0.75 0.74
8 51.59 85.31 1.69 2.98 0.97 1.03 0.77 0.76

k �̃1 �̃3 �̃5 �̃9
1 1.50 3.50 1.50 2.56 1.50 2.25 1.50 1.99
2 4.25 6.85 2.27 3.06 1.71 2.29 1.43 1.78
3 7.71 15.01 3.11 4.73 2.13 3.18 1.53 2.24
4 14.39 20.67 4.06 5.45 2.60 3.42 1.75 2.25
5 24.45 42.05 5.26 7.56 3.14 4.36 1.99 2.71
6 42.35 67.84 6.67 8.93 3.74 4.82 2.24 2.83
7 74.48 130.01 8.46 11.89 4.42 5.92 2.51 3.28
8 127.49 215.35 10.65 14.22 5.20 6.62 2.81 3.48

k �(∞)
1 �(∞)

3 �(∞)
5 �(∞)

9
1–8 0 0 0 0 0 0 0 0

Table 3
Values of �∗ for B2GAMs, di�erent values of s

k \ s− k 0 1 2 3 4 5 6 7 8 9 10

1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
2 0.27 0.27 0.28 0.29 0.30 0.30 0.31 0.31 0.31 0.32 0.32
3 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
4 0.53 0.54 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.56
5 0.66 0.66 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
6 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
7 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
8 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
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5. Hybrid-blended block GAMs (HB2GAMs)

We now study the properties of minimal HB2GAMs. First of all, let us consider the truncation
error of the methods, by considering again the test equation (14), for simplicity. By setting ŷ the
vector with the values of the continuous solution at the grid points, for the �rst component method
(the minimal Block GAM based on k-step formulae) one has

(Â1 − qB̂1)ŷ=O(hk+2); (q= h�);

whereas for the second component method one has (see (28)),

(Â2 − qB̂2)ŷ=O(hk+1):
However, when considering the overall method (see (16)–(20) and (25)), one obtains

(Â(q)− qB̂(q))ŷ ≡ 1
1− �q (Â1 − qB̂1 − �q(Â2 − qB̂2))ŷ=O(h

k+2): (40)

That is, the corresponding minimal HB2GAM has still a O(hk+2) truncation error, and it can be seen
that the order of convergence is k + 1. Alternatively, one may de�ne nonminimal HB2GAMs by
using the Block GAM of order k + 1 and blocksize s = k + 1 as the �rst component method. In
such a case, the entries of the matrices Â2 and B̂2 (see (28)) can be uniquely determined in order
to have

(Â2 − qB̂2)ŷ=O(hk+2)
as well (namely, by using (k+1)-step LMF in each equation de�ning the second component method).
As a consequence, one obtains that (see (40)) the principal term of the truncation error of the
corresponding nonminimal HB2GAM coincides with that of the Block GAM, which can be e�ciently
approximated via deferred correction [5,11].
Another interesting property of HB2GAMs (both minimal and nonminimal) is the qualitative

behavior of the discrete solutions as q→ ∞, in which case one has that
y→ −B−1

2 b2�:

From (28), one then obtains that for q� 0 the last entry of the solution vector is given by

ys ≈ 
s�; 
=−1− �
�

:

Since 1
2¡�61, it follows that there is a considerable potential damping, as s grows. In more detail,

we have chosen � according to the following values, where we also list the corresponding damping
factors 
s: the �rst rows are relative to minimal HB2GAMs (s= k), whereas the second rows refer
to the nonminimal methods (s= k + 1).

k 1 2 3 4 5 6 7 8

� 0.53 0.53 0.58 0.63 0.68 0.75 0.81 0.86
0.53 0.57 0.60 0.66 0.71 0.80 0.85 0.88


 s −8:9e− 1 7:9e− 1 −3:8e− 1 1:2e− 1 −2:3e− 2 1:4e− 3 −3:9e− 5 4:9e− 7
7:9e− 1 −4:3e− 1 2:0e− 1 −3:6e− 2 4:6e− 3 −6:1e− 5 9:4e− 7 −1:6e− 8
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Table 4
Evaluation parameters (31)–(33) for minimal (�rst column) and nonminimal (second column)
HB2GAMs

k �∗ �̃ �(∞)

