
ELSEVIER Journal of Computational and Applied Mathematics 78 (1997) 197-211

JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

Parallel implementation of block boundary value methods
for ODEs 1

Pierluigi Amodio a, Luigi Brugnano b,*
aDipartimento di Matematica, Via Orabona 4, 70125 Bari, Italy

bDipartimento di Eneroetica, Via C. Lombroso 6/17, 50134 Firenze, Italy

Received 22 March 1996; revised 28 August 1996

A b s t r a c t

The parallel solution of initial value problems for ODEs has been the subject of much research in the last thirty years,
and different approaches to the problem have been devised. In this paper we examine the parallel methods derived by
block boundary value methods (BVMs), recently introduced for approximating Hamiltonian problems. Here we restrict
the analysis of the methods when applied to linear problems, since their nonlinear parallel implementation deserves further
study. However, for linear problems, the methods can reach a high parallel efficiency.

Some of these solvers can also be adapted for approximating continuous two-point boundary value problems. Numerical
tests carried out on a distributed memory parallel computer are reported.

Keywords: Numerical methods for ODEs; Boundary value methods; Parallel computers

AMS classification: 65L05; 65L10; 65L06; 65Y05

I. Introduction

The solution of initial value problems (IVPs) for ODEs,

y' = f (t , y) , t E (t0, T], y(to) ---- r/, (1)

is often approximated by using appropriate discrete numerical schemes. In particular, we are inter-
ested in methods which are suitable for an efficient implementation on parallel computers. This has
been subject of investigation in the last thirty years [17, 18], and different approaches to such prob-
lems have been considered (see, for example, [6, 13, 19, 21]). The most straightforward is that of
exploiting possible parallelism existing in the continuous problem (parallelism across the problem).
However, this approach is usually considered when explicit methods are used. As a consequence, a

* Corresponding author, e-mail: na.brugnano@na-net.oml.gov.
i Work supported by CNR, contract n. 96.00243.CT01.

0377-0427/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved
PH S 0 3 7 7 - 0 4 2 7 (9 6) 0 0 1 1 2 - 4

198 P. Amodio, L. Brugnano/Journal of Computational and Applied Mathematics 78 (1997) 197-211

more general way of devising parallel ODE solvers was that of considering methods whose work per
step can be split over a certain number of processors. The so-called solvers with parallelism across
the method are then obtained. Such methods are essentially Runge-Kutta schemes and, in general,
they have not a high degree of parallelism. For this reason, another possible approach consists in the
simultaneous approximation of the continuous solution at several grid points. The obtained solvers
are then characterized by a parallelism across the steps.

In the last few years, this scenario has been enriched because of the introduction of a new class
of methods, namely the boundary value methods (BVMs) , which presents a natural parallelism in
time [3, 8, 16]. As a consequence, their parallel implementation leads to the definition of parallel
ODE solvers falling in the intersection of the last two classes of methods.

Recently, a block version of such methods has been introduced [11]. It has made possible the
definition of a very efficient parallel ODE solver, which is the subject of the present paper. Here,
however, we restrict our analysis to the simpler case where problem (1) is linear. This because the
nonlinear implementation of the methods is still subject of research.

In Section 2 the main facts about BVMs are recalled, along with their block implementation. In
Section 3 we introduce the parallel solver. A sketch of the generalization of the parallel algorithm for
solving continuous two-point boundary value problems (BVPs) is given in Section 4. In Section 5 we
analyze the complexity of the algorithm, in order to derive a model for the expected speedup. Finally,
in Section 6 some numerical examples, carried out on a distributed memory parallel computer, are
reported.

2. Boundary value methods

Suppose that the integration interval of problem (1) is discretized by using a uniform mesh with
stepsize h = (T - to)Is. The simplest way to define BVMs is to consider the application of a k-step
linear multistep formula (LMF)

k k

E ~iYn+i = h E f l i f ,+i
i=0 i=0

(2)

over this mesh, relaxing the usual request of assigning all the k conditions needed by the discrete
problem at the initial points to, t~ , t~-l. The latter choice originates all the known methods based
on LMF, which approximate the given continuous IVP by means of a discrete IVP.

