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Abstract

A usual way to approximate the solution of initial value problems for ordinary differential equations is the use of
a linear multistep formula. If the formula has & steps, k values are needed to obtain the discrete solution. The continuous
problem provides only the initial value. It is customary to impose the additional k — 1 conditions at the successive k — 1
initial points. However, the class of methods obtained in this way suffers from heavy limitations summarized by the two
Dahlquist barriers. It is also possible to impose the additional conditions at different grid-points. For example, some
conditions can be imposed at the initial points and the remaining ones at the final points. The obtained methods, called
boundary value methods (BVMs), do not have barriers whatsoever. In this paper the question of convergence of BVMs is
discussed, along with the linear stability theory. Some numerical examples on stiff test problems are also presented.
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1. Introduction

A common way to approximate the solution of the problem

y, =f(ts y)a tE[to, T]’ }’(to)=)’0, (1)
is the use of a k-step linear multistep formula:

k k
z OiYn+i = h Z Bifu+is (2)
i=0 i=0
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over the partition
ti=t0+ih, i=0,...,N+k2—1, h=(T—to)/(N+k2—1)

Here y, is the discrete approximation to y(t,) and f, =f(t,, y»). The k conditions required by
scheme (2) are usually obtained by fixing the values y,, ..., y,—; of the discrete solution. Since only
Yo is provided by the continuous problem, the remaining values y;, ..., y,- need to be found. We
shall refer to the class of such methods as Initial Value Methods (IVMs). This approach is very
straightforward, although it suffers from heavy theoretical limitations, summarized by the two
well-known Dahlquist barriers.

A less-known approach is to fix the values

Vo5 Vi~ 15 YNy oo IN+ko—1, K1 + ko =k,

of the discrete solution. The continuous initial value problem (1) is then approximated by means of
a discrete boundary value problem. We call the methods obtained in this way Boundary Value
Methods (BVMs) with (ky, k,)-boundary conditions. We observe that for k; = k and k, = 0 one
obtains the IVMs, which may be regarded as particular BVMs. For earlier references on this
approach see, for example [4, 6].

2. Discrete boundary value problems

In order to discuss the behavior of the solutions given by BVMs, we need to analyze in more
detail the solution of a linear discrete boundary value problem. For simplicity, we shall analyse the
case of a homogeneous equation [3,5, 10], although the results can be generalized to non-
homogeneous equations [8]. Then, let

k
piyn+i=0, n=0>""N_k1—-1,
i=0
Yosoos Viy—1s VYNs-oos YN+k,—1 ﬁxed, (3)

be a given discrete boundary value problem. Moreover, let p(z) = ¥¥_, p;z* be the characteristic
polynomial associated with the difference equation, whose zeros are

[zy] < - <z

The following result holds true.

Theorem 1. Suppose that |z, - 1| <|zi,| < |2k, +1} |2k, +1] > 1. Then, the solution of problem (3) is
given by

Vo =25, (7 + O(zi,—1/2i, ") + OUzi,/ 2k, +1 V") + O(zi, 411 ™)) + Oz, 11" N ™),

where y depends only on yo,..., Yk, ~1-
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Proof. We shall prove the results in the simpler case where p(z) has only simple zeros. The general
solution of the difference equation (3) is given by
Vo =€l Dlc; + cx,zi, + e} D} ey,
where
D; = diag(zy, ..., Zx, - 1), D, =diag(zy, +1,--» Zk),
e=(1,., ) eR:"1 e, =(l,...,)Te R~

The entries of the two vectors ¢; and ¢, and the scalar c,, must be determined in order to satisfy the
boundary conditions. In matrix form they are:

T T
1 e; es Ck, Yo
Wi, -12, Ux,-1Di Vi,-1Ds G |=1 s
N N
Wize, UeDi  Vi,Dy [\ ef Vs
where
1 1 1 1
Z1 o Zg -1 Zgo+1 Zk
Uj = . . ’ V} = . . ’
i1 i-1 i-1 i-1
Zi %1 Zk+1 Tk

w; = (l,zkl,...,z,fl_l)T, Vi=1ss Vu-1)% and y; = (¥ns ..., yn+x,-1)"- The coefficient matrix
G can be factored as follows:

1 el e}
G= Wi, —12k, Uk,-—lDi Vkl—lDf
N N N
wkzzkl UkzDi ‘/ngf

1 1 e e}
=| Wk, —12k, I; B, B,|,
W’;‘ZZ,I:]1 H If C

where I; and I, are the identity matrices of size k; — 1 and k,, respectively, and
B, = Ukl—lDi - Zklwk,—1eiT, B, = Vk,—1Df _Zklwkp—le},
H = (U, DY — z; wy, el ) B; *
= —zz (W, el + O(lz,—1/2, ")) B = O(lz, 1),
C = Vi,D} —z wy,ef —HB, = (Vi, + O(lzx, /24, +11Y)) DY.
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From the above relations, it follows that

