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Abstract 

A usual way to approximate the solution of initial value problems for ordinary differential equations is the use of 
a linear multistep formula. If the formula has k steps, k values are needed to obtain the discrete solution. The continuous 
problem provides only the initial value. It is customary to impose the additional k - 1 conditions at the successive k - 1 
initial points. However, the class of methods obtained in this way suffers from heavy limitations summarized by the two 
Dahlquist barriers. It is also possible to impose the additional conditions at different grid-points. For example, some 
conditions can be imposed at the initial points and the remaining ones at the final points. The obtained methods, called 
boundary value methods (BVMs), do not have barriers whatsoever. In this paper the question of convergence of BVMs is 
discussed, along with the linear stability theory. Some numerical examples on stiff test problems are also presented. 
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1. Introduction 

A common way to approximate the solution of the problem 

y' = f ( t ,  y), t ~ [to, T], y(to) = Yo, 

is the use of a k-step linear multistep formula: 

k k 

E eiY,+i = h E flif~+i, 
i=0 i=0 

(1) 

(2) 
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over the partition 

t~ = to + ih, i = 0 . . . .  , N + k 2 - -  1, h = ( T  - t o ) / (N  + k 2  - -  1). 

Here y, is the discrete approximation to y ( t . )  and f.  = f ( t , ,  y,). The k conditions required by 
scheme (2) are usually obtained by fixing the values Yo . . . .  , Yk-  ~ of the discrete solution. Since only 
Y0 is provided by the continuous problem, the remaining values YI .... , Yk-  ~ need to be found. We 
shall refer to the class of such methods as Ini t ial  Value  M e t h o d s  (IVMs). This approach is very 
straightforward, although it suffers from heavy theoretical limitations, summarized by the two 
well-known Dahlquist barriers. 

A less-known approach is to fix the values 

Y0,.. . ,Yk~-I,  YN, . . . ,YN+k~- I ,  kl + k 2  =k ,  

of the discrete solution. The continuous initial value problem (1) is then approximated by means of 
a discrete boundary value problem. We call the methods obtained in this way Boundary  Value 
M e t h o d s  (BVMs) with (kx, k2)-boundary  conditions. We observe that for ka = k and k2 = 0 one 
obtains the IVMs, which may be regarded as particular BVMs. For earlier references on this 
approach see, for example [4, 6]. 

2. Discrete boundary value problems 

In order to discuss the behavior of the solutions given by BVMs, we need to analyze in more 
detail the solution of a linear discrete boundary value problem. For simplicity, we shall analyse the 
case of a homogeneous equation I-3, 5, 10], although the results can be generalized to non- 
homogeneous equations I-8]. Then, let 

k 
PiYn+i = O, 

i=0 
n = O , . . . , N - k l  - 1, 

Y O , ' " , Y k I - 1 ,  YU . . . .  ,YN+k~- l  f ixed, (3) 

be a given discrete boundary value problem. Moreover, let p(z) = y k=opiZi be the characteristic 
polynomial associated with the difference equation, whose zeros are 

[z l t  ~< "'" ~<lzkl .  

The following result holds true. 

Theorem 1. Suppose that  ]Zk~- 1 [ < ]Zk, [ < ]Zkx + 1 [, [Zk, + 1 [ > 1. Then,  the solution o f  problem (3) is 
given by 

y. = z~l (7 + O(Izk~- l/zk~ l") + O(Izk~/zk,  + l I N-") + O(Iz~,+ II-N)) + O(IZk, + II-~N-"~), 

where 7 depends only on Yo .. . . .  Ykl-  1. 
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Proof. We shall prove the results in the simpler case where p(z)  has only simple zeros. The general 
solution of the difference equation (3) is given by 

n T n y .  = eT Dnci A- CklZk, "4- efDycf, 

where 

D~ = diag (z 1 , . . . ,  Zk~ - 1 ), D:  = diag (Zk, + 1 , . . . ,  Zk), 

ei = (1, . . . ,  1) r e  ~k~-X, ey = (1, . . . ,  1) r e  R k2. 