Let now kl and k2 be two natural numbers, with kl + k2 = k. Then, in principle one could fix the
first k~ values of the discrete solution,

YO, Yl , . . . ,Yk , - I , (3)

and the final k2 ones,

Ys-k2+l,'.., Ys. (4)

In this way, the continuous IVP is approximated by means of a discrete BVP with (kl, k2)-boundary
conditions. The obtained methods have been called boundary value methods or, shortly, BVMs.
Even if earlier references on this approach exists [5, 14], these methods have been systematically

P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211 199

examined only in the last years, starting from [15]. In particular, the usual notions of 0-stability and
A-stability have been generalized, leading to the definitions of 0k, k2-stability and Ak,~2-stability [10].
It has also been shown that no more order barrier exists for such methods. In fact, several families
of BVMs have been found, each containing 0k, k2-stable, Ak, k2-stable methods of arbitrary high order
[2, 10], including methods of order p = 2k, which is the highest possible order for a k-step LMF
[1].

The problem of finding the values in (3) and (4) not provided by the continuous problem can
be easily overcome. In fact, let us rewrite formula (2), used with (k~, k2)-boundary conditions, as
follows:

k2 k2
E O~i+k'Yn+i:h E fli+k, fn+i, n : k l , . . . , s - k 2 . (5)

i=--kt i=--kl

We have then a set of s - k ÷ 1 equations which use the values

Yo, yl, . . . , Ys (6)

of the discrete solution. Of such values, only Y0 is provided by the continuous problem. The re-
maining k - 1 additional values in (3) and (4) can also be considered as unknowns, by introducing
an equal number of equations independent of those in (5). This is usually done by means of a set
of kL - 1 additional initial equations,

k k

EotOi)y i=hEf l~) f i , j = 1 , . . . , k l - 1, (7)
i=0 i=0

and k2 final ones,

k k
(J) Eo~k_iys_i=hEfl°)_ifs_i, j = s - k 2 + l,... ,s. (8)

i=O i=0

The above equations are conveniently obtained by a set of additional methods having the same order
of the main formula (5). For simplicity, we have assumed such formulae to have the same number
of steps as the main one.

One then obtains a set of s equations in the s ÷ 1 unknowns (6). As a consequence, the discrete
solution is obtained by providing only one more condition, which is that given by the continuous
problem. In this way, by choosing appropriate BVMs, it is also possible to approximate continuous
BVPs [9].

The previous use of BVMs has another important implication. In fact, let us recast the discrete
problem (5)-(8) in matrix form. Supposing, for simplicity, that the problem (1) is scalar, one then
obtains

(10~)A (Y0)y - h (b 0~)B (f 0) = (0 q) , (9)

where, for any integer r, we denote with 0r the null vector in Rr,

Y = (Yl,--.,Ys)V, f = (f l fs)T,

2 0 0 P. Amodio, L. BrugnanolJournal o f Computational and Applied Mathematics 78 (1997) 197-211

and

[a IA] :

(~ (1)

A.(kl'-- 1)
~0

~0

. . 41>

~(kll -- 1) .(kl -- 1)
" ' " ~k

0~ 1 . . . 0~ k

" °

0~0

~ 0 • • • O{k
~(s -k2+l) . (s - k 2 + l)
0 ' ' ' ~k

~ x (s + l)

[b I B] =

(')

~o

:

f l lk , - l) a(~,-1) • "" P'k

]~0 • ' •

• (s - k 2 + l) R (s - k 2 + l)
0 " ' " /-'k

• •

0 • • " ~ x (s + l)

One then concludes that (9) can also be regarded as a one-step composite method• This feature has
led to define a block version of BVMs [11], which has been successfully used for approximating
Hamiltonian problems•

In few words, such a block version amounts to discretizing the interval [to, T] by using two
different meshes: a coarser one and a finer one. Let the coarser mesh contain the p + 1 points

zi = z i - l + hi, i : 1 , p , Zo =-- to, zp - - T.

Then, on each subinterval [Z i _ I , ' I : i] , i = 1 , . . . , p, we apply the same (composite) BVM, as described
above, by using the finer stepsize hi = hi/s .

As a consequence, the points in the finer mesh belonging to the subinterval (Zi-l,Zi], which we
call in t e rna l s t eps , are given by

tji = zi-1 + j h i , j = 1 , . . . , s , i = 1 p ,

P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211 201

where the rightmost lower index of tji identifies the ith subinterval. In this case, we speak about a
block B V M with s internal steps.

