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Abstract: Recently, a new family of integrators (Hamiltonian Boundary Value Methbés been in-
troduced, which is able to precisely conserve the energy function ohpolial Hamiltonian systems
and to provide gractical conservation of the energy in the non-polynomial case.
We settle the definition and the theory of such methods in a more generaviiak. Our aim is on
the one hand to give account of their good behavior when applied taadhamiltonian systems
and, on the other hand, to find out what are ¢ftimal formulae, in relation to the choice of the
polynomial basis and of the distribution of the nodes. Such analysis isl hgs® the notion of
extended collocation conditiorend the definition ofiscrete line integral and is carried out by
looking at the limit of such family of methods as the number of the so calledt stagedends to
infinity.
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1 Introduction

We consider canonical Hamiltonian problems in the form

y=JVH(y),  y(to) =yo € R*™, (N

1published electronically October 15, 2010

2Work developed within the project “Numerical methods andvafe for differential equations”.
3E-mail: luigi.brugnano@unifi.it

4E-mail: felix@dm.uniba.it

SE-mail: trigiant@unifi.it




18 L. Brugnano, F. lavernaro, and D. Trigiante

where J is a skew-symmetric constant matrix, and the Hamiltoni&fy) is assumed to be sufficiently
differentiable. For its numerical integration, the prables to find numerical methods which preseiéy)
along the discrete solutiofy,, }, since this property holds for the continuous solutj¢t).

So far, many attempts have been made inside the class of Ruite methods, the most successful
of them being that of imposing the symplecticity of the determap, considering that, for the continuous
flow, symplecticity implies the conservation 8f(y). Concerning symplectic integrators, a backward error
analysis permits to prove that they exactly conserve a neablfiamiltonian, even though this fact clearly
does not always guarantee a proper qualitative behavidreadiscrete orbits.

On the other hand, it is possible to follow different apptoesto derive geometric integrators which are
energy-preserving. This has been done, for example, initreering work [6], and later in [14], where
discrete gradient methodse introduced and studied. An additional example of enprggerving method
is theAveraged Vector Field (AVRnethod defined in [15] (see also [4]). By the way, the lattethroe can
be retrieved by the methods here studied.

More recently, in [2] a new family of one-step methods hashie&roduced, capable of providing a
numerical solutior{y,,} of (1), along which the energy functiaH (y) is precisely conserved, in the case
where this function is a polynomial (see also [10, 11, 1]).

These methods, naméthmiltonian Boundary Value MethodeBVMshereafter), may be also thought
of as Runge-Kutta methods where the internal stages atergpliwo categories:

- thefundamental stagesvhose number, say; is related to the order of the method;

- the silent stageswhose number, say, has to be suitably selected in order to assure the energy
conservation property for a polynomiHi(y) of given degree; the higher is/, the higher must be.

The resulting method is denoted by HB\(M s),® wherek = s + r is the total number afinknownstages.

In [2, 11] it has also been shown that these new methods r@vjtactical conservation of the energy
even in the non-polynomial case: the term “practical” metdyad, in many general situations, when the
number of silent stages is high enough, the method makesstinalion between the functioH (y) and its
polynomial approximation, being the latter in a neighbarthof sizes of the former, where denotes the
machine precision.

Another relevant issue to be mentioned is that the compumiaiticost for the solution of the associated
nonlinear system is essentially independent of the numbeilent stages, and only depends orfisee
[2, 1]). This comes from the fact that the silent stages ateadly linear combinations of the fundamental
stages.

These two aspects motivate the following questiahat is, if any, the limit method when the number
of silent stages grows to infinity?

This question was first posed by Ernst Hafrevho also provided a partial answer by stating formulae
(21), which he calledEnergy Preserving variant of Collocation Method&P CMs hereafter) [7]. We pro-
vide a proof of his statement by clarifying the connectiotwaen the limit formulae and HBVMs: we show
that actually one can define several different limit metkfoelach one associated to the specific polynomial
basis, as well as to the choice of the abscissae distrihutised to construct the sequence of HBVMs.
For example, EPCMs are based upon the use of Lagrange palgisonvhile, working with the shifted
Legendre basis, yields to different limit methods, that \eeehcallednfinity Hamiltonian Boundary Value
Methods(in short,co-HBVMsor HBVM(oo, s), beings the number of theinknownfundamental stages).

Our aim in this paper is threefold:

6The denominatiofdBVM with k stepsanddegrees was used in [2].

“During the international conference “ICNAAM 2009”, RethymrCrete, Greece, 18-22 September 2009, after the talks by th
first two authors, where HBVMs were presented.

8In the sense that they generate different discrete problems.
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Hamiltonian Boundary Value Methods 19

1. We settle the definition of HBVMs in a more general framewatso deriving the general formula-
tion of the limit formulae
klim HBVM (k, s).

In particular, we show that such limit coincides with EPCK¥the Lagrange polynomial basis is used
(Section 2).

