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a b s t r a c t

We discuss the efficient implementation of Hamiltonian BVMs (HBVMs), a recently
introduced class of energy preserving methods for canonical Hamiltonian systems (see
Brugnano et al. [8] and references therein), also sketching their blended formulation. We
also discuss the case of separable problems, for which the structure of the problem can be
exploited to gain efficiency.
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1. Introduction

The conservation of energy allows to avoid the numerical drift sometimes observed when using standard numerical
methods for solving canonical Hamiltonian problems, i.e., problems in the form

y′
= J∇H(y), J =


0 Im

−Im 0


, y(t0) = y0 ∈ R2m, (1)

where H(y) is a smooth scalar function and, in general, Ir will hereafter denote the identity matrix of dimension r (when the
lower index will be omitted, the size of the matrix can be deduced from the context). In this respect, Hamiltonian Boundary
Value Methods (HBVMs) is a recently introduced class of methods able to conserve energy when H(y) is a polynomial of
arbitrarily high degree. Clearly, this implies a practical conservation of energy for any suitably regular Hamiltonian function,
which will be assumed hereafter.

Energy preserving methods have been investigated by many authors even though the process has been initially so slow
that the first unsuccessful attempts to derive energy-preserving Runge–Kutta methods culminated in the wrong general
feeling that such methods could not even exist [1]. The first successful attempts to solve the problem have been derived
outside the class of Runge–Kutta methods, resulting in discrete gradient methods (see [2] and references therein) which
are second order accurate. The first instance of energy-conserving Runge–Kutta method is given by the s-stage trapezoidal
methods [3]. Such methods have been subsequently rederived in [4], through the discretization of the averaged vector field
method defined in [5]. Additional examples of fourth and sixth-order conservative Runge–Kutta methods (for polynomial
Hamiltonians of suitable degree) were presented in [6,7]. All such energy-conserving Runge–Kutta methods have been
derived by means of the new concept of discrete line integral. The evolution of this idea eventually led to the definition
of Hamiltonian Boundary Value Methods (HBVMs) mentioned above [8–13], which admit a straightforward Runge–Kutta
formulation.

The discrete line integral is nothing but a discrete counterpart of the line integral associated with a conservative vector
field which is obtained by simply approximating the line integral by a suitable quadrature formula. In particular, in [9]
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HBVMs based on Lobatto quadratures have been analyzed, whereas in [10] HBVMs based on Gauss–Legendre formulae have
been considered. When the Hamiltonian function is a polynomial, such an approximation turns out to be exact, provided
that a suitable number of nodes is introduced. In [10], it has been shown that all HBVMs having the same order are equivalent
(i.e. they provide the very same numerical solution), under the assumptions that H(y) is a polynomial and that the discrete
line integral matches the line integral.

When H(y) is not a polynomial, one can still get conservative formulae by letting the number of nodes tend to infinity,
thus forcing the discrete line integral to approach the line integral. This is tantamount to skipping the discretization of the
line integral during the computation of the formulae. Limit formulae based on the Lagrange basis have been proposed in [14]
and generalized to Poisson systems in [15]. Evidently, the polynomial case or the discretization of the integrals appearing
in a limit method by means of a quadrature formula, leads back to a HBVM (see [10] for a discussion of this issue and for the
definition of limit formulae over the Legendre and other bases).

In the case where the Hamiltonian is separable, i.e., when

H(y) ≡ H(q, p) =
1
2
pTMp − U(q), q, p ∈ Rm, (2)

withM a symmetric and positive definite matrix, then (1) reduces to a special second order equation,

q′′
= M∇U(q),

and the associated HBVM may be properly formulated in order to take advantage, in terms of efficiency, from the above
simplification. As a matter of fact, in this paper we investigate the efficient implementation of HBVMs also in the case of
separable problems. Inmore detail, in Section 2we briefly derive HBVMs, also providing themost convenient formulation of
the discrete problem. Then, in Section 3 we investigate its efficient solution via the blended implementation of the methods,
which has already proved to be very effective in other settings (see, e.g., [16–23]). The case of separable problems is then
discussed in Section 4. A few numerical tests, along with some concluding remarks are then given in Section 5.