3. The parallel algorithm

From the previous arguments, it is evident that BVMs present a natural parallelism in time. In
fact, when solving problem (9), one looks for simultaneous approximations of the discrete solution
at several grid points. An efficient parallel solution of such equation would then lead us to define a
parallel ODE solver which could be regarded as having both a parallelism across the method, and a
parallelism across the steps. Parallel ODE solvers of this kind have already been considered in the
past years [3, 8, 16]. Instead, we shall here consider a different approach, which will gain parallelism
from the block version of BVMs.

In this paper we shall restrict our analysis to the application of the methods to linear problems,
because in such a case the discrete problem obtained is linear. In the more general case of nonlinear
problems, the discrete problem is nonlinear, and some iterative procedure (e.g., Newton's method)
should be considered for its solution. As a consequence, disregarding for the moment the conver-
gence of the iterative procedure, the following arguments could be applied to the linearized problem
obtained at each step.

Let us then consider the linear problem in ~m,

y ' = L (t) y + g(t) , t E (to, T], y(to) = 11. (10)

Moreover, in order to avoid unnecessary complications, we shall also suppose the points in the
coarser mesh to be equally spaced. Let us introduce, for i = 1,. . . , p, the block vectors (see (9)),

vi = a ® I m - h b @ Loi ,

where, for any integer r, /r denotes the identity matrix of size r, and Lji ---- L(tji). Moreover, we
define the sm x sm matrices

v,. = I v , I ,

Lli)
= A ® - h (B ® lm) ".. ,

Lsi

where, by denoting by Q,s-i the s × (s - 1) zero matrix and, for any integer r, with Or the r x r
zero matrix,

Os, s-1 = Os,,-1 ® Ore.

Then, the application of a block BVM to problem (10) leads to the following discrete problem:

M<P)y ~p) = gCP), (11)

202 P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211

where

M(p) :

vl M1
V z M 2

".. ",.

VpM

/i °) (j Yl hgl I
y(P) : Y2 , g(P) = hg2 ,

p h'gp]

Yi contains the approximations at the intemal steps in the ith subinterval, and gi is a block vector
containing suitable combinations of the inhomogeneity in (10) at the points in the same subinterval.

The parallel implementation of block BVMs will exploit the particular structure of the coefficient
matrix M ~p). In fact, in order the discrete solution be defined (as we obviously assume), all the
square diagonal blocks 34. must be nonsingular. As a consequence, we may consider the following
factorization:

M(p) : T(P)S(P),

where

/m
ml

T(P) =

(12)

/ 'm)
w, L

. , S (p) = w2 ~ ,
°.

m p ''" "..

having denoted, for any integer r, with Ir = Ir ®Im and, for all allowed i, W, = [O~,s_l I w~], while
w; is the solution of the linear system

Miwi = vi, i : 1 , p. (13)

We here assume that such systems are solved by means of the L U factorization with partial pivoting
algorithm.

As a consequence, Eq. (11) is equivalent to solving the following ones:

i .e . ,

T(P)x(p) : g(P) , S(P)y (p) : x (p) :

xo)
Xl

Xp

Xo = q, M~xi = hgi, i = 1 , . . . , p , (14)

y0 = x0, y l = xl - wl yo, Yi : X i - - W/•i-1, i = 2 , . . . , p. (15)

By the way, we observe that Eq. (14) corresponds to the parallel approximation of the p IVPs

x' : L (t) x + 9 (t) , t c (Zi-l ,Zi], x (z i - 1) = 0 , i = 1 , . . . , p .

P. Amodio, L. BruonanolJournal of Computational and Applied Mathematics 78 (1997) 197-211 203

In order to examine Eq. (15), we need to further partition the vectors xi, Yi

follows:

(J~i) (.]~i) (Wi)
Xi = , Yi = , Wi = , i = 1 p ,

Xsi Ysi W si

and wi as

where Xsi, Ysi E ~m and wsi C ~m×m. The existing parallelism is then emphasized by considering the
following (p s + 1)m × (p s + 1)m permutation matrix:

p =

¢6s--1 is--1 6s--I ...
6~__, 0~__, 6~__, L - , 6s--, . . .

Os--, Os--, Os--I Os--, Os--I L--I Os--1 "'"

^T
Im O~_l . . .