2. In Section 3, we introduce the new classcofHBVMs, which are the limit formulae correspond-
ing to the HBVMs based upon the shifted Legendre polynoméaid We prove that the order of
such formulae is the same as the Gauss-Legendre methodis, 2kgwheres is the number of the
unknown fundamental stages).

3. We mention the case whef(y) belongs to vector spaces different from that of polynomigdas
providing a natural (and trivial) generalization of theginal formulae (see Section 4). Moreover, in
the polynomial case, we determine thgtimal distribution of the nodes (Section 5).

We stress that any finite approximation of EPCMs>otHBVMSs based on quadratures leads back to
HBVM(k,s) methods, fok high enough.

We address all the points listed above, by slightly modijytine approach followed to define the class
of HBVMs in [2].

2 Reformulation of Hamiltonian BVMs

The key formula which HBVMs rely on, is thee integraland the related property of conservative vector
fields:

-1
H(y1) — H(yo) = h/ o(to +Th) 'V H(o(tg + Th))dT, foranyy, € R*™, 2
0
whereo is any smooth function such that
a(to) = Yo, o(to+h) =y (3

Here we consider the case wherg) is a polynomial (of degree at mos}, yielding an approximation
to the true solutiory(t) in the time intervalto, to + h]. The numerical approximation for the subsequent
time-stepy, is then defined by (3). After introducing a setsadistinct abscissae, . . ., ¢, (0 < ¢; < 1),°

we set

Y, = o(to + ¢;h), i=1,...,s, 4)

so thato (t) may be thought of as an interpolation polynomigl,i = 1, ..., s, being the internal stages.
Let us consider the following expansionsdagft) ando (¢) for ¢ € [tg, to + hl:

o(to+7h) = Z’Yjpj(T), o(to+7h) =y + h Zvj / Pj(x)dz, (5)
j=1 j=1 70

where{P;(t)} is any suitable basis of the vector space of polynomials gfekeat most — 1 and the
(vector) coefficientg~y; } are to be determine¥. Before proceeding, one important remark is in order.

9As a convention, when = 0 is to be considered, as in the case of the Lobatto abscissaglip thency = 0 is formally added
to the abscissag, . . . , cs, and the subsequent formulae are modified accordingly.
10More general function spaces will be considered in the deque

© 2010 European Society of Computational Methods in Sciesmgg&ngineering (ESCMSE)



20 L. Brugnano, F. lavernaro, and D. Trigiante

Remark 1. As will be clear in a while, we observe that the numerical rodtivhich the following procedure
will define is “basis-dependent”, in that to different cheg of the basi§P;(¢)} there will, in general,
correspond different numerical methods. In this sectiorgrder to let the theory be presented as general
as possible, we leave the basis not better specified. THiallmlv us to achieve the results listed at point
1. in the introduction. The question about how to choose tsishproperly is faced in Section 3, where
oco-HBVMs will be introduced. Therefore, just in the presertties, to avoid confusion, we will always
specify what is the basis we are working with. This will bemetessary anymore starting from Section 3,
after determining the optimal basis.

In this section we assume that(y) is a polynomial, which implies that the integrand in (2) isah
polynomial so that the line integral can be exactly computtgdneans of a suitable quadrature formula.
It is easy to observe that in general, due to the high degrabeointegrand function, such quadrature
formula cannot be solely based upon the available absc{gsheone needs to introduce an additional set
of abscissa€i, .. ., ¢, distinct from the nodegc; }, in order to make the quadrature formula exact:

/ b(ta )TV H ot + 7h))dr = ©)
0

S Bid(to + eh) TV H(o(to + cih) + 3 fro(to + k) TV H (o (to + b)),

=1 =1

whereg;,i = 1,...,s,andj3;, i = 1,...,r, denote the weights of the quadrature formula correspgndin
to the abscissafr; } and{¢;}, respectively, i.e.,

! ot e t—¢
B, = / 11 J Joldt,  i=1,...,s,
0 RPN ¢ R & G — Gy
Jj=1,j#1i Jj=1
)
1 S T ~
. t—c; t — 6s
b = / I1—= I —%)a,  i=1....n
0 \jS1 9T G ) \ySim O Y
According to [11], the right-hand side of (6) is calldicrete line integralwhile the vectors
Y/;-:CT(t0+éih), i=1,...,m7 (8)

are calledsilent stagesthey just serve to increase, as much as one likes, the defjecision of the
quadrature formula, but they are not to be regarded as uniseince, from (5), they can be expressed in
terms of linear combinations of tiendamental stage@).

In [2], the method HBVME,s), with & = s + r is then defined by substituting the quantities in (5)
into the right-hand side of (6) and by choosing the unknofmsg in order that the resulting expression
vanishes.

Instead of carrying out our computation on the right-hauig sif (6), as was done in [2], we apply the
procedure directly to the original line integral appearinghe left-hand side. Of course, since these two
expressions are equal, the final formula will exactly matehtiBVM(k,s) method, written in a different
guise.