1 0.03 0.06 0.50 0.50 0 0
2 0.07 0.11 0.50 0.58 0 0
3 0.20 0.29 0.50 0.50 0 0
4 0.36 0.46 0.50 0.55 0 0
5 0.54 0.65 0.50 0.50 0 0
6 0.72 0.80 0.50 0.53 0 0
7 0.86 0.93 0.50 0.51 0 0
8 0.98 1.02 0.51 0.52 0 0

It is evident that the damping factors of HB2GAMs compare almost always favorably with those
of B2GAMs, in particular for the highest-order methods.
Concerning the choice of the parameter �, it has been done in order to have satisfactory conver-

gence properties for the corresponding iteration (22). Indeed, for all k = 1; : : : ; 8, it turns out that
minimal HB2GAMs are A-convergent, as one may infer from Table 4, where we list the correspond-
ing evaluation parameters (31)–(33). From Theorem 7 one then concludes that minimal HB2GAMs
are pre-stable methods. Nonminimal HB2GAMs are A-convergent up to k=7: for k=8, the method
can be seen to be at least A(89◦)-convergent. In Table 5 we also report the corresponding parameters
(34)–(37) for both minimal and nonminimal methods.
For completeness, in Figs. 2 and 4 we plot the boundaries of the absolute stability regions of

minimal and nonminimal HB2GAMs with k odd, respectively. In Figs. 3 and 5 there are the
corresponding plots for k even. From the two �gures one may infer that all methods are A(�)-stable.
The corresponding angles � are listed (rounded to the second decimal digit) in the following table:
the �rst row is relative to minimal HB2GAMs, while the second row is relative to the nonminimal
methods.

k 1 2 3 4 5 6 7 8

� 90
◦

90
◦

90
◦

89:88
◦

89:46
◦

89:16
◦

88:80
◦

88:08
◦

90
◦

90
◦

89:87
◦

89:78
◦

89:39
◦

89:33
◦

88:66
◦

87:42
◦

6. Numerical tests

We here report some numerical tests on well-known problems taken from the literature. We �rst
consider a modi�ed version of the sequential code GAM in [11]. The latter code is based on
Block GAM (BGAM, hereafter) formulae, whereas the modi�ed code is based on the corresponding
B2GAMs introduced in Section 4. The discrete problems generated by the methods are solved by
a splitting-Newton iteration in the code GAM (see [11] for details), while an iteration similar to
(22) is used in the modi�ed code. By comparing the two iterations, it turns out that the iteration
used for B2GAMs is more robust and faster (in terms of iterations needed for convergence) than
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Table 5
Evaluation parameters (34)–(37) for minimal (�rst column) and nonminimal (second column) HB2GAMs

k �∗1 �∗3 �∗5 �∗9
1 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.06
2 0.32 0.37 0.11 0.17 0.09 0.14 0.08 0.13
3 0.66 1.78 0.32 0.56 0.26 0.42 0.23 0.35
4 1.73 3.33 0.64 0.94 0.51 0.70 0.44 0.58
5 3.20 6.08 1.05 1.36 0.80 1.02 0.67 0.83
6 6.30 14.14 1.34 1.51 1.05 1.18 0.88 0.99
7 13.61 26.73 1.47 1.85 1.19 1.26 1.03 1.11
8 25.83 50.26 1.78 2.36 1.24 1.35 1.13 1.18