2. Hamiltonian BVMs (HBVMs)

The derivation of HBVMswill be done according to the approach followed in [12,13], which further simplifies the already
simple idea initially used in [8–11] (see also [6,7]). Let us then consider the restriction of problem (1) to the interval [t0, t0+h],
with the right-hand side expanded along an orthonormal basis {P̂j}j≥0:

y′(t0 + τh) = J
−
j≥0

P̂j(τ )

∫ 1

0
P̂j(c)∇H(y(t0 + ch)) dc, τ ∈ [0, 1]. (3)

In particular, we here consider an orthonormal polynomial basis, provided by the shifted and scaled Legendre polynomials
on the interval [0, 1], even though the arguments can be easily extended to more general bases. The basic idea, is now that
of looking for an approximate solution belonging to the set of polynomials of degree not larger than s. This is achieved by
truncating the series at the right-hand side in (3), thus obtaining the approximate problem

σ ′(t0 + τh) = J
s−1−
j=0

P̂j(τ )

∫ 1

0
P̂j(c)∇H(σ (t0 + ch)) dc, τ ∈ [0, 1], σ (t0) = y0. (4)

The approximation to y(t0 + h) is then given by

y1 ≡ σ(t0 + h). (5)

It can be easily seen that the energy is conserved at the new approximation since, considering that J is skew-symmetric,

H(y1) − H(y0) = h
∫ 1

0
∇H(σ (t0 + τh))Tσ ′(t0 + τh) dτ

= h
s−1−
j=0

[∫ 1

0
P̂j(τ )∇H(σ (t0 + τh)) dτ

]T

J
[∫ 1

0
P̂j(c)∇H(σ (t0 + ch)) dc

]
= 0.

Integrating both sides of the first equation in (4) yields

σ(t0 + τh) = y0 + h
s−1−
j=0

∫ τ

0
P̂j(x) dx

∫ 1

0
P̂j(c)J∇H(σ (t0 + ch)) dc, (6)

which may be exploited to determine the shape of the unknown polynomial σ , provided that a technique to handle the
rightmost integrals is taken into account: the obvious choice is the use of quadrature formulae. If we assume that H(y) is a
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polynomial of degree ν, then the integrals appearing in (4) can be exactly computed by a Gaussian formula with k abscissas
{ci}, in the event that

k ≥
sν
2

, (7)

thus obtaining a discrete problem in the form

σ(t0 + cih) ≡ σi = y0 + h
s−1−
j=0

∫ ci

0
P̂j(x) dx

k−
ℓ=1

bℓP̂j(cℓ)J∇H(σℓ), i = 1, . . . , k, (8)

where the bi are the quadrature weights of the formula defined over the abscissae ci. For general, suitably regular
(e.g., analytical) Hamiltonian functions, we can still use formula (8) in place of (6), provided that the integrals in (6) are
approximated tomachine precision1: in the following,wewill always assume such an accuracy levelwhen a non-polynomial
function is considered, and consequently we will make no distinction between the integrals and the corresponding
approximations as well as between the two polynomials σ obtained by solving either (8) or (6) (see [13] for more details).

Method (8)−(5) is called HBVM (k, s): it was shown [10] that its order is 2 s, for all k ≥ s. In particular, for k = s it reduces
to the well known s-stage Gauss method.

By introducing the matrices Ω = diag(b1, . . . , bk) and

Is−1 =

∫ ci

0
P̂j−1(x) dx


i=1,...,k
j=1,...,s

∈ Rk×s, Pr−1 =


P̂j−1(ci)


i=1,...,k
j=1,...,r

∈ Rk×r , (9)

the HBVM (k, s) can be recast as a Runge–Kutta method with Butcher tableau

c1
...
ck

A ≡ Is−1P
T
s−1Ω

b1 · · · bk

(10)

The next result follows from well-known properties of Legendre polynomials (hereafter ei denotes the ith unit vector
in Rs).

Lemma 1. Let Is−1 and Ps be defined according to (9). Then,

Is−1 = PsX̂s ≡ Ps


Xs

ξseTs


(11)

where

Xs =


1
2

−ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0

 , ξi =
1

2

4j2 − 1

, i ≥ 1. (12)

Consequently, the matrix in the Butcher tableau (10) can be written as

A = PsX̂sP
T
s−1Ω. (13)

Notice that, since PsX̂s has s linearly independent columns, the k× k coefficient matrix A has rank s: it is then possible to
recast the discrete problem in a more convenient form, whose (block) size is s, rather than k. This fact has been discussed in
detail in [9,24] as sketched in the sequel. At first, let us partition the abscissae ci into two sets: onewith s abscissae, the other
with the remaining k − s ones. For the sake of simplicity, we choose them as the first s ones and the remaining k − s ones,
respectively. According to [9,7], the corresponding stages are called fundamental stages and silent stages, respectively. The
key idea is now that the silent stages can be obtained as a linear combination of the fundamental ones. Let us then partition
the matrices Is−1, Ps−1, Ω as follows:

Is−1 =


Is−1,1
Is−1,2


, Ps−1 =


Ps−1,1
Ps−1,2


, Ω =


Ω1

Ω2


, Is−1,1, Ps−1,1, Ω1 ∈ Rs×s.