With this premise, by considering the first expansion in {&@,conservation property reads

5 1
Z ’yJT/O P;(T)VH(o(to + Th))dr =0, 9)
j=1

(© 2010 European Society of Computational Methods in Sciesme&ngineering (ESCMSE)



Hamiltonian Boundary Value Methods 21

which, as is easily checked, is certainly satisfied if we isgthe following set of orthogonality conditions

1
Vi =Nj / P;(1)JVH(o(to + Th))dr, ji=1,...,s, (20)
0

with {n;,} suitablynonzeroscaling factors that will be defined in a while. Then, from sleeond relation of
(5) we obtain, by introducing the operator

L(f;h)o(to +ch) = (11)

o(to) + thj ./OC Pj(x)dx ./0 P;(1)f(o(to + Th))dr, c€0,1],

thato is the eigenfunction of.(JV H; h) relative to the eigenvalug = 1:
o= L(JVH;h)o. (12)
Definition 1. Equation (12) will be called th&laster Functional Equatiotefiningo.

Remark 2. We also observe that, from (10) and the first relation in () obtains the equations

&ty + cih) = zS: n; Pj(c;) /01 P;(1)JVH(o(to + 7h))dr, i=1,...,s, (13)

j=1

which may be viewed axtended collocation conditiorzecording to [11, Section 2], where the integrals
are (exactly) replaced by discrete sums (see, e.g., (6)—(7)

To practically computer, we set (see (4) and (5))
Yi:a(to—i—cih):yo—i—hZaij’yj, i1=1,...,s, (14)
j=1
where

ai; :/O"Pj(:c)dx, ii=1,....s (15)

Inserting (10) into (14) yields the final formulae which defihe HBVMs class based upon the bgd# }:

1 s
Yi=yo+ h/ anaijpj(T) JVH(o(to + Th))dr, i=1,...,s. (16)
o \iZ

The constantgn, } have to be chosen in order to make the formula consistenbléino(14)—(16) can be
actually solved, provided that all tHey; } are different from zerd! and the matrix

o Piz)de ... [)F Pi(z)da

o Py(z)dr ... [ Po(x)da

is nonsingular (which we shall obviously assume hereaftadeed, such a matrix allows us, by using (5),
to reformulate equation (16) in terms of the (unknown) fundatal stages (4). Let us now formally set

fly) = JVH(y), 17)

and report a few examples for possible choices of the Hd3isr)}.

For example, the choicB;j (z) = 9~ 1,j = 1,...,s, would lead toy; = 1, andn; = 0,5 = 2,..., s. This implies that, with
this choice of the basig; can only be a line (i.es = 1).

© 2010 European Society of Computational Methods in Sciesmg$&ngineering (ESCMSE)



22 L. Brugnano, F. lavernaro, and D. Trigiante

1. In[11] we have chosefiP; (), ..., Ps(x)} as the Newton basis. This has allowed us the construction
of a family of methods of order 2 and 4.

2. In [2], the abscissaécy = 0} U {¢;} U {¢;} are disposed according to a Lobatto distribution with
k + 1 points in[0,1] and { P\ (z), ..., Ps(z)} is the shifted Legendre basis in the inter@l1].1?
Consequently, choosing in (16) = 0,h = 1, and f(y(7)) = P;(7), the consistency condition
yields

1 —1
0

which is exactly the value found in [2]. In such a case, it hasrbshown that the resulting method
has ordees, just the same as the generating Lobatto I1IA method (obthfork = s).

3. In a similar way, when using the Lagrange bafis(z)}, by settingf(y(7)) = 1, one obtains

1 s
T — C;
0 =1z

Consequently, formulae (16) become

1 S ..

Yi=uo +h/ Z%Kj(T) JVH(o(to+ 7h))dr, i=1,...,s. (20)
Moreover, by introducing the new variablé§ = (to + ¢;h), which are therefore related to thé
as

}/i:yo—FhZainj, izl,...,s,
j=1
system (20) can be recast in the equivalent form providetiéstended collocation conditiori3):
1 1
K=o / GRIVH(o(ty + Th))dT, =1, s, 21)
i JO

Formulae (21) are the ones E.Hairer proposed in the genasal, ¢hat is for any kind of Hamiltonian
function. They were calle&nergy Preserving variant of Collocation MethoflSPCMs) [7]. The above
discussion then proves that if the integral can be substtoy a finite sum, as in the case whéféy) is a
polynomial, formulae (16), and consequently (21), becoriB¥M (k, s), with a suitable value of.13

For sake of completeness, we report the nonlinear systeociatsd with the HBVMk, s) method, in
terms of the fundamental stag€s; } and the silent stage{gffi} (see (8)), by using the notation (17). In
this context, they represent the discrete counterpart&)f éihd may be directly retrieved by evaluating, for
example, the integrals in (16) by means of the (exact) quadrdormula introduced in (6):

Vi = wot+h |8 D maiPilc) | F)+D 8| > njaiPi@) | F(V)
=1 j=1 =1 j=1
(22)
= Yo+ th‘aij <Zﬂlpj(cl)f(yl) + ZBJZ‘(@)J%E)) ) i=1,...,s.
j=1 =1 =1
2More precisely,P; (x) is here the shifted Legendre polynomial of degjee 1, j = 1,...,s.

