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Abstract 

The use of implicit methods for ODEs, e.g. implicit Runge-Kutta schemes, requires the solution of nonlinear systems 
of algebraic equations of dimension s • m, where m is the size of the continuous differential problem to be approximated. 
Usually, the solution of this system represents the most time-consuming section in the implementation of such methods. 
Consequently, the efficient solution of this section would improve their performance. In this paper, we propose a new 
iterative procedure to solve such equations on sequential computers. 
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1. Introduction 

The single application o f  m a n y  implicit  schemes for ODEs to the problem 

y ' =  f ( t , y ) ,  y(to)---- y o E ~  m, (1) 

results in the solution o f  a sys tem o f  algebraic equations in the form 

F ( y )  : = y  - h(C 0 Ira)f-- g(YO) = O, (2)  

where h is the stepsize, C is a full s ×s  matrix, Im is the identity matrix o f  size m (when not specified, 
I will denote the identity matrix whose dimension will be clear f rom the context),  g :  ~m _~ Rs.m is 

a known function, and 

Y = ( Y l  . . . .  , ys)T, f _  ( f l , . . . ,  fs)T, f i =  f ( t i ,  y i)  ' 
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are the vectors with the unknown approximations to the solution at the grid-points t l , . . . ,  ts. This is 
the case, e.g., when an implicit s-stage Runge-Kutta method is used on problem (1). A different, 
more recent instance is given by the use of  a block boundary value method (B2VM) [1, 2] on the 
same problem, which would lead to a discrete problem in the form 

(A ® lm)y - h(B ® Ira)f+ (a @ Yo) -- h( b @ fo)  = O, 

where A and B are s × s matrices and a, b are given vectors. In particular, the matrix A is nonsingular 
and, therefore, multiplication on the left by A -1 @Im produces a discrete problem in the form (2). 

It is customary to use the modified Newton iteration to solve problem (2), 

( I - h C ® J o ) A y  i = - F ( y i _ l ) ,  i = 1 , 2 , . . . ,  (3) 

where J0 is the Jacobian of  the function f evaluated at (to, Y0). The use of  the modified iteration 
has the obvious advantage of requiring the matrix ( I -  hC ® J0) to be factored only once, to carry 
out the iteration (3). If  we do not consider the function and Jacobian evaluations, this implies 
that the leading term in the arithmetic complexity is given by 32-(s • m )  3 f lops ,  where we count as 
one flop one of  the four basic floating operations with real quantities. The first relevant attempt 
to reduce this cost is due to Butcher [4], who essentially suggests to transform the matrix C into 

2 m 3 and its Jordan form. This allows to lower the arithmetic complexity in the range between 3s.  
~S'4 m 3 flops, depending on the eigenvalues of  C (eventually by solving complex systems as done, 
for example, in the implementation of  the code RADAU5 [5]). We also mention that, in order to 
take full advantage from Butcher's procedure, Runge-Kutta methods with only one real eigenvalue 
have been proposed [8, 3]. However, such methods are less favorable than Runge-Kutta methods 
with complex eigenvalues, in terms of  accuracy and stability. 

A different approach is to use an inner iterative procedure for each outer iteration in (3). One 
of such inner-outer iteration schemes has been recently proposed in [6, 7], where they essentially 
consider the following procedure: 

(I hL®Jo)Ay~J)=(h(C_L)®Jo). ( j - l )  -- Lly i - - F ( Y i _ l )  , j = 1 , . . . ,# ,  (4) 

instead of  each step in (3). Here,/~ is a suitable parameter and the matrix L is obtained by the L U  
factorization of  the matrix C, where U has unit diagonal entries. In the following, we shall assume 
the matrix C to be nonsingular. 