1+z,e/Bi'we_y +w'C v w'C'H—e Bt —wtC™!
G_1= Bl_l(Bzc_lv—Zklwkl_l) Bl_l(Ii+B2C_1H) —BI_IB2C_1 N
—C™ v —C'H c!

where w' = e} — ¢/ B ' B, and v = z wy,, — z; Hwy 1 = O(|z,,|¥). Then, one verifies that
¢, = (1 + zi,ef By 'y, -1 + O(lzi, /21,41 M) Vo
—(e' By ' + Oz, /21, + 1 I")yi + O(lzi, +117)
=7 + O(|zi,/ 2k, +11") + Ol 2z, +4]7Y),
;= —B7 Y ((ze,wk,-1 + O(lze, /2, 411" yo =i + O(lzk,/zk1+1|N))yi + O(lzg,+117Y))
=10 + Ol 21, /21, +11Y) + Olz1, 4117 "),
e, =D NVt + Olzi,/ 2z, +11™) 5 + O(lzi, "))
=D V(o + O(z,/2k,+11") + O(I 2, 1Y),
where y, 6 and ¢ are constants independent of N. In particular, one has:
Y = Yo + & By ' (Yozi,Wi,—1 — 1), 4)
which depends only on yy, ..., yi, 1. Finally, one has
Yo =2 (7 + O(lzi, -1/, I") + Oz, /21, + 11" ") + O (I, + 117 "))
+O0(lzi, 1 ”%™). O
Corollary 2. Suppose that the roots of the characteristic polynomial p(z) satisfy the conditions of
Theorem 1 and, moreover, |z, _1| < 1. Then
Yo =20, + Oz /26 411%™ + O 24, +417)
+O(lzi, -1 +O(zi, 4117 N7"),

where 7y, which is given by (4), depends only on y,, ..., yi, -1.

3. Boundary value methods

From now on, for any given matrix A = (a;;), we shall denote by | 4| the matrix whose entries are
la;;|. Moreover, to give the main results concerning BVMs, we need the following definitions.

Definition 3. We say that a polynomial p(z) of degree k = k; + k; is a S, ;,-polynomial if its roots
are such that

|ze] S za| € - <zl <1<z, +1] < - <z,



L. Brugnano, D. Trigiante | Journal of Computational and Applied Mathematics 66 (1996) 97109 101

whereas it is'a Ny ,-polynomial if
Iz S za € - <z | S <zp 4| € - <z,

with simple roots of unit modulus.

We observe that for k; =k and k, =0 a N -polynomial reduces to a Von Neumann
polynomial and a Sy, ,,-polynomial reduces to a Schur polynomial.

Moreover, the convergence theorem for BVMs will use some results concerning the inverse of
a Toeplitz band matrix like

A ay

1

Qo
TN= . . ak ) (5)
Ao+ Qr, [ NxN

where apa, # 0 and k, + k, = k. For this purpose, let us consider the polynomial:

k
p(z)= a;z'.
i=0
Then, the following result holds true.

Lemma 4. If the polynomial p(z) associated with the matrix Ty defined in (5) is a Ny, -polynomial,
then for N sufficiently large Ty ! exists and has entries t{; " such that:

W) 165 V1 <y, forizj;

Q) 1t; VI < vETY for i< j, where 0 < & < 1.
In the above relations, the constants y,v and & can be chosen independent of N. In particular,
Eoc |z +1l N if |21l < - <z, | <1 <|zi,41] < -+ < |z are the roots of p(2).

Proof. See [1]. [

The results of the previous lemma can be recasted in matrix form as follows:
|Ty'| <7Cy + vdy, (6)

where Cy is the N x N lower triangular matrix having all unit entries and A4y is the upper triangular
Toeplitz matrix having the entries on the last column given by:

(éN—l’ éN_ZQ ety 62’ é’ O)T'

We are now in a position to state the convergence theorem for BVMs.

Theorem S. Disregarding the effect of round-off errors,a BV M with (ky, k,)-boundary conditions is
convergent if it is consistent and the polynomial p(z) is a Ny, y,-polynomial.
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Proof. If the LMF (2) is used to approximate the solution of problem (1) by fixing the values
Y05 -5 Yk, ~15 YNs ---» YN+k,— 1, it 18 not difficult to see that the error equation can be written as:

ANe=hBN(Sf+T+g,
where
e=(ekl,-~,€N—1)T, e; = y(t:) — yi,

Of=(f(ty, Y(t)) —fair o S -1, ¥(tn—1)) —fv-1)",

(xkl Ok
%o
Ay = . T )
N . - ak ’
%ot O [(N —k)x(N —ky)
ﬁkl ﬁk
ﬁo s E
BN= . : . :
. . Bi ’
Bo BN —kyxtv—ky)