13The same clearly happens when the integral is aplyroximatecy a finite sum.

(© 2010 European Society of Computational Methods in Sciesme&ngineering (ESCMSE)



Hamiltonian Boundary Value Methods 23

From the above discussion it is clear that, in the non-patyiabcase, supposing to choose the abscissae
{¢;} so that the sums in (22) converge to an integral ask —s — oo, the resulting formula is (16 Con-
sequently, EPCMs may be viewed as the limit of HBVMs familjyem the Lagrange basis is considered,
as the number of silent stages grows to infinity.

The above arguments also imply that HBVMs may be as well agpti the non-polynomial case since,
in finite precision arithmetic, HBVMs are indistinguishalitom their limit formulae (16), when a sufficient
number of silent stages is introduced. The aspect of haviprgetical exact integral, fok large enough,
was already stressed in [2, 10, 11].

3 Infinity Hamiltonian Boundary Value Methods

As is easily argued (and emphasized in Remark 1), the chditieecbasis along whicli(¢ty + 7h) is
expanded (see (5)), somehow influences the shape of thedmalfae (16), that is, to two different poly-
nomial bases there may correspond two different familigsmhulae!® The question then naturally arises
about the best possible choice of the basis to consider. ig$ig has been a crucial point in devising the
class of HBVMs in [2] and deserves a particular attentfon.

Indeed, we recall that our final goal is to devise methodsnislte the sum (9), representing the line
integral, vanish. This is accomplished by the orthogoypa@nditions (10), whose effect is to make null
each term of the sum in (9). It follows that such conditions iargeneral too demanding, in that they are
sufficient but not necessary to get conservativeness. tntfaesum could in principle vanish even in the
case when two ore more of its terms are different from zeras &kira constraintmay affect the general
properties of the conservative methods we are interesteshahin particular their order.

This was a problem already encountered in [11] where theoasittealized that the use of the Newton
basis didn’t assure the expected growth of the order of thaltieg method when the degree of the polyno-
mial o (to + 7h) was increased. This barrier has been definitively overcorf#]j where it was understood
that the proper polynomial basis to be used by default wasofithe shifted Legendre polynomials in the
interval[0, 1]. We emphasize that, contrary to what happens for the Lagrand Newton bases, the Legen-
dre polynomials are orthogonal and symmetric in the intelfyd | and in addition they arabscissae-free
that is they by no means depend on the specific distributichefbscissaéc;} adopted. This, in turn,
implies that theMaster Functional Equatiot{12) is independent of the choice of both the abscigsap
and{¢;}: the only requirement being that (6) holds tfde.

From the above arguments, it is clear that the orthogoneditditions (10), i.e., the fulfillment of the
Master Functional Equatiot{12), is only a sufficient condition for the conservation ey (9) to hold.
Such a condition becomes also necessary, when the {#asiss orthogonal.

Theorem 1. Let {P;} be an orthogonal basis on the intervéll 1]. Then, assuming/ (y) to be suitably
differentiable, (9) implies that each term in the sum hasatoish.

Proof Let us consider, for simplicity, the case of an orthonornaai®, and the expansion

g(1) =VH(o(to +7h)) = Zngg(T), pe = (P, 9), {>1,

>1
where, in general,

1
(f.9) = / f(r)g(r)dr.

14This obvious requirement for the abscissae will be alwaysrass in the sequel.
15For example, see the method presented in subsection 4.2.

16The argument presented here is the analog of the one appésfirlg Remark 3.1].
1"We emphasize that this is not the case when using, for exarhpléagrange basis.

© 2010 European Society of Computational Methods in Scieswe$&ngineering (ESCMSE)



24 L. Brugnano, F. lavernaro, and D. Trigiante

Substituting into (9), yields

S (Prg) =Y AT | PRd el =Y v e =0.
=1 j=1 j=1

£>1
Since this has to hold whatever the choice of the funckdy), one concludes that

nyij:(), 7=1,...,s.0 (23)

Remark 3. In the case wheréP; } is the shifted Legendre basis, from (23) one derives that

’Yj:Spj, izl,...,s,

where S is any nonsingular skew-symmetric matrix. The natural cBd = J then leads to (10), with
nj = (P, P)~t=2j -1

The use of the Legendre basis allows the resulting methdum@the best order and stability properties
that one can expect. This aspect is elucidated in the twoehepand the corollary below, which represent
the main result of the present work.