k �∗1 (�=2:5) �∗3 (�=2:5) �∗5 (�=2:5) �∗9 (�=2:5)
1 0.02 0.06 0.02 0.05 0.02 0.05 0.02 0.05
2 0.23 0.25 0.07 0.11 0.06 0.09 0.05 0.08
3 0.46 1.04 0.20 0.34 0.16 0.26 0.14 0.22
4 0.99 2.24 0.39 0.56 0.31 0.43 0.27 0.36
5 2.12 4.72 0.63 0.80 0.49 0.61 0.41 0.51
6 4.86 10.62 0.79 0.97 0.63 0.73 0.55 0.63
7 10.18 20.51 0.93 1.30 0.73 0.83 0.65 0.74
8 19.83 38.45 1.26 1.60 0.85 0.93 0.76 0.83

k �̃1 �̃3 �̃5 �̃9
1 0.50 0.60 0.50 0.58 0.50 0.57 0.50 0.56
2 0.70 1.14 0.65 0.89 0.62 0.80 0.61 0.72
3 1.46 1.69 0.96 1.01 0.82 0.84 0.71 0.71
4 1.65 6.26 1.00 1.79 0.85 1.25 0.72 0.93
5 6.22 6.40 1.76 2.22 1.23 1.52 0.91 1.09
6 6.79 24.31 2.40 3.79 1.62 2.25 1.15 1.44
7 24.83 40.01 3.76 5.40 2.23 2.94 1.44 1.75
8 38.02 89.23 5.40 7.40 2.95 3.72 1.76 2.08

k �(∞)
1 �(∞)

3 �(∞)
5 �(∞)

9
1–8 0 0 0 0 0 0 0 0

that used for BGAMs (this can be also deduced by comparing the ampli�cation factors in Tables
1–3 with the corresponding ampli�cation factors in [11]). As a matter of fact, the modi�ed code
generally requires less function and Jacobian evaluations, than the original code. Nevertheless, each
iteration for B2GAMs has an O(m2) complexity section (we recall that m denotes the dimension of
the continuous problem) which is approximately three times more expensive than that of the iteration
used for the corresponding BGAM. Moreover, the variable order strategy of the code GAM is very
well tuned for the BGAMs used. As a result, it turns out that the modi�ed code, used with variable
order, is generally 30%–70% slower than the original code GAM. Things partially change when
the two codes are used with a �xed order, in particular the highest one, that is 9 (k = 8). In such
a case, in fact, one has that the iteration of the 9th-order B2GAM is much more robust than that
used in the original code. As a matter of fact, the former iteration is A-convergent (see Section 4),
whereas the latter does not [11]. In Tables 6 and 7 we report the obtained results, for the original
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Fig. 2. Boundaries of the absolute stability regions of minimal HB2GAMs, k = 1; 3; 5; 7.

Table 6
van der Pol problem

Tol 1e− 02 1e− 03 1e− 04 1e− 05 1e− 06 1e− 07 1e− 08 1e− 09
Error 1:4E− 03 5:5E− 04 3:3E− 05 4:7E− 06 5:1E− 07 5:4E− 08 3:4E− 09 1:9E− 10

B # steps 5457 4411 537 396 382 117 96 113
G # accept 4223 4329 521 384 371 99 79 92
A # f-eval 260963 259850 32317 23869 22878 8632 7645 10287
M # Jac-eval 2940 4253 519 386 373 97 73 77
9 # LU-decomp 4233 4338 532 396 381 113 95 108

time (sec=100) 360 371 46 34 32 12 11 14

Error 5:7E− 04 3:2E− 04 8:6E− 06 3:4E− 06 5:5E− 07 3:8E− 08 2:0E− 08 1:3E− 11
B # steps 773 287 151 86 97 108 94 107
2 # accept 521 207 110 62 69 75 72 84
G # f-eval 15399 8245 5421 3996 4732 6727 6112 6961
A # Jac-eval 265 98 65 36 44 55 59 57
M # LU-decomp 525 216 127 84 96 102 93 103
9 time (sec=100) 45 23 16 11 13 18 17 19

�xed-order code (BGAM9) and the �xed-order modi�ed one (B2GAM9), on the van der Pol and
Robertson problems, respectively. In all cases, the parameters atol= rtol= h0= tol have been used.
Asterisks in the “error” �eld mean that the (�xed) order method fails. As one can see, in such a
case the modi�ed code generally performs better.
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Fig. 3. Boundaries of the absolute stability regions of minimal HB2GAMs, k = 2; 4; 6; 8.