^T ^T
Om Os--1 Im Os-1 "'"

^T ^T ^T
Om Os-- l Om Os- 1 Im Os- 1

(16)

where 6s-L = Os-1 @ Om, and Os_ 1 = Os--I ~ Om. In fact, the solution of (15) is equivalent to the
permuted system

P S (P) p T p y (p) = p x (p),

i.e.,

L-I

O

By considering the matrix

1¢ 1 0 m

1~ 2 0 m

Im

W s l I m

w~2 Im

" , °

~'p Om

°

Wsp lm

Y2 ~2
• °

.Op = 2 p .

Yo Xo
Ysl Xsl

• ,

\ Ysp] \ Xsp

(17)

Rp =

lm

Ws~ Im

Ws2 Im

° . , *°• / '
Wsp lm

(18)

204 P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211

the solution of (17) is obtained by first solving the reduced system

Rp

Yo
Ysl

\ Y~p

(x0)
Xsl

\ Xsp

(19)

and then updating in parallel the right-hand side (let)'so = Y0),

.fi = -ri - wiys,i-1, i = 1 , . . . , p. (20)

As a consequence, one has that only the reduced system (19) cannot be directly solved in parallel.
The parallel solution of such system, however, can be obtained by using a block cyclic reduction,
even if also in this case the degree of parallelism is not constant.

Finally, we observe that the dimension of the matrix Rp is (p + 1)m x (p + 1)m, where p is
the number of the parallel processors, and m is the dimension of the continuous problem. It is then
independent of both the number s of internal steps, and the number k of steps of the main formula
of the block BVM.

4. Parallel solution of two-point BVPs

Block BVMs can be also used for approximating continuous two-point BVPs. By considering the
following linear problem:

y' = L (t) y + 9(t), Bay(a) + Bby(b) = q,

where Ba and Bb are m x m matrices, the obtained discrete problem is still given by (11), with the
only difference that, now,

B a (Os__ 1 Bb)
vx Ml

M~P)= V2 MR . (21)
• . • ,

Vp Mp]

However, in this case a factorization similar to (12) cannot be used, because of stability reasons,
since the diagonal blocks M~ may be very ill-conditioned or even singular•

For this reason, let us consider the following partitioning of the coefficient matrix (21):

I Ba Bb I vt N1 zl
M~p) = v2 N2 z2 , (22)

• , •

Vp Np Zp

P. Amodio, L. Brugnano/Journal of Computational and Applied Mathematics 78 (1997) 197-211 205

where each block N~ has size s m x (s - 1)m and must have full column rank, in order the matrix
M (p) is nonsingular. As a consequence, Ni can be factored as

N~ = QiLi ^T , i = 1 , . . . , p , (23)
0s-1

where Qi is an sm x sm permutation matrix, Li is lower triangular, and Ui is (s - 1)m x (s - 1)m upper
triangular. We observe that the factorizations (23) are independent of each other and, therefore, they
can be computed in parallel.

The subsequent step is the solution of the linear systems defining the block vectors u~ and wi:

QiLilli -= zi, QiLiwi = Vi, i = 1, . . . , p,

which can be also computed in parallel. For convenience, we partition these vectors as follows:

U i ~ , W i ~ , Usi ,Wsi E ~mxm.
Usi Wsi

The above steps then lead to the following factorization of matrix (22):

M(p) = L(P)D(P)U(P),

where

L(p) = i II'ml Q1L1 , Utp) = Ul
"° "°.

QpLp

U i = (& i ~ i) [m ' D(P)=

na

ff'l i s - l
Wsl Usl

ws2

~ 0 O

Us2
° .

'G L-l
w~p

Bb

Usp

(24)

(Ba Bb)
Wsl Usl

Rp = ".. ".. . (25)

Wsp Usp

At this point the solution of the linear systems with the matrices L (p) and U tp) can be easily
performed in parallel on the p processors. The existing parallelism in the solution of the system
with the matrix D (p) requires the use of the permutation matrix (16), thus showing that the only
sequential section amounts to the solution of a reduced system, with the reduced matrix

206 P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211

However, we observe that matrix (25) has a structure similar to that of the original matrix (21), but
smaller size. As a consequence, the same steps considered above can be repeated recursively, thus
obtaining a cyclic reduction-like solution of the reduced system, as already proposed by Wright [22]
for the solution of ABD systems (see also [4]).

5. Expected speedup

Let us now examine the parallel complexity of the algorithms described in the previous sections.
For this purpose, observe that when a distributed memory parallel computer is used and its processors
are numbered from 1 to p, the rightmost lower index in each mentioned quantity denotes the
index of the processor where this quantity has to be stored. The only exception is for the vectors
and the matrices involved in the initial or boundary conditions. In fact, they are all stored on the
first processor, when the reduced system is sequentially solved. Conversely, they are stored on the
processor performing the last step in the reduction of the reduced system, when the parallel approach
is used.