1 As we will see, increasing the order of the quadrature formula, namely the integer k, will not result in an increase of the dimension of the discrete
problem generated by the implementation of the method.
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Similarly, let us denote by y1 the (block) vector, of dimension s, containing the fundamental stages, and by y2 the (block)
vector, of dimension k − s, with the silent stages. One then obtains the equations:

y1 = u1 ⊗ y0 + hIs−1,1

P T

s−1,1Ω1 ⊗ J∇H(y1) + P T
s−1,2Ω2 ⊗ J∇H(y2)


, (14)

y2 = u2 ⊗ y0 + hIs−1,2

P T

s−1,1Ω1 ⊗ J∇H(y1) + P T
s−1,2Ω2 ⊗ J∇H(y2)


, (15)

where u1 = (1, . . . , 1)T ∈ Rs, u2 = (1, . . . , 1)T ∈ Rk−s, and an obvious meaning of the (block) vector argument of ∇H(·).
By considering that from Lemma 1 one readily deduces that matrix Is−1,1 is nonsingular, from (14)–(15) one obtains that

y2 = û ⊗ y0 + A1 ⊗ I2my1, û = u2 − A1u1 ∈ Rk−s, A1 = Is−1,2I
−1
s−1,1 ∈ Rk−s×s. (16)

Then, by setting the matrices

B1 = Is−1,1P
T
s−1,1Ω1 ∈ Rs×s, B2 = Is−1,1P

T
s−1,2Ω2 ∈ Rs×k−s,

substituting (16) into (14) results in a discrete problem involving only the s fundamental stages,

Ψ (y1) ≡ y1 − u1 ⊗ y0 − h

B1 ⊗ J∇H(y1) + B2 ⊗ J∇H


û ⊗ y0 + A1 ⊗ I2my1


= 0. (17)

The application of the simplified Newton method for solving (17) then gives

[I − hC ⊗ G0] δℓ
= −Ψ (yℓ

1), yℓ+1
1 = yℓ

1 + δℓ, ℓ = 0, 1, . . . , (18)

where

C = B1 + B2A1 ∈ Rs×s and G0 =

J∇2H(y0)


. (19)

It can be proved [24] that the spectrum of matrix C is independent of the choice of the fundamental stages and coincides
with that of matrix Xs in (12). On the other hand, its condition number crucially depends on such a choice which, therefore,
strongly affects the convergence of the iteration (18).

It is then advisable to derive a more convenient formulation of the discrete problem, still having (block) dimension s,
no more requiring to distinguish between fundamental and silent stages. For this purpose, let us define the (block) vectors
(see (4) and (8))

y =

σ1
...
σk

 , γ =

 γ0
...

γs−1

 , γj =

k−
ℓ=1

bℓP̂j(cℓ)J∇H(σ (t0 + cℓh)), j = 0, . . . , s − 1. (20)

In view of (4), we see that the vectors γj may be interpreted as the coefficients in the expansion of the degree s − 1
polynomial σ ′(t0 + τh) along the orthonormal basis {P̂j}j=0,...,s−1. From (8) one then obtains

y = e ⊗ y0 + hIs−1 ⊗ I2mγ, (21)

with e = (1, . . . , 1)T ∈ Rk, and then, by virtue of (20), one can solve the equation in the unknown γ ,

F(γ) ≡ γ −

P T

s−1Ω ⊗ J

∇H (e ⊗ y0 + hIs−1 ⊗ I2mγ) = 0. (22)

The application of the simplified Newton iteration for solving (22) yields (see (19))
I − hP T

s−1ΩIs−1 ⊗ G0

∆ℓ

= −F(γℓ), γℓ+1
= γℓ

+ ∆ℓ. (23)

By virtue of (11), and considering that

P T
s−1ΩPs = (Is 0) ∈ Rs×s+1, (24)

(23) reduces to

[I − hXs ⊗ G0]∆ℓ
= −F(γℓ), γℓ+1

= γℓ
+ ∆ℓ, ℓ = 0, 1, . . . . (25)

As one may see, the iteration (25) now involves the matrix Xs defined in (12), only depending on the parameter s, in place
of C (see (18)–(19)).
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3. Blended implementation