7 is the vector whose entries are the local errors (which are O(h**1), p > 1, since the method is
assumed to be consistent) and g is the vector whose entries represent the errors on the boundary

conditions, which we shall suppose to behave at least as O (h?):

?‘:—01 (aie; — hBid f:)

(“oek|—1 - hﬁoéfkl— 1)
0
0
(acen — hPid fn)

Z{-‘il (di+k,en—1+i = MBisi, O fn—1+i

Let L be the Lipschitz constant of f. Then, since for N sufficiently large the matrix Ay is always
nonsingular (see Lemma 4), one has:

le] < hL|Ay" Bylle| + Ay *1(Iz] + lg])-
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From Lemma 4 and relation (6) it follows that
t:=1Ax" (7] + 1g]) < (Cy + vAn)(IT] + |g]), (7)

for some 7, v > 0 and & € (0, 1) which are independent of N (for brevity, we have used Cy and 4y in
place of Cy_y, and Ay _,, respectively). It follows that the vector £ has entries which are O (h?), if
the k entries of g are at least O(h?). We have now

(I —hL| Ay 'By))lel < 1.
Let us define the (N — k;) X (N — k,) matrices:

where Gy has k; lower and k, upper off-diagonals, and Qy has k, < k + 1 upper off-diagonals.
Moreover, let & = max {y, v}, § = ¥*_, |B:|. One then obtains

|Ax " Byl < (yCy + vAy) BGy
<ok + 1)B(Cy + Qn + AnGy).
By posing n = a(k + 1) BL, it follows that
(I —hn(Cy + On + AnGn))le| < 1. ®)

If h = (T — to)/(N + k; — 1) is sufficiently small, it is possible to show (see [5]) that the matrix
My = (I — hnCy)is an M-matrix, and moreover | My " || , is smaller than 2¢"T =% for h < (2n)~ ..
It follows that (8) can be written as

M lel:=(I — haMy " (Qn + AnGr))lel < My' 2.
Moreover, we have that
NON + AnGrllw < 1QNllw + [ ANl |Gl

<+ D0 +E0 -9 =T

5

A

which implies that, for h sufficiently small, the matrix M,(v”

posing

is also an M-matrix. Moreover, by

k+1
. 2n(T — o)
¢ =2ne e
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for h < (2¢)~! one obtains

(M)l <

n

| My ' (Qn + AN Gr) I

18

0

s

<

n

(h¢)" =(1—h¢)™" <2.

0
Finally, one then obtains:
lelle < 4e*" T €|,

that is, the method is convergent and the global error is O(h?). [

By using the usual definitions for the polynomials p(z) and 6(z) associated with a given LMF, the
above result leads naturally to define O-stability for BVMs as follows.

Definition 6. A BVM with (k,, k,)-boundary conditions is Oy , -stable if p(z) is a Ny, ,-polynomial.

We observe that 0, ,,-stability reduces to the usual O-stability, when k; = k and k, = 0.
The next step is to analyse the behavior of a BVM with (k,, k,)-boundary conditions on the test
equation

y = Ay, R(4) <O. 9)
In this case, taking g = hl, one obtains the discrete problem:
n(E, q) yn:= (p(E) —qo (E)) y, = 0,
Yoseos Yiy=1>  YN»+evs YNk, —1 fixed.

The characteristic polynomial of the difference equation is 7(z, g). From the result of Corollary 2, it
follows that the discrete solution is bounded if the polynomial n(z, g) is a S i,-polynomial.
Therefore, we shall give the following definition.

Definition 7. For a given ge C, a BVM with (k,, k,)-boundary conditions is (ky, k,)-absolutely
stable if n(z, q) is a Sy, ,-polynomial.

Again, (k,, k,)-absolute stability reduces to the usual notion of absolute stability for k; = k and
k, = 0. Similarly, one defines the region of (kq, k,)-absolute stability of the method as follows:

Dyx, = {q€C:7(z, q) is a Sy x,-polynomial}.

Finally, a BVM with (k,, k;)-boundary conditions is said to be A4, -stable if C~ = Dy ,,. We
observe that for BVMs there are no barriers concerning the maximum order for methods which are
Oy, x,-stable and/or A, -stable. In fact, in the next section we shall briefly examine a class of k-step
BVMs which provides 0, -stable and 4, ,,-stable BVMs of order k, for all k > 1. Other classes of

methods which contains 0, ,-stable and Ay, ,,-stable methods of order up to 2k can be found in
[2,3,5]



L. Brugnano, D. Trigiante [ Journal of Computational and Applied Mathematics 66 (1996) 97-109 105
4. The generalized backward differentiation formulae