Table 7
Robertson problem

Tol 1e− 04 1e− 05 1e− 06 1e− 07 1e− 08 1e− 09 1e− 10 1e− 11
Error ∗ ∗ ∗∗ 1:2E− 5 2:2E− 10 8:3E− 11 1:0E− 11 3:5E− 13 1:6E− 13 1:8E− 14

B # steps 2611 22509 223 223 119 107 100 94
G # accept 1546 12988 145 148 88 87 85 86
A # f-eval 72506 514143 9775 10551 6896 6964 6754 6855
M # Jac-eval 1032 9525 94 118 79 80 76 76
9 # LU-decomp 1577 12992 165 193 115 106 99 94

time (sec=100) 125 843 16 18 12 12 11 12

Error 1:6E− 08 2:7E− 09 6:3E− 10 4:4E− 11 4:3E− 15 3:4E− 14 7:9E− 15 6:3E− 15
B # steps 1207 668 86 62 52 73 118 82
2 # accept 746 401 63 51 49 64 96 81
G # f-eval 21969 15495 2998 2671 2759 3611 5038 4105
A # Jac-eval 472 277 44 35 35 45 62 45
M # LU-decomp 758 410 66 53 49 67 96 81
9 time (sec=100) 78 55 10 9 10 12 17 14

Finally, we consider the parallel implementation across the steps of nonminimal HB2GAMs by
using a two-step procedure as described in [1,6]. The second step of such procedure, in fact, in
its original formulation does su�er for a parallel complexity of O((sm)3) 
ops (see the concluding
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Fig. 4. Boundaries of the absolute stability regions of nonminimal HB2GAMs, k = 1; 3; 5; 7.

Fig. 5. Boundaries of the absolute stability regions of nonminimal HB2GAMs, k = 2; 4; 6; 8.



60 L. Brugnano / Journal of Computational and Applied Mathematics 116 (2000) 41–62

Fig. 6. Work precision diagram, ring modulator problem.

remarks in [1]). By using the inner iteration corresponding to HB2GAMs, such complexity is lowered
to O(m3) 
ops, thus overcoming the above mentioned problem. In Fig. 6, there is the work-precision
diagram for the “ring modulator” problem, a sti� IVP of dimension 15 from the CWI test-set [14],
obtained on a Cray T3E parallel computer, where scd is as usual the number of signi�cant computed
digits in the discrete solution. Moreover, in the diagram the continuous line labelled “GAM” denotes
the obtained results for the code GAM used with decreasing tolerances. The dotted line labelled
“PGAMp” denotes the obtained results for the execution, on p processors, of the parallel code
based on the 9th-order nonminimal HB2GAM (k = 8; s = 9). The coe�cients of the matrix Â2 of
this method are listed in Table 8 (�(i)j is the (i; j+1)th entry of the matrix, i=1; : : : ; 9, j=0; : : : ; 9);
the corresponding matrix B̂2 (see (28)) is obtained for � = 0:88, as it has been already said in
Section 5. Finally, the dotted line labelled “PGAM∗” corresponds to the best asymptotic parallel
performance for the parallel solver (full details will be given in [2]). From the �gure, one has
that the parallel code, when executed on 32 processors, is always faster than the sequential code
GAM and, asymptotically, it is about 2.5 times faster (for such problem). This result could be
further improved, by considering that the �rst step of the parallel procedure, based on a sequential,
low-order method which determines the mesh [6], needs to be improved as well. In fact, by looking
at Fig. 7, it turns out that at least twice the number of mesh points needed by the code GAM is
required by the current version of the parallel code to obtain a comparable accuracy. This problem
will be the further investigated. Nevertheless, the results obtained so far seem to con�rm that the
second step of the procedure, based on nonminimal HB2GAMs, is quite e�cient and reliable.
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Table 8
Coe�cients of the nonminimal HB2GAM, k = 8, rows of the matrix Â2 multiplied by �= 63000

i �(i)0 � �(i)1 � �(i)2 � �(i)3 � �(i)4 � �(i)5 � �(i)6 � �(i)7 � �(i)8 � �(i)9 �

