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Abstract

The use of implicit numerical methods is mandatory when solving general stiff ODE/DAE problems. Their use, in turn, requires
the solution of a corresponding discrete problem, which is one of the main concerns in the actual implementation of the methods.
In this respect, blended implicit methods provide a general framework for the efficient solution of the discrete problems generated
by block implicit methods. In this paper, we review the main facts concerning blended implicit methods for the numerical solution
of ODE and DAE problems.

In addition to this, we study the extension of blended implicit methods for solving second-order problems, which results in a
straightforward generalization of the basic theory for such methods.

Finally, a few numerical tests obtained with the computational codeBiMD, implementing a variable order-variable stepsize blended
implicit method, are also reported, in order to confirm the effectiveness of the approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When solving general stiff ODE and DAE problems, the use of implicit methods is mandatory, because of the weak
stability properties of explicit methods. On the other hand, implicit methods require the solution, at each integration
step, of a corresponding discrete problem, whose dimension is a multiple of that of the continuous one. Often, this is
the main drawback when implementing such methods in a computational code, since the cost for solving the discrete
problem may be very high. In particular, we consider here block implicit methods [25], namely methods that, when
applied to the IVP

y′ = f (t, y), t ∈ [t0, T ], y(t0)= y0 ∈ Rm, (1)
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generate, at the nth integration step, a discrete problem in the form

A⊗ Imyn − hnB ⊗ Imfn = �n, (2)

where the matrices A, B ∈ Rr×r (which we assume non-singular hereafter) define the method, hn is the current stepsize,
the block vectors

yn = (yn1, . . . , ynr )
T, fn = (fn1, . . . , fnr )

T,

fnj = f (tnj , ynj ), tnj = tn + cjhn, j = 1, . . . , r , (3)

contain the discrete solution and, finally, �n only depends on already known quantities. This is a rather general frame-
work, including the majority of implicit Runge–Kutta methods, for which A = I , the identity matrix, a number of
general linear methods (see, for example [11,18,19]), and, more recently, block boundary value methods [7]. Many
techniques have been derived, across the years, for efficiently solving the discrete problem (2) (see, for example,
[1,10,14,20,21]) and/or to define methods for which it has a suitably simple structure, thus gaining efficiency (see, for
example, [9,12,24]). In this context, blended implicit methods [3,4,8] provide a quite general framework, allowing a
re-formulation of the discrete problem generated by a given block implicit method, for which an efficient non-linear
splitting is straightforwardly defined. Blended implicit methods have been implemented in the computational code BiM
[5] for the numerical solution of stiff ODEs. Recently, this approach has been extended for handling linearly implicit
DAE problems [6], and a corresponding code, BiMD, is now available at the same web page [27] of BiM. Moreover,
in this paper we extend blended implicit methods for solving special second-order problems.

With this premise, the paper is then organized as follows: in Sections 2 and 3 we recall the main facts about blended
implicit methods for ODEs and their extension for DAE problems, respectively; in Section 4 we study the extension of
blended implicit methods for second-order problems and, finally, in Section 5 we present some numerical tests along
with a few concluding remarks.

2. Blended implicit methods for ODE problems

Let now summarize the main facts about blended implicit methods, which have been introduced and analyzed in
[3–5,8]. In order to conveniently introduce such methods, and to carry out a corresponding linear analysis of convergence
(according to [20,21]), let us consider the application of the block method (2) to the usual test equation,

y′ = �y, y(t0)= y0, Re(�)�0.

Moreover, for sake of simplicity, we consider the very first application of the method, since the same arguments apply
to each step of integration. This allows us to avoid, hereafter, the subscript n and the discrete problem results in the
following system of linear equations,

(A− qB)y= �, q = h�. (4)

We observe that the non-singularity of both matrices A and B implies that the discrete problem (4) can be cast, by
setting � > 0 a free parameter and

C = A−1B, (5)

into either one of the following two equivalent equations:

(I − qC)y= A−1� ≡ �1, �(C−1 − qI)y= �B−1� ≡ �2. (6)

Let us now introduce the weighting function

�(q)= (I − q�I )−1. (7)