The following estimates are obtained in the case where p = 2 r. In the general case, they are
slightly modified.

The parallel algorithm derived by factorization (12) is summarized by the following steps, where
we have assumed that kl ~ k/2, since this is the case for the most effective BVMs [1, 2, 10, 12].
Then, we derive a simplified model for the expected speedup on p processors. The simplifying
assumption consists in neglecting data communication time, thus considering only the number of
flops (floating point operations). This is because data communication originates terms with a much
smaller complexity.

Step 1 (Computation of the factorization (12)): For all i = 1, . . . , p, processor i computes the LU
factorization of M, and solves the ith linear system in (13); n l ~ pskam 3 flops, equally redistributed
on the p parallel processors, are required.

Step 2 (Parallel solution of the system with the matrix T(P)): For all i = 1, . . . , p, processor i
solves the ith linear system in (14); n2 ~ 2pskm 2 flops, equally redistributed on the p parallel
processors, are required.

Step 3 (Solution of the reduced system (18)-(19)): /73 ~ 2pm z flops are required if a sequential
solution of the reduced system is considered. Conversely, when it is solved by using block cyclic
reduction, the parallel complexity is n~ ~ 2m 3 log 2 p flops.

Step 4 (Parallel updates required by system (17)): For all i = 1, . . . , p, processor i computes the
ith update (20); n 4 ,~ 2psm 2 flops, equally redistributed on the p processors, are required.

Observe that step 3, that is the solution of the reduced system, represents the only synchronization
point among the processors. In particular, when the reduced system is sequentially solved, p - 1
data communications of length m are needed. Conversely, when a block cyclic reduction is used,
one needs approximately log 2 p data communications of length m 2.

The standard LU factorization with partial pivoting algorithm applied to problem (3) represents
the scalar algorithm of comparison. It requires ns ~ psk2m 3 flops.

The following expression for the expected speedup of the parallel algorithm, over the sequential
implementation of the same method, is then obtained,

P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211 207

Sp ~-

ns p
nl -q- n2 -k- n4 1 + 2(sk2m)-l p

+ n3
P

when the reduced system is solved sequentially,
ns p

, 1 + 2(sk2) -1 log 2 p ' nl + n2 -k- n4 -q-n3

P
otherwise.

(26)

From the above expressions, it is evident that the parallel solution of the reduced system via block
cyclic reduction is conveniently used only if n3 > n~, i.e., when

m < p/log 2 p.

Consequently, it is convenient when the number of parallel processors p is suitably large, and/or
the size m of the continuous problem is suitably small. In this case, the expected speedup is almost
independent of m. Moreover, in both cases, the parallel efficiency grows with the number k of steps
of the main formula, and the number s of internal steps of the block BVM.

We now briefly examine the case of two-point BVPs, thus analyzing the algorithm corresponding
to the factorization (24). It can be shown that the complexity of the sequential LU factorization
algorithm applied to the system (11)-(21) is still given by ns ~ psk2m 3 flops. Moreover, concerning
the parallel solver, it can be shown that the complexity of the operations with perfect degree of
parallelism is essentially the same as in the previous case. The only significant difference consists
in the solution of the reduced system with matrix (25). In fact, it requires approximately 12pm 3
flops, if sequentially solved, or a parallel complexity of approximately 20/3 m 3 log 2 p flops, when
the cyclic reduction-like approach is used.

One easily verifies that, in this case, it is always convenient to consider the parallel solution of the
reduced system, thus obtaining the following expression for the expected speedup on p processors:

P
1 + 20/3(sk2) -1 log 2 p"

6. Numerical examples

We now consider some numerical examples, in order to show the effectiveness of the presented
parallel implementation of block BVMs. We first consider two initial value problems, then we
examine the solution of a boundary value problem.

In all the cases, the parallel solution of the reduced system has been considered. Moreover,
the chosen BVMs are extended trapezoidal rules (ETRs) [2], i.e., methods having the following
form:

v-I

Yn -- Yn--I ~ h ~ f l i+v f n+i,
i=--v

n = v , . . . , s - v + l , v>.l.