From the arguments in the previous section, one then concludes that the discrete problem, to be solved at each integration
step when approximating the Hamiltonian problem (1), is given by (22), thus requiring the solution of (25). We are going
to solve such an equation by means of a blended implementation of the method, according to [16–18,23]. Indeed, such an
implementation of block implicit methods has proved to be very effective, leading to the development of the codes BiM [18]
and BiMD [22] for stiff ODE-IVPs and linearly implicit DAEs (the codes are available at the url [25], see also [26]). Let us, for
the sake of simplicity, discard the iteration index. Consequently, we have to solve the linear system

(I − hXs ⊗ G0) ∆ = −F(γ) ≡ η. (26)

Considering that matrix Xs (see (12)) is nonsingular, such an equation can be equivalently written as

ρ

X−1
s ⊗ I2m − hIs ⊗ G0


∆ = ρX−1

s ⊗ I2m η ≡ η1, (27)

where ρ is a positive constant. By introducing the (matrix) weight function

θ = Is ⊗ Σ−1
0 , Σ0 = (I2m − ρhG0)

−1, (28)

we then obtain the following problem, which still has the same solution as (26):

T (∆) ≡ θ [(I − hXs ⊗ G0) ∆ − η] + (I − θ)

ρ


X−1
s ⊗ I2m − hIs ⊗ G0


∆ − η1


= 0. (29)

One easily realizes that it is obtained as the blending, with weights θ and (I − θ), of the two equivalent problems (26) and
(27), respectively. Problem (29) defines the blended method associated with the original one, which we call blended HBVM,
in the present case. The free parameter ρ is chosen in order to optimize the convergence properties of the corresponding
blended iteration,

∆n+1 = ∆n − θT (∆n), n ≥ 0, (30)

with an obviousmeaning of the lower index. Such iteration only requires (see (28)) the factorization of thematrixΣ0 having
the same size as that of the continuous problem. According to the linear analysis of convergence in [20], the free parameter
ρ is chosen as

ρ = ρs ≡ min{|λ| : λ ∈ σ(Xs)}, (31)

which provides optimal convergence properties (in particular, an L-convergent iteration [20]). This simple choice is due
to the fact that the eigenvalues of matrix Xs coincide with those of the Butcher matrix of the s-stage Gauss–Legendre
method [17]. A few values of (31) are listed in the table below, for the sake of completeness.

s 2 3 4 5
ρs 0.2887 0.1967 0.1475 0.1173

Remark 1. A nonlinear version of (30) can be readily derived, by taking ∆n = 0 and updating the vectors η and η1 in (29)
at each iteration.

4. The case of separable problems

Let us now apply the method to the separable problem (2). By setting the (block) vectors

q =

qT1, . . . , q

T
k

T
, p =


pT1, . . . , p

T
k

T
,

one then obtains (see (13)),

q = e ⊗ q0 + hA ⊗ Mp, p = e ⊗ p0 + hA ⊗ Im∇U(q),

i.e., since Ae = c ≡ (c1, . . . , ck)T ,

q = e ⊗ q0 + hc ⊗ Mp0 + h2A2
⊗ M∇U(q). (32)

Moreover, taking into account (10)–(13) and (24), one obtains

A2
= Is−1XsP

T
s−1Ω. (33)

The new approximations to q(t0 + h) and p(t0 + h) are then given by

q0 + hMp0 + h2eTΩA ⊗ M∇U(q), p0 + heTΩ ⊗ Im ∇U(q),

respectively. By using similar arguments as those given in Section 2 (see (21)), we set

q = e ⊗ q0 + hc ⊗ Mp0 + h2Is−1Xs ⊗ Imγ,
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Table 1
Number of fixed-point or blended iterations (n.c. = no convergence) required for solving problem (37), along with the maximum relative error (errH) in
the numerical Hamiltonian, for the HBVM(8, 2) and GAUSS2 methods, by using step size hi = 2−i10−1, i = 0, . . . , 6.

i HBVM(8, 2) GAUSS2
First order Second order errH First order Second order errH
Fixed-pt Blend Fixed-pt Blend Fixed-pt Blend Fixed-pt Blend