We observe that �(q) is analytical for q ∈ C− and, moreover,

�(0)= I, �(q)→ O, as q →∞, (8)
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with O denoting the zero matrix. The blended implicit method based on the block method (4) is then defined through
the following discrete problem,

M(q)y ≡ (A(q)− qB(q))y= �(q)�1 + (I − �(q))�2 ≡ �̂(q), (9)

where

A(q)= �(q)I + (I − �(q))�C−1, B(q)= �(q)C + (I − �(q))�I . (10)

The problem (9)–(10) is evidently obtained as the blending of the two equivalent equations (6) with weights �(q) and
I − �(q), respectively: it is, therefore, still equivalent to (4). As a consequence, order and stability properties are fully
inherited from the block method (2). However, the problem (9)–(10) has a relevant advantage with respect to (4). In
fact, by considering that, because of (7) and (8),

M(q)= I +O(q), when q ≈ 0, M(q)= q(�I +O(q−1)), as q →∞,

then, the splitting matrix

N(q)= I − q�I ≡ �(q)−1 (11)

is naturally induced. Indeed, it coincides with M(q) at q=0 and at∞. The corresponding blended iteration associated
to the blended method (9)–(10) is

N(q)y(i) = (N(q)−M(q))y(i−1) + �̂(q), i = 1, 2, . . . , (12)

which is convergent iff the spectral radius, say �(q), of the iteration matrix,

Z(q)= I −N(q)−1M(q), (13)

is less than 1. From the previous arguments, we observe that, whatever the choice of the parameter � > 0, one has that

�(0)= 0 and �(q)→ 0, as q →∞.

According to [20,21], and by using the maximum modulus principle, the iteration (12) is said to be L-convergent if the
maximum amplification factor,

�∗� =max
x>0

�(ix), (14)

is smaller than 1, where, as usual, i denotes the imaginary unit. It is worth to emphasize that an L-convergent iteration
is highly desirable, if the underlying block method is L-stable. In (14), the subscript � does denote the dependence of
this factor from the choice of the positive parameter �. A little algebra shows that [4], for the iteration matrix (13),

� ∈ �(C) ⇐⇒ q(�− �)2

�(1− q�)2 ∈ �(Z(q)). (15)

Moreover, for the methods implemented in the codesBiM [5] andBiMD, and, more in general, for all block methods such
that the characteristic polynomial of the matrix (5) coincides (up to a variable scaling) with the reciprocal polynomial
at the denominator of the (s, r) Padé approximation to the exponential, s = r − 2, r − 1, r , the following result holds
true for all practical values of r [4].

Theorem 1. Let �1=�1ei	1 , �1, 	1 �0, be the eigenvalue of C having minimum modulus (and non-negative imaginary
part). Then

�(q)=
∣∣∣∣∣ q(�1 − �)2

�1(1− q�)2

∣∣∣∣∣ and �∗� ≡ �(i�−1)= |�1 − �|2
2��1

. (16)

The latter quantity is minimized by choosing �= �1, for which

�∗�1
≡ �∗ = 1− cos 	1.
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Table 1
Data for the methods implemented in the codes BiM and BiMD

r Padé Order � �∗

3 (2, 3) 4 .7387 .3398
4 (2, 4) 6 .8482 .5291
6 (4, 6) 8 .7285 .6299
8 (6, 8) 10 .6745 .6885

10 (8, 10) 12 .6433 .7276

Table 2
Data for the Radau IIA and Lobatto IIIA/Gauss methods

r Padé Order � �∗

2 (1, 2) 3 .4082 .1835
3 (2, 3) 5 .2462 .3398
4 (3, 4) 7 .1738 .4416
5 (4, 5) 9 .1334 .5123
6 (5, 6) 11 .1079 .5644
7 (6, 7) 13 .9032 · 10−1 .6045

2 (2, 2) 4 .2887 .1340
3 (3, 3) 6 .1967 .2765
4 (4, 4) 8 .1475 .3793
5 (5, 5) 10 .1173 .4544
6 (6, 6) 12 .9710 · 10−1 .5114
7 (7, 7) 14 .8265 · 10−1 .5561