Although, up to now, we have maintained the treatment of HB\&la general level, it is clear that, in
view of the result presented in Theorem 2, when the cuif¢g + 7h) is assumed of polynomial type, we
will implicitly adopt the Legendre basf§. This important assumption will be incorporated in the HBVM
methods from now on: if needed, the use of any other kind aklvail be explicitly stated, in order not to
create confusion.

Taking into account the consistency conditions (18), fdenfi6)—(15) takes the form;

1 s
Y =0+ h / SO(2) — DayPy(r) | IVH(o(ty +7h))dr,  i=1,....s. (24)
JO

j=1

If the HamiltonianH (y) is a polynomial, the integral appearing at the right-haxdeé $ exactly computed
by a quadrature formula, thus resulting into a HBViV{) method with a sufficient number of silent stages.
As already stressed in the previous section, in the nonApofyal case such formulae represent the limit of
the sequence HBVMs), ask — oo.

Definition 2. We call the new limit formula (24) dnfinity Hamiltonian Boundary Value Metha@h short,
00-HBVM or HBVM ¢, s)).

We emphasize that, in the non-polynomial case, (24) bec@neszperative method, only after that
a suitable strategy to approximate the integral is takem @wtcount (see the next section for additional
examples). In the present case, if one discretizedMdigter Functional Equatiofl11)—(12), HBVMk, s)
are then obtained, essentially by extending the discretielgam (22) also to the silent stages (8). In order
to simplify the exposition, we shall use (17) and introduee following notation:

{t:} ={ciyu{a), {wit={83U{B}, wvi=olto+tih), f;i=Fflolto+th). (25)
The discrete problem defining the HB(M, s) then becomes, with; = 25 — 1,

s t; k
=t h 3w [P e =Lk (26)
j=1 0 =1

18Actually, the termHamiltonian Boundary Value Methdtas been coined in [2], after introducing the Legendre basis

(© 2010 European Society of Computational Methods in Sciesme&ngineering (ESCMSE)



Hamiltonian Boundary Value Methods 25

We can cast the set of equations in vector form, by introdutire vectorsy = (yf,...,y5)7, e =
(1,...,1)T € R¥, and the matriceg, P € R¥*#, with

t;
Iij = / Pj(.’ﬁ)dl‘, Pij = Pj(ti), and A= diag(m, . ,775), Q= diag(wl, . ,wk), (27)
0

y=e@yo+h(ZAPTQ) @1 f(y), (28)

with an obvious meaning of (y). Consequently, the method can be seen as a Runge-Kuttadneitio
the following Butcher tableau:
tq
T
: ZAPQ (29)
Uy

‘wl el WE

Remark 4. We observe that, provided that the mattixs independent of the basic abscisdag (as in the
case of the Legendre basis), the role of such abscissae ahe sflent abscissa§’; } is interchangeable.
This is not true, for example, for the Newton and Lagrangesbas

The following result then holds true.

Theorem 2. Provided that the quadrature has order at le&st(i.e., it is exact for polynomials of degree
at least2s — 1), HBVM(k,s) has orderp = 2s = 2 deg(c), whatever the choice of the abscisgae. . ., ¢,

Proof From the classical result of Butcher (see, e.g., [9, Thedtdf), the thesis follows if the
simplifying assumption€’(s), B(p), p > 2s, andD(s — 1) are satisfied. By looking at the method (28)—
(29), one has that the first two (i.€7(s) and B(p), p > 2s) are obviously fulfilled: the former by the
definition of the method, the second by hypothesis. The potifen completed, if we provB(s — 1).
Such condition can be cast in matrix form, by introducing ¥eetore = (1,...,1)7 € R*~!, and the
matrices

Q:diag(]‘7"‘7‘s_1)? D:diag(tlv"'7tk)v V: (tgil) GRkXS_lv

(see also (27)) as
QVTQ(ZAPTQ) = (ee" — VD) Q,

ie.,

PATTQVQ = (ee” — DV). (30)
Since the quadrature is exact for polynomial of degree 1. one has

te
(ng/ x)dz ]tj 1 ) </ / x)dx (!~ 1)dt>
(5“—/ R-(x)xjdx), 1=1,...,5, j=1,...,5—1,
0

where the last equality is obtained by integrating by pavif) ¢;; the Kronecker symbol. Consequently,

(ITQVQ)ij

(PATTQVQ),, (1—277419@ / ()7dx>:(1—tg), i=1,....k j=1,....,s—1,
0

(© 2010 European Society of Computational Methods in Scieswg$&ngineering (ESCMSE)



26 L. Brugnano, F. lavernaro, and D. Trigiante

that is, (30), where the last equality follows from the fdwtt
anPz / Py(z)a?de = t7, j=1,...,s—1.0
0

Concerning the stability, the following result holds true.