In this case, k = 2 v - 1 (k l ----- v , k2 = v - 1), and the coefficients {fli} are uniquely determined
by imposing a O(h ~+2) truncation error. The above formula is conveniently used with the following

2 0 8 P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211

additional initial equations:

k

y j - y j _ l = h Z f l O i ') f i , j = 1 , . . . , v - 1,
i=0

and the following additional final ones:

k

yj - yj_, = h Z fl~2if s-i' j = s - v + 2,. . . ,s.
i=O

The coefficients of the additional methods are uniquely determined by imposing the same order k + 1
of the main formula.

Such methods are suitably used either for approximating Hamiltonian problems [7, 11, 20], or
continuous BVPs [9].

The parallel computer used is a transputer based machine, which is a distributed memory parallel
computer. Its nodes communicate through four physical channels called links.

The first problem is

y' = 19 -21 20 y, y(0) = , t E [0,5]. (27)
40 --40 --40 --

The second problem is a Hamiltonian one

Y ' = (15 -15) Sy, y(0) = , t E [0,50], (28)

where S = 8110 + Q, and the (i , j)th entry of Q is i + j , i , j = 1 10.
In both cases, a uniform mesh has been considered, and the speedup over the sequential imple-

mentation of the methods is computed. In this case, the time for the parallel execution includes both
computations and communications.

In Table 1 we report the measured speedups on p = 1,2,4,8,16 processors for problem (27),
while Table 2 summarizes the results for problem (28). For both problems, we have considered ETRs
of different order (k = 3, 5, 7, 9) and two values for the number of internal steps (s = 20,40) in order
to observe the predicted growth of the speedup with k and s. In this case, since we are considering
linear problems, there is no difference (up to machine precision) between the solution computed on
one processor, and those computed in parallel. Consequently, the accuracy of the computed solutions
completely reflects the order of the methods.

From Tables 1 and 2, one can also observe a moderate growth of the speedup with the dimen-
sion m of the continuous problem, not predicted by our simplified model (26). However, the most
interesting feature is that the proposed parallel solver is very effective, since all the speedups are
very close to p. Moreover, the parallel solution of the reduced system allows the use of parallel
computers with a large number p of processors, since the complexity for its solution grows as
log2 p.

P. Amodio, L. Brugnano l Journal of Computational and Applied Mathematics 78 (1997) 197-211

Table 1
Measured speedups for problem (27)

S

p \ k

20 40

3 5 7 9 3 5 7 9

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.89 1 . 9 3 1 . 9 4 1 . 9 5 1 . 9 4 1 . 9 6 1 . 9 7 1.98
4 3.55 3.68 3.77 3.83 3.74 3.84 3.88 3.92
8 6.42 6.93 7.20 7.44 7 . 1 1 7.43 7.58 7.72

16 12.46 13.52 14.13 14.52 14.03 14.70 14.98 15.24

209

Table 2
Measured speedups for problem (28)

s 20 40

p \ k 3 5 7 9 3 5 7 9

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.95 1 . 9 9 1 . 9 9 1 . 9 9 1 . 9 9 1 . 9 9 1 . 9 9 1.99
4 3.77 3 . 9 1 3.94 3.96 3.94 3.94 3.97 3.97
8 7.34 7.67 7.77 7.85 7.67 7.78 7.88 7.90

16 14.16 15.05 15.34 15.55 15.10 15.41 15.67 15.72

Finally, let us consider the following second-order boundary value problem (e = 10-3) :

EU tt : U,

_ _ 1 ! ey" = t + ½tu' ~ty - en 2 cos(nO - ½trc sin(nO,

u (- 1) = - y (- 1) = 1, u(1) = y(1) = e -2/v~. (29)

It is solved after recasting as a first-order system. In this case, we fix the number s = 40 of internal
steps for the considered BVMs. Then, we solve the above problem on p processors, by using a
constant stepsize h = (p s) -~, p = 1,2,4,8,16. This means that when the stepsize is halved, and
consequently the size of the discrete problem is doubled, the number of the parallel processors used
is also doubled. As a consequence, we expect the execution time to remain approximately constant
for increasing number of processors, even if the accuracy of the solution improves, due to the use
of a smaller stepsize.

In Table 3 we report the measured execution times, expressed in units of time (t i cks) , each
corresponding to 64 #s. Finally, in Table 4 the maximum absolute errors are reported. As predicted,
as the number p of processors increases, the maximum error decreases.