With this choice, for all practical values of r one obtains L-convergent iterations, which are associated to corresponding
L-stable methods, when s < r , or A-stable methods, when s=r . In Table 1, we list the data corresponding to the methods
implemented in the current versions of the codes BiM (Rel. 2.0, April 2005) and BiMD (Rel. 1.0, October 2005) [27],
for which (see (3)) cj = j, j = 1, . . . , r . By the way, we mention that Theorem 1 also applies, for example, to Radau
IIA, Lobatto IIIA, and Gauss methods: in Table 2, we list the information concerning such methods. We end this section
by observing that, when the blended method is applied to the more general problem (1), then the iteration (9)–(12)
formally becomes

�(i) =N−1(�((I − �C−1)⊗ Imy(i−1) − h(C − �I )⊗ Imf (i−1))

+ �(C−1 ⊗ Imy(i−1) − hI ⊗ Imf (i−1))− �̂),

y(i) = y(i−1) − �(i), i = 1, 2, . . . , (17)

where, by setting J the Jacobian of f (t, y) evaluated at (t0, y0),

N−1 ≡ �= I ⊗ 
−1, 
= Im − h�J . (18)

Consequently, if � iterations are required to obtain convergence, the overall leading cost, to carry out the iteration
(17)–(18), amounts to:

• 1 Jacobian evaluation,
• 1 factorization of the m×m matrix 
,



L. Brugnano, C. Magherini / Journal of Computational and Applied Mathematics 205 (2007) 777–790 781

• r� function evaluations, and
• 2r� system solvings with the factors of 
.

For more details, we refer to [5]. An additional, remarkable, feature of the iteration (17)–(18) is the block diagonal
structure of the splitting matrix N. For later reference, we observe that, in the case of the linear system of ODEs,
y′ = Jy + g(t), with constant J ∈ Rm×m, the iteration (17)–(18) induces the iteration matrix

Z = C−1(C − �I )2 ⊗ hJ (Im − h�J )−2, (19)

for which the previous linear analysis of convergence, summarized by the result of Theorem 1, applies.

3. Blended implicit methods for DAE problems

We now summarize the extension of blended implicit methods for solving linearly implicit DAE problems, according
to [6]. Therefore, we now consider problems in the form

Ky′ = f (t, y), t ∈ [t0, T ], y(t0)= y0 ∈ Rm, (20)

where the (constant) mass matrix K may be singular. Since we are interested in a linear analysis of convergence for the
corresponding blended iteration, we confine ourselves to the case of linear equations in the form

Ky′ = Jy + g(t), (21)

where K and J are constant matrices and g(t) is a vector valued function. The following notions (see, for example,
[2,17,19]) are briefly recalled, for completeness and later reference. First of all, the matrix pencil

�K − J (22)

is associated to Eq. (21). The pencil is said to be regular if its determinant is not identically 0, as a function of �.
Moreover, Eq. (21) is solvable iff the pencil (22) is regular, which we assume hereafter. In such a case, the pencil (22)
can be cast into its Kronecker canonical form,

PKQ=
(

Id

H

)
, PJQ=

(
G

Ia

)
, (23)

where P, Q ∈ Rm×m are non-singular, Id and Ia are the identity matrices of dimension d and a, respectively (d+a=m),
G ∈ Rd×d , and H ∈ Ra×a ,

H =
⎛
⎝H1

. . .

Hk

⎞
⎠ , Hi =

⎛
⎜⎜⎝

0 1
. . .

. . .

. . . 1
0

⎞
⎟⎟⎠ ∈ R�i×�i , i = 1, . . . , k,

with
∑k

i=1 �i = a. Consequently,

H � =O, �= max
i=1,...,k

�i , (24)

where � is the index (of nilpotency) of the DAE (21). It is known that the higher the index, the more difficult the problem.
By means of the Kronecker normal form (23), the problem decouples as follows:

x′ =Gx + �(t), Hz′ = z+ 
(t), (25)

where

Q−1y ≡
(

x

z

)
, Pg(t) ≡

(
�(t)


(t)

)
.
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With these premises and notations, let us generalize the blended iteration (17)–(18) for solving the DAE (21). The only
differences with what has been seen in Section 2 amount to the weighting function and the splitting matrix,