The entries of the two vectors c~ and c f  and the scalar Ck~ must be determined in order to satisfy the 
boundary conditions. In matrix form they are: 

1 

Wk I - 1 Zkl 

Wk2 Zk a 

e, )(cl) (,o) 
U k ,  - 1 Di  Vk,-  1 D f ci = Yi , 

Uk ,D~ Vk~D~ c:  y :  

where 

Uj = 

1 --- 1 \ [ 1 . . .  1 

Z1. "'" Zkl ) ~ Vj = { ZkL + "'" Zk, 

"- j - 1  ... ZJk-1 z~ 1 . . .  Z~- ' 1 \ z~, + l 

j - 1  
wj = (1, Zk,, . . . ,  Zk, )T, Yi = (Y l ,  . . . ,  Yk,-1) T, and yy  = (YN . . . .  , YN+k:_l)  T. The coefficient matrix 
G can be factored as follows: 

G = 

1 e~ e~ 

Wkt- l Zkl U k , - 1 O i  Vk~- l D f 

1 

l~kl - 1 Zkl Ii 

N H I f  Wk z Zk 1 

B1 

where Ii and I I are the identity matrices of size kl - 1 and k2, respectively, and 

Ba = U k , - 1 D i -  Zk~Wkl-1 eT, B2 = Vk1-1D f - - Z k , W k l - l e ~ ,  

H (Uk~D~ N T -1 = -- Zk~ Wk~ei )B1 

N(wk, e7 + IN))B? = O(Iz , IN), --Zkl 

C = VkeO~ _ zkN, Wk~eyT - H B 2  = (Vk2 + O(IZk,/Zk,+a [N))o~ 
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From the above relations, it follows that 

( l + Zk,e~B11Wk _l + w T C - l v  w T C - 1 H - e ~ B ~  1 - -wTC -1 

G -1 B ~ I ( B 2 C - l v  = _Zk lWk_ l )  B ? I ( I i + B 2 C - X H )  - B ? I B 2  C-1 

__C- iv  _ _ c - 1 n  C-1 

N O(Izk, where w T = e ~  - e~ B{  I B2 and v = Zk Wk2 -- Zk, HWk,-1 = IN). Then, one verifies that 

T - 1  
Ckl = (1 + Zkle  i B l W k l -  1 "JV O(Iz~/zk,+llN))yo 

- - (e~B;  1 + O(Izk,/Zk,+l IN))yi + O(Izk,+ll -N) 

--:v + O(Izk , / zk ,  + ll N) + O(Iz~ ,+II -N) ,  

cl = --B;I((Zk,Wk,-  1 + O(Izk,/Zk, + 11N))yo --(Ii + O(Izk,/Zk, + l lN))yi + O(Izk, +1 I-N)) 

--:~ + O(Izk,/zk, + ll N) + O(Iz~ ,+ l l -~ ) ,  

Cf = D ;  N (V~ 1 Jr O(Izk, /z~, +1 IN))(Yf + O(Iz,,, IN)) 

=:D~N(o " 4- O(zk,/zk,+~l N) + O(Iz~,lN)), 

where y, 5 and o- are constants independent  of N. In particular, one has: 

7 = Yo + e~B-( 1 (YoZk, Wk,- 1 -- Yi), 

which depends only on Yo, . . . ,  Yk,- 1. Finally, one has 

. I~ - . )  y. = Zk,(~ --]- O ( I Z k _ l / Z k , [  n) .q t- O ( [Zk , /Zk ,+ l  -~ O(Izk,+ll-N)) 
+ O(Iz,,,+~l-(~-"b. [ ]  

Corollary 
Theorem 

. IN-.)  y. = zk,(~' + O(Izk,/Zk,+a + O(Izk,+~I-N))  

+ O(Iz,,,-~I") + O(IzK,+,I-(N-"b, 

where 7, which is given by (4), depends only on Yo, .. . ,  Yk,- 1. 