Theorem 3. For all £ such that the quadrature formula has order at least= 2 deg(o), HBVM(,s) is
perfectlyA-stable, whatever the choice of the abscissage. . , ¢,

Proof As it has been previously observed, a HBYMs) is fully characterized by the corresponding
polynomialo which, for & sufficiently large (i.e., assuming that (6) holds true)isfits theMaster Func-
tional Equation(11)—(12), which is independent of the choice of the nades. . , ¢, (since we consider the
Legendre basis). When, in place ffy) = JV H (y) we put the test equatiofiy) = Ay, we have that the
collocation polynomial of the Gauss-Legendre method oép?d, sayos, satisfies thévlaster Functional
Equation since the integrands appearing in it are polynomials ofeegt mos2s — 1, so thatoe = o.
The proof completes by considering that Gauss-Legendreadstare perfectlyl-stable [

A worthwhile consequence of Theorems 2 and 3 is that one easfer to HBVM o, s) all those
properties of HBVM§,s) which are satisfied starting from a givén> &, on: for example, the order and
stability properties.

Corollary 1. Whatever the choice of the abscissae. . . , ¢, HBVM(o0, s) (24) has order2s and is per-
fectly A-stable.

Remark 5. From the result of Corollary 1, it follows that HBV{do, s) has order2s and is perfectlyA-
stable forany choice for the abscissag, ..., cs. Since such abscissae can be arbitrarily chosen, we can
formally place them at the roots of the Gauss-Legendre jpohyal of degrees. On the other hand, by
considering that, at such abscissae, by setfiAigc)} and {b;} the corresponding Lagrange polynomials
and quadrature weights, respectively (see (19)),

1/t 1< ,
E/o Pj(x)&-(x)d:czb—i;bT.Pj(cr)&(cr)=Pj(ci), i=1,..s

one obtains (withy; = 2j — 1 and by using the notation (17)):
Tltoted) = YomPie / Pj(r)f(o(to +Th))dr
j=1
S 1 1 1
N ;m (b/o Pj(z)gﬂ@dz)/o Pi(7)f(o(to + 7h))dr
1 s 1
- bl /O Z%‘P 5(7) /0 Py(z)li(x)dx | f(o(to+ 7h))dr

- 7/ G F(olty + Th))dr,  i=1,....s.

Consequentlyfor any choice of the abscissde;}, HBVM(co, s) provide the same polynomial as the
“optimal EPCMs” (21) of order2s [7].1° Conversely, an EPCM is optimal (i.e., it has orda) only when

191n this sense, they aejuivalent even though they generate different discrete problems.
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the abscissaey, ..., ¢, define a quadrature formula of order at ledst — 1, whereas different choices
result in methods of lower order [7, Theorem 1].

Remark 6. We also observe that, due to the choice of the shifted Leggralynomial basis (see (24))

HBVM(co, s) = klim HBVM(k, s),
ol

whatever is the choice of the fundamental abscigsag. Consequently, for alk large enough, so that
the Master Functional Equatiofi2) holds true (e.g., in the case of a polynomial Hamiltonk(y)), all
HBVM(k, s) provide the same polynomialof degrees, independently of the choice of the absciséag.
Hence, they areequivalentto each other. This result doesn’'t change in the case wiifg) is not a
polynomial, provided thaH (y) is sufficiently differentiable. In this case, in fact, onenfally obtains, in
place of theMaster Functional Equation (123n equation of the form

oy = L(JVH;h)oy, + 1k (h), (31)

whereyy, (h) = O(h%~5%2), ¢, being the degree of precision of the quadrature at the rigdmd side in
(6), so thatg, — oo ask — oo. From (12) and (31), one then obtains that/as— 0, assuming thay is
Lipschitzian with constant, and for a suitable constant/ independent of:

low = ol < huM|loy — ol + [[¢¥x ()],

i.e.,
lok — ol < (1= hpM)~ ¢ (h)|| = O(A%* =) -0,  k — oo

One then concludes that, when using finite precision arittune,, is indistinguishable fronw, for all &
large enough.

Example 1. As previously mentioned, for the methods studied in [2]eHdasn a Lobatto distribution of
the nodeqco = 0,¢1,...,¢s} U{é1,...,¢k—s}, One has thatleg(o) = s, so that the order of HBVMs)
turns out to be2s, with a quadrature satisfying3(2k).

Example 2. For the same reason, when one considers a Gauss distribigtiaghe abscissagc, ..., cs} U
{¢1,...,¢k—s}, one also obtains a method of ordes with a quadrature satisfying3(2k). This case will
be further studied in Section 5.

Remark 7. Finally, we also mention that, from Remark 4, HBVi\} are symmetric method8 provided
that the abscissagl; } (see (25)) are symmetrically distributed (see also [2]).

4 Generalization of Hamiltonian BVMs

The approach that has allowed the construction of methadsctinserve energy functions of polynomial
type is quite general: that is, by no means it depends on tiEgar vector space generating the curve
o(t) nor on the quadrature technique used. As was emphasized,iisgLtion 2], it solely relies on the
following two ingredients: the definition afiscrete line integrabnd theextended collocation conditions
(13), which zero the line integral (6).