1 −27547 −27198 85680 −47040 20580 −3528 −2352 1920 −585 70
2 −70 −26847 −30348 94080 −61740 38220 −18228 6048 −1230 115
3 −115 1080 −32022 −16548 69930 −32760 14070 −4428 873 −80
4 80 −915 4680 −41622 252 49770 −15960 4470 −828 73
5 −73 810 −4200 13440 −56952 18648 34440 −7200 1185 −98
6 98 −1053 5220 −15960 34020 −81648 39228 22680 −2790 205
7 −205 2148 −10278 29820 −59010 85680 −124698 63828 13455 −740
8 740 −7605 35448 −99078 185220 −245490 241080 −213498 97128 6055
9 −6055 61290 −280080 762048 −1370628 1711080 −1517040 967680 −485973 157678

Fig. 7. Number of mesh point versus accuracy, ring modulator problem.

Acknowledgements

The author wishes to thank Professor Donato Trigiante for the helpful discussions and the referees
for their comments.

References

[1] P. Amodio, L. Brugnano, ParalleloGAM: a parallel code for ODEs, Appl. Numer. Math. 28 (1998) 127–141.
[2] P. Amodio, L. Brugnano, in progress.



62 L. Brugnano / Journal of Computational and Applied Mathematics 116 (2000) 41–62

[3] L. Brugnano, D. Trigiante, Block boundary value methods for linear Hamiltonian systems, Appl. Math. Comput. 81
(1997) 49–68.

[4] L. Brugnano, D. Trigiante, On the potentiality of sequential and parallel codes based on extended trapezoidal rules
(ETRs), Appl. Numer. Math. 25 (1997) 169–184.

[5] L. Brugnano, D. Trigiante, Solving Di�erential Problems by Multistep Initial and Boundary Value Methods, Gordon
and Breach, Amsterdam, 1998.

[6] L. Brugnano, D. Trigiante, Parallel implementation of block boundary value methods on nonlinear problems: theoric
results, Appl. Numer. Math. 28 (1998) 127–141.

[7] E. Hairer, G. Wanner, Solving Ordinary Di�erential Equations II, Sti� and Di�erential-Algebraic Problems, Springer,
Berlin, 1991.

[8] P.J. van der Houwen, J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, SIAM J. Sci.
Comput. 18 (1997) 41–55.

[9] P.J. van der Houwen, J.J.B. de Swart, Parallel linear system solvers for Runge–Kutta methods, Adv. Comput. Math.
7 (1-2) (1997) 157–181.

[10] F. Iavernaro, F. Mazzia, Block-boundary value methods for the solution of ordinary di�erential equations, SIAM J.
Sci. Comput., to appear.

[11] F. Iavernaro, F. Mazzia, Solving ordinary di�erential equations by generalized Adams methods: Properties and
implementation techniques, Appl. Numer. Math. 28 (1998) 107–126. See also the URL http:==www.dm.uniba.it=
mazzia=ode=readme.html

[12] R.D. Skeel, A.K. Kong, Blended linear multistep methods, ACM TOMS 3 (1977) 326–345.
[13] H.A. Watts, L.F. Shampine, A-stable block one-step methods, BIT 12 (1972) 252–266.
[14] W.M. Lioen, J.J.B. de Swart, W.A. van der Veen, Test set for IVP solvers, Report NM-R96150, CWI, Department

of Mathematics, Amsterdam, 1996.