(4) 

2. Suppose that the roots of the characteristic polynomial p(z) satisfy the conditions of 
1 and, moreover, IZk,-11 < 1. Then 

3. Boundary value methods 

From now on, for any given matrix A = (aij), we shall denote by [A I the matrix whose entries are 
laul. Moreover,  to give the main results concerning BVMs, we need the following definitions. 

Definition 3. We say that a polynomial p(z) of degree k = kl + k2 is a Sk,k2-polynomial if its roots 
are such that 

Izxl ~< Iz21 ~< "'" ~< Izk, I < 1 < IZk,+l[ ~< "'" ~< Izkl, 
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whereas it is a Nk~k~-polynomial if 

Izxl Iz21 " "  Izk, I 1 < [Zk~+ll ~< "'" ~< Izkl, 
with simple roots  of unit  modulus• 

We observe that  for kl = k and k2 = 0 a Nk, k~-polynomial reduces to a Von N e u m a n n  
polynomial  and a Sklk~-polynomial reduces to a Schur polynomial• 

Moreover ,  the convergence theorem for BVMs will use some results concerning the inverse of 
a Toeplitz band matrix like 

a k l  • ° • 

TN = ao 

ak 

• . a k 

ao "'" ak~ / N x N 

where aoak ~ 0 and kx + k2 = k. For  this purpose,  let us consider the polynomial:  

k 
p(2)  = ~ ai Zi. 

i=o 

Then, the following result holds true• 

(5)  

L e m m a  4. I f  the polynomial p(z) associated with the matrix TN defined in (5) is a Nklk2-polynomial, 
.t-x) such that: then for N sufficiently large T~ 1 exists and has entries tlj 

(1) I t-x) for i >>. j; 

tij I <. v~ j-i, for i < j, where O < ~ < l. 
In the above relations, the constants 7, v and ~ can be chosen independent of N. In particular, 

Or: IZkx+X1-1, if Izx l  • "  Iz ,l 1 < IZk,+X[ ~< "•" ~< Izkl are the roots ofp(z) .  

Proof. See [1]. []  

The results of the previous lemma can be recasted in matrix form as follows: 

1T~11 ~< 7CN + VAN, (6) 

where CN is the N x N lower tr iangular  matrix having all unit  entries and AN is the upper  tr iangular 
Toeplitz matr ix having the entries on the last co lumn given by: 

(~N-1, ~N-2 , . . . ,  ~2, ~, 0)T. 

We are now in a posi t ion to state the convergence theorem for BVMs. 

Theorem 5. Disregarding the effect of round-off errors, a B V M  with (kl, k2)-boundary conditions is 
convergent if it is consistent and the polynomial p(z) is a Nklk~-polynomial. 
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Proof. If the L M F  (2) is used to approximate the solution of problem (1) by fixing the values 
Y o , . . . ,  Yk, -1 ,  YN, . . . ,  YN +k2-1, it is not difficult to see that the error equation can be written as: 

ANe = hBN6 f + z + g, 

where 

e = (ek,, ... , eN-1) T, ei = y(t i )  --Yi, 

3 f = ( f ( tk , ,  y(tkl)) --fk,,  ... , f ( t N -  1, y ( t N -  X)) --fN- 1) T, 

~k i " " " 

A N  = ~XO 

O~ k 

• • 

• o 

• . O~ k 
• ° • 

• ° 

~ 0  " " " ~ k a  IN - k~) x ( N  - k t )  

n N = 

ilk1 "'" flk 

" , ,  " .  

" .  ° . .  