�= I ⊗K
−1, N = I ⊗ 
, 
=K − h�J , (26)

in place of (18). We observe that we get exactly the formulae previously seen in Section 2, in the case K = Im, i.e.,
when (21) reduces to an ODE. By taking into account (21) and (26), it is not difficult to see that the blended iteration
(17) now, formally, becomes

�(i) =N−1(�((I − �C−1)⊗K − h(C − �I )⊗ J )y(i−1)

+ �(C−1 ⊗K − hI ⊗ J )y(i−1) − �̂),

y(i) = y(i−1) − �(i), i = 1, 2, . . . . (27)

The corresponding iteration matrix is then given by

Z = I ⊗ Im −N−1(�((I − �C−1)⊗K − h(C − �I )⊗ J )

+ �(C−1 ⊗K − hI ⊗ J )). (28)

The following result then holds true [6].

Lemma 2. The iteration matrix (28) is similar to the block diagonal matrix (see (23))(
Zd

Za

)
, where

{
Zd = C−1(C − �I )2 ⊗ hG(Id − h�G)−2,

Za = C−1(C − �I )2 ⊗ hH(H − h�Ia)
−2.

(29)

Remark 3. We observe that the two blocks Zd and Za in (29) correspond, respectively, to the ODE and to the normalized
DAE in (25).

It is evident that the matrix Zd in (29) formally coincides with (19), via the substitutions G←→ J and Ia ←→ Im.
Consequently, the result of Theorem 1 applies to it. On the other hand, for Za the following result follows at once
from (24).

Theorem 4. The matrix Za is nilpotent of index �.

Remark 5. As a consequence, one obtains that the convergence properties of the blended iteration (27) are essentially
unaffected by the algebraic part of the problem. In fact, they depend only on the matrix Zd , corresponding to the
differential equation in (25), provided that at least � iterations are carried out, if � is the index of the DAE.

4. Extension for second-order problems

We now study the extension of blended implicit methods for solving second-order problems of special type,

y′′ = f (t, y), t ∈ [t0, T ], y(t0)= y0, y′(t0)= y′0 ∈ Rm, (30)

where stiffness is present, i.e., with y(t) combining components with dominant short frequencies and components with
large frequencies and small amplitudes. In this case, it is customary to resort to the following linear test equation [23],

y′′ = −�2y, � ∈ R,

which we use for the linear analysis of convergence. In particular, methods which are popular for solving this problem
(for example, in the class of implicit Runge–Kutta–Nyström methods [16,18]), lead to a discrete problem in the form

(I − q2C2)y= �1, q = ih� ≡ ix, x ∈ R, (31)
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where the (non-singular) matrix C ∈ Rr×r corresponds to a suitable block method (2)–(5). For example, when speaking
about Runge–Kutta methods, Gauss formulae with s= r stages and Lobatto IIIA formulae with s= r+ 1 stages. Then,
we can define the following equivalent formulation of (31),

�2(C−2 − q2I )y= �2C−2�1 ≡ �2,

with � > 0 a free parameter, and the weighting function

�(q)= (I − q2�2I )−1,

such that the resulting blended method corresponding to (31) is formally still given by (9), with

A(q)= �(q)I + (I − �(q))�2C−2, B(q)= �(q)C2 + (I − �(q))�2I , (32)

instead of (10). Consequently, it induces the blended iteration (12) with the splitting matrix

N(q)= I − q2�2I ≡ �(q)−1 (33)

in place of (11). The corresponding iteration matrix is formally still given by (13) and, again, N(q) coincides with
M(q) at q = 0 and at∞. The iteration is convergent iff the spectral radius of Z(q), which we again denote by �(q), is
less than 1, and the corresponding maximum amplification factor is formally still given by (14) (see (31)). In analogy
with the related notion of P-stability [23], we give the following definition.

Definition 6. We say that the iteration (12) and (32)–(33) is P-convergent if the corresponding maximum amplification
factor (14) is smaller than 1.

Also in this case, we are interested in choosing the parameter � in order for �∗� to be minimized. For this purpose,
we observe that the two iterations, respectively, given by (9)–(12), and (9), (12), (32)–(33), are formally the same via
the substitutions:

� ←→ �2, q ←→ q2, C ←→ C2.