0 n.c. 1 388 n.c. 1 344 1.7e−18 n.c. 1 390 n.c. 1 320 7.8e−06
1 n.c. 3 330 n.c. 3 909 1.7e−18 n.c. 3 339 n.c. 3 903 6.4e−06
2 n.c. 7 200 n.c. 10 397 2.6e−18 n.c. 7 203 n.c. 8 000 7.1e−05
3 38353 13148 22104 16038 2.8e−18 38638 13165 16000 16000 4.1e−06
4 38458 21312 23268 20846 2.6e−18 38474 21311 23235 20895 8.6e−08
5 51267 34932 31959 32000 1.7e−18 51269 34942 31955 32014 4.2e−09
6 75800 57600 51202 51200 1.7e−18 75804 57600 51200 51208 1.9e−16

where the (block) entries of γ are defined by (compare with (20))

γj =

k−
ℓ=1

bℓP̂j(cℓ)M∇U(qℓ), j = 0, . . . , s − 1,

i.e., γ = P T
s−1Ω ⊗ M∇U(q). Thus, we obtain the following equation in the unknown γ (which is analogous to (22)):

F(γ) ≡ γ −

P T

s−1Ω ⊗ M

∇U


e ⊗ q0 + hc ⊗ Mp0 + h2Is−1Xs ⊗ Imγ


= 0. (34)

Similarly to what was seen in Section 3, the application of the simplified Newton iteration for solving (34) then gives, by
virtue of (11) and (24), and setting G0 = M∇

2U(q0),
I − h2X2

s ⊗ G0

∆ℓ

= −F(γℓ), γℓ+1
= γℓ

+ ∆ℓ, ℓ = 0, 1, . . . , (35)

which, as in the previous case, has (block) size s, rather than k. The problem is then exactly that seen in (25), via the formal
substitutions

h −→ h2, Xs −→ X2
s . (36)

This means that we can repeat similar steps for the blended solution of (35), by following the same arguments seen in
Section 3. In more detail, (26)–(30) can be repeated, by considering the formal substitutions (36) and, moreover,

ρ −→ ρ2, I2m −→ Im.

Also in this case [19,20], the optimal choice of the parameter ρ turns out to be given by (31). Moreover, a nonlinear version
of (35) is readily obtained, according to what is said in Remark 1.

5. Numerical tests

We here consider a fewmodel problems to test the proposed algorithms andmethods, in order to confirm the usefulness
of the proposed approach. Newton-type iterations, and then, the blended implementation of the methods, proved to be
very effective, when speaking about dissipative problems, in case of stiff problems (see [27] for a recent survey about
stiffness). In the case of special second order problems, their counterpart is given by highly oscillatory problems, namely
Hamiltonian problems whose solution y(t) combines components with dominant short frequencies and components with
large frequencies (with respect to the interval of integration).

The first test problem is defined by the non-polynomial Hamiltonian

H(q, p) =
1
2
p2 + sin2(102q), (37)

which is solved over the interval [0, 10] starting from (q0, p0) = (0, 10−1). We use the following fourth-order methods:

• the symplectic 2-stage Gauss (GAUSS2 hereafter) method (i.e., HBVM(2, 2), which is not conservative, for the problem at
hand);

• the (practically) conservative HBVM(8, 2) method (for the used step-sizes).

For all methods, we use their blended and fixed-point implementations. Moreover, the methods are used both on the first
and second order formulation of the problem. Table 1 summarizes the obtained results, in terms of iterations needed for
convergence, as well as of error in the numerical Hamiltonian. It is evident that the conservative method is more effective
than the symplectic one, with respect to the conservation of the Hamiltonian; moreover, the blended implementations of
the methods appears to be more robust than the fixed-point one.
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Fig. 1. Level curves for problem (38)–(40) numerically computed by the energy conserving HBVM(8, 2) method (left plot) and by the symplectic GAUSS2
method (right plot), by performing 103 steps with step size h = 10−3 . The conservative method evidently outperform the symplectic one, for the given
step size h.

Table 2
Number of fixed-point or blended iterations (n.c. = no convergence) required for each level curve of problem (38)–(40), along with the maximum relative
error (errH) in the numerical Hamiltonian, by using the HBVM(8, 2) and GAUSS2 methods.

i HBVM(8, 2) GAUSS2
Fixed-pt Blend errH Fixed-pt Blend errH

1 11885 9524 1.8e−15 11889 9603 1.0e−04
2 14723 11882 2.0e−15 14611 11921 9.3e−04
3 17003 13808 3.3e−15 17354 13532 5.3e−03
4 19141 15452 1.7e−15 18937 15528 1.7e−02
5 21552 17152 4.0e−15 21135 16881 3.5e−02
6 24351 19064 1.8e−15 24212 18907 5.9e−02
7 27728 21067 1.7e−15 27068 19725 1.9e−01
8 31624 23347 1.8e−15 30028 22964 7.6e−02
9 38075 24823 1.7e−15 40350 28491 3.6e−01