* . ,  " , ,  

flO "'" 

flk 

flk~ ( N - k O x ( N - k t )  

T is the vector whose entries are the local errors (which are O(hP+l),  p />  1, since the method is 
assumed to be consistent) and g is the vector whose entries represent the errors on the boundary 
conditions,  which we shall suppose to behave at least as O(hP): 

g = _ 

Ekl -  1 (~iei - hfli6 f~) i = 0  

(~oe, , -  1 - h/~o6 fk , -  1) 

0 

/ o 
(c keN --  hBk,  fN) 

2ki ~ l (~i+k~ e N -  l +i - hfli+kl(~ f N  - 1 + i  

Let L be the Lipschitz constant of f Then, since for N sufficiently large the matrix AN is always 
nonsingular (see Lemma 4), one has: 

]el ~ hLlAff~BNl[el + [A~I](]~[ + [g[). 



L. Brugnano, D. Trigiante / Journal o f  Computational and Applied Mathematics 66 (1996) 97-109 103 

From Lemma 4 and relation (6) it follows that 

~:= IA~NI(I~I + Igl) ~< (TCN + VAN)(I~I + Igl), (7) 

for some y, v > 0 and ~ 6 (0, 1) which are independent of N (for brevity, we have used CN and AN in 
place of CN-k, and AN-k,, respectively). It follows that the vector £ has entries which are O(hP), if 
the k entries of g are at least O(hP). We have now 

( I -  hLIATv~BNl)le] <~ ¢. 

Let us define the (N - k l ) ×  (N - kl) matrices: 

a N 

. . .  1 
: • . • . .  

. . .  

" . .  " . .  

... 

, 

1 

QN 

1 • ' '  

• ° 
• ° 

1 
° . •  

• • ° • • • 

• • o  

1 

1 
0 

where GN has kl lower and k 2 upper off-diagonals, and QN has k 2 < k + 1 upper off-diagonals. 
Moreover,  let 0~ = max {7, v}, fl = ~k= o Ifl l. One then obtains 

IA/vl BNI <~ (TCN + VAN)/3GN 

~< a(k + 1)fl(CN + QN + ANGN). 

By posing rl = ~(k + 1)ilL, it follows that 

(I - hrl(fN + QN + ANGN))Iel <~ ¢. (8) 

If h = (T  -- to) / (N + k2 - 1) is sufficiently small, it is possible to show (see [5]) that the matrix 
MN = (I -- hrlCN) is an M-matrix, and moreover II M~ 1 II ~ is smaller than 2e 2"(r-t°), for h < (2q)- 1. 
It follows that (8) can be written as 

Mtul)lel := (I - hrIM~v l (QN + ANGN))Iel <-% M~v l"~. 

Moreover,  we have that 

ItQN + ANGNII~ <~ IIQNII~ + IfANII~ Ilall~ 

k + l  
< (k ÷ 1)(1 ÷ 4(1 - 4) -1) - 1---~ '  

which implies that, for h sufficiently small, the matrix M~ 1) is also an M-matrix• Moreover,  by 
posing 

k + l  q~ = 2r/e2.(r-to) 
1 - - 4 '  
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for h < (2q5)-1 one obtains 

oo 

[I(M~I))-I[I~ ~< Z 
n = O  

n = O  

Finally, one then obtains: 

Ilell~ ~< 4e 2"(r-'°) 11~11~, 

II htlM• '(QN + ANGN)II~ 

(h~b)" = (1 - hq~)-I < 2. 

that is, the method is convergent and the global error is O(hP). [] 

By using the usual definitions for the polynomials p (z) and a(z) associated with a given LMF,  the 
above result leads naturally to define 0-stability for BVMs as follows. 

Definition 6. A BVM with (kl, k2)-boundary conditions is Ok, k~-Stable if p (z) is a Nk, kcpolynomial. 

We observe that 0k, k~-Stability reduces to the usual 0-stability, when k~ = k and k2 = 0. 
The next step is to analyse the behavior of a BVM with (kl, k2)-boundary conditions on the test 

equation 

y' = 2y, 9t (2) < O. (9) 

In this case, taking q = h2, one obtains the discrete problem: 

zr(E, q) y, :-- (p(E) -qcr(E)) y, = O, 

YO, ' " ,  Y k , -  1, YN . . . . .  YN+k2-  1 fixed. 