Consequently, we obtain at once from (15) that the eigenvalues of the iteration matrix Z(q) now satisfy

� ∈ �(C) ⇐⇒ q2(�2 − �2)2

�2(1− q2�2)2
∈ �(Z(q)).

The following result is then readily established.

Lemma 7. For a fixed � > 0, one has that (see (31))

�∗� ≡ �(i�−1)= 1

4�2 max
�∈�(C)

|�2 − �2|2
|�|2 . (34)

Since C is a real matrix and �2 > 0, we can consider, in the study of the last member of Eq. (34), only the eigenvalues
with non-negative imaginary part. Let us assume that they are given by

�j = �j ei	j , j = 1, . . . , � ≡ 
r/2�, (35)

and moreover they satisfy

0 < �1 � · · · ���,
�

2
> 	1 > · · ·> 	� �0. (36)

The following result then holds true.

Theorem 8. If conditions (35)–(36) are fulfilled and, moreover,

�2
1 �

�2
j

1+ 4(cos2 	j − cos2 	1)
, j = 2, . . . , �, (37)
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Table 3
Parameters for Gauss and Lobatto IIIA methods

r Order � �̂∗ �∗ �̂0 �̃0 �̂∞ �̃∞

2 4 .2887 .2500 .1340 .0833 .0774 1.2 · 101 9.3 · 10−1

3 6 .1967 .4765 .2765 .0738 .1088 4.9 · 101 2.8 · 100

4 8 .1475 .6147 .3793 .0535 .1119 1.1 · 102 5.1 · 100

5 10 .1173 .7024 .4544 .0387 .1066 2.0 · 102 7.7 · 100

6 12 .9710 · 10−1 .7613 .5114 .0287 .0993 3.2 · 102 1.1 · 101

7 14 .8265 · 10−1 .8029 .5561 .0219 .0919 4.7 · 102 1.3 · 101

8 16 .7185 · 10−1 .8336 .5921 .0172 .0851 6.5 · 102 1.6 · 101

9 18 .6348 · 10−1 .8569 .6218 .0138 .0789 8.5 · 102 2.0 · 101

10 20 .5681 · 10−1 .8752 .6467 .0113 .0735 1.1 · 103 2.3 · 101

then (see (34)),

�(q)=
∣∣∣∣∣ q(�2

1 − �2)

�1(1− q2�2)

∣∣∣∣∣
2

and �∗� =
|�2

1 − �2|2
4�2�2

1

. (38)

The latter quantity is minimized by choosing �=�1. With this choice, one obtains �∗�1
≡ �̂∗ = (1− cos2 	1). Therefore,

the corresponding iteration (9), (12), and (32)–(33) turns out to be P-convergent.

Proof. In order for the second equation in (38) to be satisfied, one must have

|�2
1 − �2|2�2

j � |�2
j − �2|2�2

1, j = 2, . . . , �.

By considering (35), one then obtains

�4(�2
j − �2

1)+ 4�2�2
1�

2
j (cos2 	j − cos2 	1)��2

1�
2
j (�

2
j − �2

1).

By taking into account (36), a sufficient condition for this inequality to be satisfied is given by

�2 �
�2

j − �2
1

4(cos2 	j − cos2 	1)
, j = 2, . . . , �. (39)

Let us assume, for a moment, that (39) holds true. Then, from (38) one obtains, after a few calculations,

�∗� =
1

4

(
�2

1

�2 +
�2

�2
1

− 2 cos 2	1

)
≡ g(�2).

This is a strictly convex function, since g′′(�2) > 0. Its global minimum is obtained by solving g′(�2)= 0, thus leading
to � = �1. As a consequence, (39) turns out to be equivalent to (37), which holds true by hypothesis. Moreover, we
get: �∗�1

= g(�2
1)= (1− cos 2	1)/2= 1− cos2 	1 ≡ �̂∗. Finally, having fixed �, and by considering that we have just

proved that the maximum in (34) occurs at �= �1, the first equality in (38) immediately follows. �

Remark 9. We observe that, from a geometric point of view, the conditions (36)–(37) require the eigenvalues of the
matrix C to be contained in a suitable annulus of the complex plane, whose internal radius equals �1.