Consider the particular class of k-step LMF having the polynomial ¢(z) in its simplest form:
o(z) = 2/, (10)

for a givenje {0, 1,..., k}. The methods of order k obtained with the choice j = k are widely used
as IVMs and are usually called backward differentiation formulae (BDF). The BDF provide
0-stable methods until k = 6. It is in fact known that the BDF of order 7 is O-unstable (see [9]). This
is no more case, when j is not restricted to assume the particular value j = k. In fact, in this case one
can choose the value of j which originates the method with the best stability properties.
Having chosen ¢(z) as in (10), the methods in this class can be written as:
k

Z aiyn+i=hf;,+j. (11)
i=0
We have then k + 1 independent parameters left which permit us to obtain methods of maximum
order k. Moreover, for j = v chosen as follows:
_J(k+1)22 for odd k, (12)
" |k/2+1 for even k,
the obtained formulae result to be both 0, , _,-stable and A, , - ,-stable for all k > 1. In Figs. 1 and
2 the boundaries I', of the corresponding regions D, ,_, are plotted for odd k and even k,
respectively, up to k = 30. For each considered value of k, the stability polynomial

n(z, q) = p(z) —qz’

is of type (v, 0, k — v) in the region outside I';, and of type (v — 1, 0, k — v + 1) inside. It follows that
the (v, k — v)-absolute stability region of the method is the one outside the corresponding boundary
I.

The linear multistep formulae with ¢(z) = z*, v given by (12), will be called generalized backward
differentiation formulae (GBDF). They must be used with (v, k —v)-boundary conditions.

We observe that the GBDF provide A4, ,_,-stable methods of order k for all k > 1, while the
usual BDF are not A-stable, for k > 2. In Table 1, the coefficients of the GBDF are reported for
k=1,...,10. For brevity, for each value of k we report the normalized coefficients &; = «;d;.

Let us now rewrite the generic GBDF as follows:

k—-v
Z AityYiey = hfn

i=-v

This formula can be used for n = v, ..., N — 1, since the additional conditions consist in fixing the
values

Yos-os Wv—1, YNs ooy YN+R—v-1-

If these values are really known, one has then a set of N — v equations and an equal number of
unknowns (y,, ..., yy—1). However, only the value y, is provided by the continuous problem. The
values yy, ..., y,~1 can also be obtained in standard ways (e.g., by Taylor expansions or by using
a suitable IVM). This is obviously no more the case for the k — v final values yy,..., Yy +x=v-1,
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3
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< k=1
-] 0
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Fig. 2. Boundaries of the (v, k — v}-absolute stability regions of the GBDF of order k, k = 2,4,6,..., 30.
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which must be treated as unknowns. This requires that an equal number of additional independent
equations must be added. To preserve the order k of the method, these equations can be
conveniently derived by methods of order k — 1. In our case, they can be chosen as follows:

k—1

Z O IN—v+i=hfyser,, T=0,. ., k—v—1,

i=0

where the coefficients {a; ,} are uniquely determined so that each formula has order k — 1.

5. Numerical tests

In this section we examine the behavior of GBDF on two stiff test problems. The first problem is
linear:

~21 19 —20 1
y=[ 19 -21 21y, yo=| 0],
40 —40 —40 —1

whose solution is

1 e” 2 4+ e *%(sin(r) + cos(t))
y(t) = 3 e~ 2" — e % (sin(t) + cos(t))
e % (sin(f) — cos(t))

Even if there is an initial transient where the solution varies very rapidly, by using a constant

stepsize h over the interval [0, 0.4] we obtain the maximum errors reported in Tables 2 and 3, for

the GBDF of order 3, ..., 10. Observe that in Table 3 the last rate value for the GBDF of order 10 is

far from the expected one since we used double precision and the errors are near the unit roundoff.
The second example is given by the Robertson’s equations:

yi = —0.04y; + 10*y,y;, y1(0) =1,
ylz =0.04y, — 104)’2)’3 —3x 107J/§, y2(0) =0,
Y3 =3x107y3, y3(0) = 0.

In this case, it is known [7] that the second component y, reaches in a point 7 near ¢t =0
a quasi-stationary position, where y,(f) ~ 3.65 x 10~>. Then, this component again goes to zero
very slowly. We consider the following mesh:

t[=ti_1+hi, hi=1-2hi—1, i=1,2,..., h0=6.6><10_6.

In Fig. 3 we report the computed solution only in the interval [0, 0.3], in order to observe the above
described behavior of y, (). The solution obtained with the GBDF of order 10 is shown by a solid
line. For comparison we also report the result provided by LSODE (dashed line) on the same mesh.
The parameters used for LSODE, are: mf = 21, atol = rtol = 1e-14. As one can see, the solution
computed by the GBDF has a more regular behavior than that computed by LSODE.
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3.65F
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Fig. 3. Computed solution with the GBDF of order 10 (solid line) and with LSODE (dashed line).
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