Therefore, in a more general context, this procedure camtealized as follows. One first picks a
curveo(to + Th), 7 € [0, 1], joining two points of the phase spagg= o (o) andy, = o(tp + h). Such
a curve is assumed to lie in a proper finite dimensional vesgacelV = span{ P (), ..., Ps;(x)}, where
now P;(x), j = 1,...,s, are any linearly independent functions. Therefore theesw (t) anda(t) will
admit an expansion in the form (5).

20According to thetime reversal symmetry conditiatefined in [3, p. 218].
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The fundamental hypothesis, for this approach to work,as tte choice of¥ must guarantee that the
functionsP;(7)VH (o (to + 7h)) appearing in (9) (and henegt)T VH (o (t))) be elementary integrable,
that is they are required to admit a primitive that can be esped in terms of elementary functions. If
this is the case, all the steps performed to obtain (16) magpeated with the integral substituted by the
primitive.

This represents a generalization of what done for polynbhtganiltonian functions not only because
the vector spacl” may be generated by non-polynomial functions but also scthe analytic solution of
the line integral may be carried out by any available teamidHereafter, we report a couple of examples
in the class (245

4.1 A method of order two
We consider a separable Hamiltonian function (for simpfieie assumen = 1)
H(q,p) =V(p) = Ulq). (32)
Let o(t) be the segment joiningy = (qo, po)” oy, = (q1,p1)":
o(to+7h) =yo + 7(y1 — Yo).

We havecy = 0, ¢; = 1, and the corresponding method (24) becomes:

1

— 14 -V
q1 q0 / V/(p() + T(p1 _ p()))dT (pl) (pO)

h _| Jo p1—=Do : (33)
P1— Do /1U’( e — o) U(q1) — Ul(qo)

h . q0 q1 — 4o - q

Formula (33) is one of the simplediscrete gradient methoddue to Itoh and Abe [12], whose general
form, for non-separable Hamiltonian functions with oneréegof freedom, reads

41— qo H(q1,p0) — H(q0,p0)
h q1 —qo
=J . 34
P1— Po H(q1,p1) — H(q1,po) (34)
h P1— Do

The vector appearing at the right-hand side of (34) is obthby replacing the partial derivatives Bf ¢, p)
with increments along the andp axes. Method (34) is in general first order and nonsymmettaavever,
when confined to separable Hamiltonian systems, it turnsodog second order and symme#ic.

4.2 A method of order four

To construct a method of order four in the form (24) applied3®), we pick a curver(t) of degree two,
based upon the abscissae= 0, ¢c; = 1/2, andca = 1. Such a method has been already described in
[11] for polynomial Hamiltonian functions: here we congiite generalization to the non-polynomial case.
SettingY; = (ql/g,pl/g)T and, observing that, = (q1,p1)?, the two components of the curvét, +7h)

are
< o1(to + 7h) ) ( 2(q0 — 2q1/2 + q1)7% — (3q0 — 4q1 /2 + )T + qo )

= (35)
g9 (to + Th)

2(po — 2p1/2 +p1)7* — (3po — 4p1/2 + p1)T + Do

2lwhile the method in Section 4.1 is equivalently obtainablefiylying either (24) or (16), the same is not true for the fountter
method derived in Section 4.2 where, the use of the Lagrargjs,lveould produce a coefficiebd = 0 (appearing as a denominator
in the resulting formulae (21)).

22/ generalization of (34) introduced in [13] also becomes mei®3) when applied to Hamiltonian functions in the form (32).
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Consequently, (24) becomes

1
3 5

q1/2 qo /0 (*57 + Z)V/(Uz(to + 7h))dr
Y, = = +h ) )

D1/2 Po / (—gTJrg)U’(al(toJrTh))dT

’ (36)

" " | Vioatto + rhar
Yy = = +h .

P Po / U'(04 (to + 7h))dr

0

Substituting (35) into (36) we obtain a system in the unkn®win,, p1 /2, q1, p1. Looking at (36), we
realize that even in the simpler case of a system deriving frxddamiltonian function in the form (32), the
elementary integrability of the integrals in (24) is not @prguaranteed. This means that, in this case, we
cannot arrive at a general formula analogous to (33), ingefi/ (¢) andV (p).

On the other hand, in several cases of interest, such prexitin be explicitly computed: hereafter we
report a significant example, which we shall use later in taerical tests in Section 5.