It turns out that the conditions (36)–(37) are satisfied by both Runge–Kutta Gauss and Lobatto IIIA methods, for
which we list in Table 3 the corresponding parameters � and �̂∗, as defined in Theorem 8. Such values provide results,
for Gauss methods, which appear to be comparable, for example, with those recently obtained in [15] (though, after a
more complicated analysis). We can then conclude that the iteration (9), (12), and (32)–(33), based on Gauss or Lobatto
IIIA methods, provide P-convergent implementations of high order, P-stable methods for problem (30) [16]. Moreover,
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10−2 10−1 100 101 102 10310−4
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| q |
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| q |

r = 3

10−2 10−1 100 101 102 10310−4

10−3
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| q |
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10−3
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10−1

100

| q |

r = 5

Fig. 1. Spectral radii of the iteration matrices, r= 2, 3, 4, 5, corresponding to the second-order (solid line) and first-order (dashed line) formulations.

the fact that the iteration matrix is zero at∞, makes such iteration very well suited for stiff problems. Finally, in the
case of problem (30), the corresponding blended iteration is formally still given by (17)–(18), via the substitutions

� ←→ �2, h ←→ h2, C ←→ C2.

4.1. Some remarks

It is noticeable that the optimal choice for the parameter �, provided by the result of Theorem 8 for second-order
problems, nicely coincides with that for first-order problems stated in Theorem 1. However, we observe that the
maximum amplification factor �̂∗, as defined in Theorem 8 (see the fourth column in Table 3) is larger than the
corresponding value of the amplification factor �∗, as defined in Theorem 1. The latter would result from the application
of the blended method based on Gauss or Lobatto IIIA formulae to the corresponding first-order system (see the fifth
column in Table 3). Nevertheless, though �̂∗> �∗, we observe that the overall behavior of the spectral radius of the
iteration matrix, for the second-order formulation, is generally more favorable, as a function of q = ix, x > 0, than that
of the corresponding first-order formulation (see, for example, Fig. 1, for r = 2, 3, 4, 5). In order to better measure
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Table 4
Parameters for the iteration in [15] for Gauss methods

r Order �̂∗ �̂0 �̂∞ Nilpotency index

2 4 .2500 .0833 1.2 · 101 2
3 6 .4753 .0733 4.9 · 101 2
4 8 .6437 .0619 1.2 · 102 2

this aspect, we observe that (see (31) and (38)), for a given q = ih�, the spectral radius of the iteration matrix for the
second-order formulation is given by∣∣∣∣∣ q2(�2

1 − �2)2

�2
1(1− q2�2)2

∣∣∣∣∣ ≈
{

�̂0|q|2, |q| ≈ 0,

�̂∞|q|−2, |q|?0,
(40)

where

�̂0 =
∣∣∣∣∣ (�

2
1 − �2)

�1

∣∣∣∣∣
2

≡ (2�)2�̂∗, �̂∞ ≡
�̂0

�4 .

On the other hand, for the first-order formulation one obtains that (see (16)) the spectral radius of the corresponding
iteration matrix is given by∣∣∣∣∣ q(�1 − �)2

�1(1− q�)2

∣∣∣∣∣ ≈
{

�̃0|q|, |q| ≈ 0,

�̃∞|q|−1, |q|?0,
(41)

where

�̃0 =
∣∣∣∣∣ (�1 − �)2

�1

∣∣∣∣∣ ≡ 2��∗, �̃∞ ≡
�̃0

�2 .

In the last four columns in Table 3, the two couples of parameters are listed, showing that, for each value of r, the
parameters �̂0 and �̃0 are almost of the same size for both formulations, whereas the ratio �̂∞/�̃∞ ∼ 2/� (which is,
therefore, bounded). As a consequence, by considering that the power (positive or negative) of |q| is doubled for the
second-order formulation (compare (40) and (41)), one obtains that this formulation is much more appealing, when |q|
is either very small or very large (i.e., in the case of stiff problems). Last, but not least, we observe that one blended
iteration for the second-order problem turns out to be cheaper than that for the corresponding first order one. In light
of the above facts, we can then conclude that the former iteration is generally preferable than the latter one.