The characteristic polynomial of the difference equation is ~ (z, q). From the result of Corollary 2, it 
follows that the discrete solution is bounded if the polynomial lr(z,q) is a Sk,k~-polynomial. 
Therefore, we shall give the following definition. 

Definition 7. For a given q e C, a BVM with (ka, k2)-boundary conditions is (k:, k2)-absolutely 
stable if re(z, q) is a Sklk~-polynomial. 

Again, (kl, k2)-absolute stability reduces to the usual notion of absolute stability for kl = k and 
k2 = 0. Similarly, one defines the region of (kl, kz)-absolute stability of the method as follows: 

Oklk2 = {q ~ C:n(z,  q) is a Sklk2-polynomial}. 

Finally, a BVM with (k~, k2)-boundary conditions is said to be Aklk~-stable if C -  ___ Dk, k~. We 
observe that for BVMs there are no barriers concerning the maximum order for methods which are 
Ok, k2-stable and/or  Ak, k2-stable. In fact, in the next section we shall briefly examine a class of k-step 
BVMs which provides 0klk2-Stable and Ak~k2-Stable BVMs of order k, for all k >~ 1. Other  classes of 
methods which contains 0k,k:-Stable and Ak~k2-Stable methods of order up to 2k can be found in 
[2, 3, 5]. 
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4. The generalized backward differentiation formulae 

Consider the particular class of k-step L M F  having the polynomial tr(z) in its simplest form: 

G(z) = z j, (10) 

for a given j 6 {0, 1 , . . . ,  k}. The methods of order k obtained with the choice j  = k are widely used 
as IVMs and are usually called backward differentiation formulae (BDF). The BDF provide 
0-stable methods until k = 6. It is in fact known that the BDF of order 7 is 0-unstable (see [9]). This 
is no more case, when j  is not  restricted to assume the particular valuej  = k. In fact, in this case one 
can choose the value o f j  which originates the method with the best stability properties. 

Having chosen tr(z) as in (10), the methods in this class can be written as: 

k 

Z ~iY,+i = hf ,+ j .  (11) 
/ = 0  

We have then k + 1 independent parameters left which permit us to obtain methods of maximum 
order k. Moreover,  for j = v chosen as follows: 

~'(k + 1)/2 for odd k, 
(12) 

v = ~ [ k /2  + 1 for even k, 

the obtained formulae result to be both 0v, k-v-stable and Av.k-v-stable for all k ~> 1. In Figs. 1 and 
2 the boundaries Fk of the corresponding regions Dv, k-v are plotted for odd k and even k, 
respectively, up to k = 30. For  each considered value of k, the stability polynomial 

~z (z, q) = p (z) - qz  ~ 

is of type (v, 0, k - v) in the region outside Fk, and of type (v - 1, 0, k - v + 1) inside. It follows that 
the (v, k - v)-absolute stability region of the method is the one outside the corresponding boundary  
ir k . 

The linear multistep formulae with o-(z) = z v, v given by (12), will be called general ized  backward  

di f ferent iat ion f o r m u l a e  (GBDF). They must be used with (v, k -v ) -bounda ry  conditions. 
We observe that the G B D F  provide Av .k -v - s tab le  methods of order k for all k >~ 1, while the 

usual BDF are not  A-stable, for k > 2. In Table 1, the coefficients of the G B D F  are reported for 
k = 1 , . . . ,  10. For  brevity, for each value of k we report  the normalized coefficients ~i = ~ifk. 

Let us now rewrite the generic G B D F  as follows: 

k-v 
E O~i+vYi+ v = h f , .  

i ~ - - V  

This formula can be used for n = v . . . . .  N - 1, since the additional conditions consist in fixing the 
values 

Y o , . . . , Y ~ - t ,  Y N , . . . , Y N + k - v - 1 .  