Concerning Table 3, it is worth mentioning that the execution times on multiple processors are
often smaller than the execution times on one processor. This is due to the fact that, as the stepsize
is decreased (i.e., p increases), the discrete problem changes, and the L U faetorization algorithm
requires less permutations for pivoting.

210 P. Amodio, L. Bruonano/Journal of Computational and Applied Mathematics 78 (1997) 197-211

Table 3
Measured execution times for problem (29)

p \ k 3 5 7 9

1 4217 6137 8482 10899
2 3955 5822 8571 10993
4 4110 5987 8007 10259
8 4176 6043 8116 10404

16 4265 6030 8151 10551

Table 4
Measured maximum absolute errors for problem (29)

p \ k 3 5 7 9

1 3.6e-2 1.2e-2 7.5e-03 5.5e-03
2 3.8e-3 9.3e-4 1.2e-04 5.0e-04
4 2 .4e-4 1.4e-5 3.5e-06 1.6e-06
8 1.1e-5 1.9e-7 3.9e-09 4.5e-10

16 8.3e-7 3.1e-9 2 . 1 e - l l 5.6e-13

Acknowledgements

The authors are very indebted to Professor Donato Trigiante for the help in the preparation of the
manuscript.

References

[1] P. Amodio, A-stable k-step linear multistep formulae of order 2k for the solution of stiff ODEs, submitted.
[2] P. Amodio and F. Mazzia, A boundary value approach to the numerical solution of ODEs by multistep methods,

J. Difference Equations Appl. 1 (1995) 353-367.
[3] P. Amodio and F. Mazzia, Parallel block preconditioning for the solution of boundary value methods, J. Comput.

Appl. Math. 69 (1996) 191-206.
[4] P. Amodio and M. Paprzycki, A cyclic reduction approach to the numerical solution of boundary value ODEs,

SIAM J. Sci. Comput., (to appear).
[5] A.O.H. Axelsson and J.G. Verwer, Boundary value techniques for initial value problems in ordinary differential

equations, Math. Comput. 45 (1985) 153-171.
[6] A. Bellen and M. Zennaro, Parallel algorithms for initial-value problems for difference and differential equations,

J. Comput. Appl. Math. 25 (1989)341-350.
[7] L. Brugnano, Essentially symplectic boundary value methods for linear Hamiltonian systems, J. Comput. Math., to

appear.
[8] L. Brugnano and D. Trigiante, A parallel preconditioning technique for boundary value methods, Appl. Numer.

Math. 13 (1993) 277-290.
[9] L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems, Appl. Numer. Math. 18

(1995) 79-94.
[10] L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential

equations, ./. Comput. Appl. Math. 66 (1996) 97-109.

P. Amodio, L. BrugnanolJournal of Computational and Applied Mathematics 78 (1997) 197-211 211

[11] L. Brugnano and D. Trigiante, Block boundary value methods for linear Hamiltonian systems, J. Appl. Math., to
appear.

[12] L. Brugnano and D. Trigiante, Solving Differential Problems by Muhistep lnitial and Boundary Value Methods,
in preparation.

[13] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations (Clarendon Press, Oxford, 1995).
[14] J.R. Cash, Stable Recursions (Academic Press, London, 1979).
[15] L. Lopez and D. Trigiante, Boundary value methods and BV-stability in the solution of initial value problems, Appl.

Numer. Math. 11 (1993) 225-239.
[16] F. Mazzia, Boundary value methods for the initial value problems: parallel implementation. Ann. Numer. Math. 1

(1994) 439-450.
[17] W.L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential equations,

Math. Comput. 21 (1967) 303-320.
[18] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7 (1964) 731-733.
[19] B.P. Sommeijer, W. Couzy and P.J. van der Houwen, A-stable parallel block methods for ordinary and integro-

differential equations, Appl. Numer. Math. 9 (1992) 267-281.
[20] D. Trigiante, Multipoint methods for linear Hamiltonian systems, in: Advances in Nonlinear Dynamics, series on

Stability and Control: Theory Methods and Applications, (Gordon and Breach, Reading, UK, 1996).
[21] P.J. van der Houwen, B.P. Sommeijer and W.A. van der Veen, Parallel Iteration across the steps of high-order

Runge-Kutta methods for nonstiff initial value problems, J. Comput. Appl. Math. 60 (1995) 309-329.
[22] S.J. Wright, Stable parallel elimination for boundary value ODEs, Numer. Math. 67 (1994) 521-535.