For completeness, in Table 4 we also list corresponding parameters for the iteration recently defined in [15] for
second-order problems solved by means of Gauss methods. In addition to the parameters �̂∗, �̂0, and �̂∞ above
described, i.e., by setting as usual �(q) the spectral radius of the corresponding iteration matrix,

�̂∗ =max
x �0

�(ix) and �(q) ≈
{

�̂0|q|2, |q| ≈ 0,

�̂∞|q|−2, |q|?0,

we also list the index of nilpotency of the iteration matrix at∞. By comparing these entries with the corresponding
ones listed in Table 3 for the extension of blended implicit methods for second-order problems, we can conclude
that the two iterations appear to have very similar convergence properties: actually, the plot of the spectral radii of
the corresponding iteration matrices, as functions of q, are almost identical. Nevertheless, we want to emphasize the
conceptual simplicity of the analysis concerning the use of blended implicit methods, for which the convergence
properties of the corresponding blended iteration do only depend on the choice of one parameter (i.e., �). Moreover,
the optimal choice of such parameter is easily obtained for most of the methods of practical interest.
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Fig. 2. Numerical results for ODEs.
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Fig. 3. Numerical results for DAEs.
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5. Numerical tests and conclusions

As previously mentioned, blended implicit methods were first implemented in the Fortran 77 code BiM [5], for the
numerical solution of stiff ODEs. Subsequently, the extension of such code, called BiMD, for the numerical solution
of stiff ODEs and linearly implicit DAEs in the form (20) up to index three, has been released, and it is available at
the same web page [27] of BiM. We shall here use the code BiMD to perform some numerical tests, which compare
this code with the codes available in the current release of the Test Set for IVP Solvers [26] (Rel. 2.2, August 2003). In
particular, the codes compared with BiMD are DASSL [2], GAMD [22], MEBDFDAE and MEBDFI [13], RADAU5 and
RADAU [19]. All the codes are able to solve ODEs and DAEs up to index three, with the only exception of DASSL,
which is designed to work with ODEs and index 1 DAEs. Also the test problems considered here are taken from the Test
Set: additional numerical results, with respect to those reported here, can be found at the web page [27], where the code
BiMD is available. For each problem, the obtained results are displayed by means of corresponding work-precision
diagrams, i.e., by using the same standard used in the Test Set (see also [19]).

In Fig. 2, we plot the results obtained for the following first-order ODE problems: Emep, Elastic Beam, Ring
Modulator. In Fig. 3, we plot the results for the following linearly implicit DAE problems: Chemical Akzo Nobel
Problem (index 1), Fekete (index 2), Car Axis (index 3). For all tests, the accuracy of the numerical solution (measured
in terms of mixed error significant computed digits (mescd) [26]) is plotted against the execution time. The used input
parameters are essentially those used in [26]. The tests have been done on a IBM SP Power 5 computer, by using the xl
Fortran compiler with the optimization options -O5 -qstrict. We mention that the codes RADAU5 and RADAU fail
to solve the Ring Modulator problem, when using the coarsest accuracy tolerances. Moreover, DASSL, MEBDFDAE,
and MEBDFI are less efficient, when solving the Elastic Beam problem, because of the lack of A-stability of their
respective higher order formulae (see also [19]).

In this paper, we reviewed the main facts concerning the definition of blended implicit methods for the numerical
solution of ODE–IVPs and linearly implicit DAEs. The corresponding linear convergence analysis has been recalled,
showing the conceptual simplicity of this approach. Moreover, its usefulness is also confirmed by some numerical
tests based on the codes and problems included in the Test Set for IVP Solvers [26]. In the tests, the code BiMD,
implementing a variable order–variable stepsize blended implicit method, compares well with the best codes currently
available, both in terms of efficiency and reliability. Finally, blended implicit methods have been here extended for the
numerical solution of the special second-order problem (30), resulting in straightforward extensions of the basic theory
and results. In the future, we plan to study further extensions of this approach such as, for example, for the numerical
solution of evolutionary PDE problems.
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