If these values are really known, one has then a set of N - v equations and an equal number  of 
unknowns (Yv, -.., YN-1). However, only the value Yo is provided by the continuous problem. The 
values Yl , . . . ,  Yv- 1 can also be obtained in s tandard ways (e.g., by Taylor expansions or by using 
a suitable IVM). This is obviously no more the ease for the k - v final values YN, . . . ,  YN+R-v- 1, 



106 L. Brugnano, D. Trigiante / Journal of Computational and Applied Mathematics 66 (1996) 97-109 

.1 

k=l 

-2 

- 3  i i i 

-~ -0.5 o o'.~ i 1:5 2 2.5 

Re q 

Fig. 1. Boundaries of the (v, k - v)-absolute stability regions of the G B D F  of order k, k = 1, 3, 5 . . . . .  29. 

-1 

-2 

-3 

k=2 

Req 

Fig. 2. Boundaries of the (v, k -- v)-absolute stability regions of the G B D F  of order k, k = 2, 4, 6 , . . . ,  30. 
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which must  be treated as unknowns.  This requires that  an equal number  of addit ional  independent  
equat ions must  be added. To  preserve the order k of the method ,  these equat ions can be 
conveniently derived by methods  of order  k - 1. In our  case, they can be chosen as follows: 

k - 1  

~" ~i, rYN_v+i=hfiv+r, r = O , . . . , k - v - 1 ,  
i = 0  

where the coefficients {e~,,} are uniquely determined so that  each formula has order  k - 1. 

5. Numerical tests 

In this section we examine the behavior  of G B D F  on two stiff test problems. The first problem is 
linear: (21 1920) /1 ) 

y ' =  19 - 2 1  20 y, y ( 0 ) =  0 , 
40 - 4 0  - 4 0  - 1 

whose solut ion is 

1 [ e-2'  + e-4°t(sin(t) + cos(t)) 

y(t) = 2 t e-2t -- e-4°t(sin(t) + cos(t)) ) .  
e -  4or (sin (t) -- cos (t)) 

Even if there is an initial transient where the solution varies very rapidly, by using a constant  
stepsize h over the interval I-0, 0.4] we obtain the m a x i m u m  errors reported in Tables 2 and 3, for 
the G B D F  of order  3 , . . . ,  10. Observe that  in Table 3 the last rate value for the G B D F  of order  10 is 
far from the expected one since we used double  precision and the errors are near the unit  roundoff. 

The second example is given by the Robertson 's  equations: 

y] = --0.04yl + 104y2Y3, 

y~ = 0.04yl - 104y2Y3 - 3 × 107y~, 
' 

Y3 = 3 X 107 , 

Yl (0) = 1, 

(o) = o,  

Y3 (0) = O. 

In this case, it is known  [7] that  the second componen t  Y2 reaches in a point  ~" near t = 0 
a quasi-stat ionary position, where Y2 (t') ~ 3.65 × 10-5. Then, this componen t  again goes to zero 
very slowly. We consider the following mesh: 

t ~ = t i _ l + h i ,  h i = l . 2 h i _ l ,  i = 1 , 2 , . . . ,  h o = 6 . 6 × 1 0  -6. 

In Fig. 3 we report  the compu ted  solution only in the interval [0, 0.3], in order to observe the above 
described behavior  of Y2 (t). The solution obta ined with the G B D F  of order  10 is shown by a solid 
line. For  compar i son  we also report  the result provided by L S O D E  (dashed line) on the same mesh. 
The  parameters  used for LSODE,  are: m f =  21, atol = rtol = le-14. As one can see, the solution 
compu ted  by the G B D F  has a more  regular behavior  than that  computed  by LSODE.  
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xlO-S 
3.7 

1 1 4 l t t H 4 + 4 .  4- 4" 4. 4- 4- 4" 4. 4" 4- 4. 4- 

0 0'.1 o.15 012 0.;  

3.65 

3.6 

3.55 

3.5 

3.45 

3.4 

3.35 

3.31 
0.3 

Fig. 3. Computed solution with the GBDF of order 10 (solid line) and with LSODE (dashed line). 
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