Considering that the iteration matrix in (4) is a matrix function of the Jacobian Jo, in order to study 
the asymptotic convergence rate of  the inner iteration, it is sufficient to consider the convergence 
behavior in correspondence of each eigenvalue 2 of  J0. Consequently, by setting q = h2, it will be 
sufficient to study the spectral radius p(q) of the amplification matrix 

M ( q )  :---- q(I - q L ) - I ( c  - L)  -- qL(I - q L ) - I ( u  - I).  (5) 

According to van der Houwen and de Swart [7], the region o f  convergence of the inner iteration is 
given by 

r =  {q C: p(q) < 1}, 

and the method is said to be A-convergent if C-  c_ F. 
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A necessary condition for having A-convergence is the matrix L to have positive diagonal entries. 
In this case the eigenvalues of  M ( q )  are analytical functions of  q in C- ,  and A-convergence is 
equivalent to require 

p* := max pox)  ~< 1, (6) 
xER 

where, as usual, i is the imaginary unit. 
A remarkable property of  the inner iteration (4) is that 

p(q)--~O as q---~ ~ .  (7) 

In fact, from (5) it follows that, for [q[ >> 0, 

M ( q )  ,~ I - U, 

which is a nilpotent matrix of order s (since U has unit diagonal entries). Consequently, the inner 
iteration is very suited for stiff problems. In the following section, we shall improve this approach. 

2. Modification of the inner iteration 

We observe that, for large m, the leading term in the arithmetic complexity of  the procedure (4) 
2 m 3 flops. It is due to the factorization of  the m × m matrices is ~s- 

l m -  hdi J0, 

where Ei is the ith 

i----1,. . . ,s,  

diagonal entry of  the matrix L. This may not be a severe limitation if the algorithm 
is implemented in parallel on s processors, since all the above factorizations are independent of  each 
other [6, 7], but it would result in a less competitive algorithm on a sequential computer. However, 
if all the entries Ei are equal, then only one of the above factorizations is needed and, consequently, 

2 3 This is exactly what we plan to the leading term in the arithmetic complexity reduces to ~m.  
achieve for many methods of  practical interest. 

For this purpose, the next result is useful. 

Theorem 1. Let  C E ~sxs, de t (C)>0 .  Then there exists a transformation matrix T such that 

TCT -1 = L U, (8) 

where U is upper triangular with unit diagonal entries and L is lower triangular with the elements 
on the main diagonal all equal to 

E = s ~ .  (9) 

Proof. The proof is obtained recursively, by using suitable elementary matrices. We shall take such 
matrices upper triangular, but they could also be chosen differently. To begin with, let us consider 
the matrix 

7"1 : I - ell/T, 
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where, in general, 
• ei is the ith unit vector in R s, and 
• ui E Ns has the first i entries equal to zero, 
such that (see (9))  

) (lO) T'CT[-i = ( x~ C1 " 

I f  C:(ci j) ,  and c =  ( C l b . . . , G t )  T is its first column, one then obtains that ul is any vector such that 

Cl l  - -  //1TC = E.  

For simplicity, we suppose that c2~,..., c,~ are not all equal to zero, even though the whole procedure 
can be modified to handle this case, too. The next step is to compute the first elementary Gauss 
matrix L1 corresponding to the matrix (10), 

' ( 0 )  
L1 = I - g l e~ ,  gl  = ~ x l  ' 

from which 

(L'T')CTI-I= (O CI)"  

The same procedure is then repeated on the matrix C1, and so on, until the following factorization 
is obtained: 

E * ...  * \  

) E "" : 
:-- . " = (Ls-lTs-l ". "L1T1)C(Ts-I'" T1) -1 

f 

= (Ls_l - - .  L1 )(T,_~ • • • T~ )C(T~_I • • • Tt )-~, ( 11 ) 

where, for all i, 

= 1 - e;u , Li = I - gi eT, (12) 

and the first i entries o f  the vector gi are zero. The key point is that the matrices L,, obtained by 

(jl-I> Tj) L i = ( l - j ~ >  ejuS) ( I -g ie~)  

T T T = I - -  Z e j u j  - gi eT + Z ej(ujgi)ei 
j>i  j> i  

j> i  j> i  / 

- i - E e j . 5  - 
j > i  
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: ,  

are still elementary Gauss matrices. As a consequence, by setting 

L- '  = (Ls_l . . .L1), T=(Ts_l .  • • T1), 

from (11) we get the LU factorization of the matrix C = TCT -1. The thesis follows considering 
that the factors of  the factorization (8) are L = fg  and U = (1/d)O. [] 

We observe that in most cases of  interest the matrices Ti in (12) can be chosen so that 

H i : O~iei+l , O~ i E ~ ,  

namely, the matrix T in Theorem 1 is upper bidiagonal, 

1 ~1 ) 

T -- " " . (13) 
1 a s -  1 

1 

This is indeed true for all methods considered in Section 3. In this case, the matrix T can be easily 
obtained by using the Matlab function makeT reported in the Appendix. 