10 42911 29263 1.2e−14 n.c. 32 997 3.5e−01

The second test problem is defined by the polynomial Hamiltonian

H(q, p) = p2 + β2q2 + α2 (q + p)2n , (38)

which has a marginally stable equilibrium at the origin. We consider the following set of parameters

β = 10, α = 1, n = 4, (39)

so that the Hamiltonian has degree 8 and the problem in not separable. We consider the same fourth-order methods as in
the previous example, noticing that, for the problem at hand, the HBVM(8, 2) method is conservative. Both methods are
used, with step size h = 10−3, for integrating the problem on the interval [0, 1], with initial points

(q0, p0) = (i, − i), i = 1, . . . , 10, (40)

to obtain the corresponding level curves of the Hamiltonian. We notice that, since the problem has one degree of freedom,
the numerical solution provided by the HBVM(8, 2) lies on the very same continuous trajectory, or level curve, of the original
problem. Consequently the level curves are recoveredwithout error, as illustrated in the left plot of Fig. 1. This is not the case
with the GAUSS2 method which evidently introduces huge deformations of the level curves especially when the numerical
solution is not close to the equilibrium point. Table 2 summarizes the obtained results, in terms of iterations to obtain
convergence (blended or fixed-point). The maximum error in the Hamiltonian is also listed in the table. As one can see, the
blended implementation of the method is more efficient than the fixed-point implementation.

Finally, we consider the well-known Fermi–Pasta–Ulam problem (see [28, Section I.5.1]), defined by the Hamiltonian

H(p, q) =
1
2

m−
i=1


p22i−1 + p22i


+

ω2

4

m−
i=1

(q2i − q2i−1)
2
+

m−
i=0

(q2i+1 − q2i)4 , (41)
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Table 3
Number of fixed-point or blended iterations (n.c.= no convergence) required for solving problem (41)–(42), along with themaximum relative error (errH)
in the numerical Hamiltonian, for the HBVM(8, 2) and GAUSS2 methods, by using step size hi = 2i10−1, i = 0, . . . , 9.

i HBVM(4, 2) GAUSS2
First order Second order errH First order Second order errH
Fixed-pt Blend Fixed-pt Blend Fixed-pt Blend Fixed-pt Blend

0 n.c. 1 786 n.c. 6 258 4.4e−16 n.c. 1 798 n.c. 4 675 5.0e−05
1 n.c. 4 176 n.c. 10 647 4.4e−16 n.c. 4 141 n.c. 9 627 4.8e−05
2 40143 8300 54858 17324 6.7e−16 40165 8368 39121 15956 1.4e−05
3 27554 13517 34875 25144 4.4e−16 27505 13770 30778 25663 6.9e−07
4 34292 21242 40200 38233 4.4e−16 34251 21442 32581 32800 1.2e−08
5 47680 34982 45948 46478 6.7e−16 48056 35096 40812 40956 4.5e−10
6 75922 58423 60943 63291 5.6e−16 75850 58468 54115 56486 8.0e−12
7 126208 102400 93563 107968 6.7e−16 126191 102403 87130 91097 2.4e−13
8 204677 179662 155546 155988 6.7e−16 204666 179686 153453 154291 5.8e−15
9 352100 324764 260928 275912 6.7e−16 352102 324705 258067 273855 7.8e−16

with q0 = q2m+1 = 0. We use the following parameters and starting point, with [0, 10] the integration interval:

m = 6, ω = 100, pi = 0, qi = (i − 1)/10, i = 1, . . . , 6. (42)

Here, theHamiltonian function is a polynomial of degree 4, so that the fourth-orderHBVM(4, 2)method is energy conserving.
Table 3 summarizes the obtained results by using the HBVM(4, 2) and GAUSS2 methods, both for the first and second order
formulation of the problem, as well as by using the blended or fixed-point iterations for solving the discrete problems.
The maximum relative error in the numerical Hamiltonian is also listed, thus confirming that the method HBVM(4, 2) is
conservative, contrary to GAUSS2.

From the numerical tests, one can then conclude that the proposed blended implementation of HBVMs turns out to be
robust and efficient for larger step sizes (as it usually happens for Newton-like iterations). Moreover, the energy-conserving
property of such methods turns out to be very remarkable. Finally, the methods can be conveniently recast into a second
order formulation, in the case of separable problems.
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