We observe that the use of  the presented technique requires, at each outer iteration, the variable 
transformation 

z : ( T ® I m ) y ,  

whose complexity is O(s 2. m) flops in general, and 2 s - m  flops when T is upper bidiagonal. 
Consequently, this cost can be considered negligible with respect to the other operations involved, 
when m >> 1. 

Remark 1. The result of  Theorem 1 can be generalized to the case d e t ( C ) # 0 ,  if we allow the 
diagonal entries of  the matrix U to be either 1 or -1 .  This is done by replacing (9) with 

Moreover, the result can be easily adapted to handle the case of  Runge-Kutta schemes having the 
matrix of the tableau with a zero first row (e.g. Lobatto IIIA schemes), or in the case of  methods 
having the last column with zero entries (e.g. Lobatto IIIB schemes). In the former case, in fact, 
one applies the above procedure to the matrix obtained by discarding the first row and the first 
column, while in the latter case the procedure is applied to the matrix obtained by neglecting the 
first row and the last column. 
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By using the factorization (8), it follows that the iteration (4) is transformed to 

( I  - hL ®Jo)AZl j) :- (h (TCT -1 - L)  ®Jo)Azl  j - l )  - (T  ® Im)F(y i_ l )  , j = 1 , . . . , # ,  

Ayl ") = (T -1 ®/m)Azl '). (14) 

As a consequence, the new amplification matrix is given by 

Mr( q )  :=q ( I  - q T - 1 L T ) - I ( C  - T - 1 L T )  - T -1qL( I  - qL ) -~ (U  - I )T .  (15) 

We observe that the property (7) continues to hold for this matrix. 
It is evident that the spectral properties of  such matrix, having fixed the matrix C, will depend on 

the matrix T. In the following section, we shall compare the amplification matrices (5) and (15). 
In fact, in order that the presented technique be competitive with that proposed in [6], it is sufficient 
to show that the convergence properties of  the matrix (15) are not worse than those of  the matrix (5). 

3. Comparison of amplification factors 

In this section we compare the properties of the amplification matrices (5) and (15) corresponding 
to some Runge-Kutta methods. In Table 1 we report the parameter defined in (6) for the matrix 
(5) and the corresponding parameter for the matrix (15). By comparing the values in each row of  
the table, it seems that the iteration (14) is at least as effective as the iteration (4). However, the 
parameter p* is significant to describe the asymptotic behavior of  powers of  the matrices M ( q )  and 
Mr(q) ,  whereas, when the iterations (4) or (14) are used, it would be preferable to take #, the 
number of  inner iterations, as small as possible, in order to reduce the arithmetic complexity of  the 
corresponding outer iteration. Consequently, in place of  the parameter (6), which could not be able 
to describe the behavior of  the amplification matrices when the number of  inner iterations is small, 
the following parameters are also considered for the matrix M ( q )  [6] (hereafter, the norm used is 
the infinity norm), 

Table 1 
Parameter (6) for the matrices (5) and (15) corre- 
sponding to some Runge-Kutta schemes 

p* 

Method s M Mr 

Gauss 2 0.14 0.13 
3 0.30 0.25 

Radau IA 3 0.46 0.31 
Radau IIA 3 0.37 0.31 
Lobatto IliA 3 0.14 0.13 

4 0.30 0.25 
Lobatto IIIB 3 0.25 0.13 

4 0.41 0.25 
Lobatto IIIC 2 0.33 0.29 

3 0.54 0.41 
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Table 2 
Parameters (16)-(18) for the matrices (5) and (15) (for various values o f /0 ,  correspond- 
ing to the Runge-Kutta schemes in Table 1 

Method s M Mr M Mr M Mr 

Gauss 2 0.15 0,14 0.14 0.13 0.14 0.13 
3 0.38 0.31 0.33 0.28 0.32 0.27 

Radau IA 3 2.45 0.95 0.85 0.43 0.65 0.37 
Radau IIA 3 0.45 0.37 0.40 0.34 0.39 0.33 
Lobatto IliA 3 0.14 0.13 0.14 0.13 0.14 0.13 

4 0.38 0.33 0.33 0.28 0.32 0.27 
Lobatto IIIB 3 1.00 0.46 0.40 0.21 0.33 0.17 

4 2.24 0.77 0.79 0.36 0.60 0.30 
Lobatto IIIC 2 1.00 0.83 0.48 0.41 0.41 0.36 

3 3.00 1.32 1.00 0.57 0.76 0.49 

Method s M Mr M Mr M Mr 

Gauss 2 0.08 0.08 0.08 0.08 0.08 0.08 
3 0.13 0.10 0.12 0.10 0.12 0.09 

Radau IA 3 0.30 0.17 0.28 0.15 0.27 0.15 
Radau IIA 3 0.21 0.16 0.20 0.15 0.20 0.15 
Lobatto IIIA 3 0.08 0.08 0.08 0.08 0.08 0.08 

4 0.13 0.10 0.13 0.10 0.12 0.09 
Lobatto IIIB 3 0.17 0.08 0.17 0.08 0.17 0.08 

4 0.22 0.11 0.20 0.10 0.20 0.10 
Lobatto IIIC 2 0.50 0.41 0.50 0.41 0.50 0.41 

3 0.50 0.29 0.47 0.27 0.46 0.26 

Method s M Mr M Mr M Mr 

Gauss 2 0.15 0.14 0 0 0 0 
3 0.33 0.21 0.19 0.15 0 0 

Radau IA 3 2.45 0.95 0.68 0.37 0 0 
Radau IIA 3 0.45 0.33 0.26 0.21 0 0 
Lobatto IliA 3 0.13 0.12 0 0 0 0 

4 0.23 0.21 0.17 0.14 0 0 
Lobatto IIIB 3 1.00 0.46 0 0 0 0 

4 2.24 0.77 0.62 0.30 0 0 
Lobatto IIIC 2 1.00 0.83 0.50 0 0 0 

3 3.00 1.32 0.82 0.50 0 0 

the averaged amplif ication fac tor ,  

,  v/ll p .  = m a x  MU(ix) l l ,  # =  1 , 2 , . . . ,  

* p* w h i c h  is a lways  grea te r  than p* .  O b v i o u s l y ,  p~ ~ a s / ~ - - ,  e~; 

(16)  
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• the nonstiff averaged amplification factor, 

~. - -  "V/II(c - L).II, (17) 

which is useful when q ~ 0 since in this case M(q) ~ q(C - L); 
• the stiff  averaged amplification factor 

pl,~) = l i r a  ' v/llM.(ix)tl, (18) 

which may not be zero, for p <s.  
Obviously, when replacing the matrix M(q)  with Mr(q), the above quantities become, respectively, 

p .  = m a x "  ix) l l ,  

~ .  = " v J l l ( C  - T -1L 7")"11, 

p ~ ) =  lim"v/lIM;(ix)[I, # =  1,2,... 
X - - - * ~  

In Table 2 we list the above parameters for the same methods considered in Table 1, for both 
matrices (5) and (15). In all cases, it turns out that the iterative procedure (14), based on the 
transformation matrix T chosen accordingly to what stated in Theorem 1, is better than the original 
iteration (4). Consequently, the new iteration will provide an improvement over that described in 
[6], at least on sequential computers. 
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Appendix 

£unction T = makeT( C, detC ) 

T = makeT( C ), Computes the transformation matrix (13) 

when C is nonsingular. 

s = max( size( C ) ); 

if nargin==1, detC = det(C)^ (l/s); end 

T = eye( s ); 
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if s>l 

T(1,2) = -(C(1,1)-detC)/C(2,1); 

TI = T; T1(1,2) = -T1(1,2); 

C = T*C*T1; C(2:s,:) = C(2:s,:)-C(2:s,1)*C(I,:)/C(1,1); 

T(2:s,2:s) = makeT(C(2:s,2:s), detC ); 

end 

return 
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