Example 3. The role of this example is also to show that, when finite gieniarithmetic is used, it may be
not conveniento use thanfinite versionof the methods, even if the integrals can be analyticallyuatad.
This will be evident from the numerical results in Sectiof.5The system we consider is the one defined
by the Hamiltonian function

H(q,p) = a(logq — q) + b(logp — p), @37)
wherea andb are positive constants. The associated system (1) reads

i= b(;—l), p:—a(i—1>. (38)

This system is strictly related to the Lotka-Volterra model

g= bq(l-p),
{pz—ﬂpﬂ—QL (39)

in that system (39) may be recast as the Poisson swlte%JVH(y), wherer(q,p) = —é is called
integrating factor

Systems (39) and (38) share the same Hamiltonian functiore@@first integral and, consequently, they
share the same curves as trajectories in the phase planeodA&6) applied to (39) reads

—b 4 3ptos(po/p1D 1 b Po—8pP1/2+7pP1
47 po—2p1/2+P1 2 C1 po—2p1/2+p1

d1/2 — 90 —3po+4p1 /2 —P1 Po—4p1/2+3p1
12 . (arctanh(cil/) - arctanh(ci/l))
- ) (40)
P1/2 — PO a— §a log(lgo/q1l) _ 1 a q0—8q1 /2+7q1
h/2 47q0—2q12+q1 2 C2 qo—2q1/2+01
tanh —3q0+4q1/2—q1 tanh q0—4q1 /2+3q1
- (arctan (072) — arctan (072)
1 —40 —4 +3 3po—4 =+
a1 5 1 —b— é—ﬁ [arctanh(ipo pé/f Py + arctanh (2222127 Zi/z = )]
= ; (41)
- —4 3 3qo—4
pih Po a+ é—‘; [arctanh(iqo qé/22+ n )+ arctaunh(4qO 212/24'@1 )]
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where
C1 = (P} + 16p3 )5 + D — 8pop1/2 — 2pop1 — 8p1jap) /2,

Cy = (g3 + 1647 ;5 + 47 — 840d1/2 — 24091 — 841/291)"/*.

5 HBVMs based upon Gauss quadrature

As anticipated in Example 2, we now study the properties @HBVM(k, s) which is defined over the set
of k distinct abscissae,

{tl,...7tk}E{Cl,...,cs}U{él,...,ék,S},

coinciding with the Gauss-Legendre nodeq(nl], i.e., the roots of the shifted Legendre polynomial of
degreek. The corresponding polynomial has then degree. By virtue of Theorems 2 and 3 (see also
Remark 7), such methods are symmetric, perfeetigtable, and of orde2s. They reduce to Gauss-
Legendre collocation methods, whienr= s, and are exact for polynomial Hamiltonian functions of aegr
v, provided that

Vs

k> (42)

By recalling what stated in Remark 6, for &llsufficiently large so that (6) holds, HBV{M, s) based on
the k Gauss-Legendre abscissad(inl] areequivalento HBVM(k, s) based ork + 1 Lobatto abscissae
in [0, 1] (see [2]), since both methods define the same polynamididegrees.??

As matter of fact, we have run HBV\, s) based on Gauss-Legendre nodes, and HBWM) based
on the Lobatto nodes, obtaining the same results on the pwiiah test problems reported in [2], which are
briefly recalled in the sequel.

5.1 Test problem 1

Let us consider the problem characterized by the polynoReahiltonian (4.1) in [5],
(43)

having degreer = 6, starting at the initial poinyy = (¢(0),p(0))? = (0,1)T, so thatH (yo) = 0. For
such a problem, in [5] it has been experienced a numeridainlthe discrete Hamiltonian, when using the
fourth-order Lobatto I1IA method with stepsize= 0.16, as confirmed by the plot in Figure 1. When using
the fourth-order Gauss-Legendre method the drift disaigpeaen though the Hamiltonian is not exactly
preserved along the discrete solution, as is shown by thérpligure 2. On the other hand, by using the
fourth-order HBVM(6,2) with the same stepsize, the Hamilém turns out to be preserved up to machine
precision, as shown in Figure 3, since such method exaabkegpves polynomial Hamiltonians of degree up
to 6. In such a case, the numerical solutions obtained byukmLobatto node$cy = 0,¢y,...,¢c6 = 1}

or the Gauss-Legendre nodgs, ..., cs} are the same.

5.2 Test problem 2

The second test problem, having a highly oscillating sohytis the Fermi-Pasta-Ulam problem (see [8,
Section 1.5.1]), defined by the Hamiltonian

H
»&‘EM

Z (g2 — qui-1)* + Z (q2i1 — q20)" (44)
=0

m
=3 Z (P3i-1 +15;)
=1 i=1

23|n the non-polynomial case, they converge to the same HBMMs), ask — oo.
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¢} 500 1000 1500

Figure 1: Fourth-order Lobatto IlIA method,= 0.16, problem (43): drift in the Hamiltonian.

—6

x 10

500 1000 1500
t

Figure 2: Fourth-order Gauss-Legendre metliog, 0.16, problem (43):H =~ 10~5.

5X 10 '®

o 500 1000 1500
t

Figure 3: Fourth-order HBVM(6,2) methodl,= 0.16, problem (43):H ~ 10716,
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Table 1. Maximum difference between the numerical soliabtained through the fourth-order
HBVM (k, 2) methods based on Lobatto abscissae and Gauss-Legendissaedor increasing values of
k, problem (45),103 steps with stepsizk = 0.1.

h=0.1

3.97-10° T
2.29.1073
2.01-10°8
1.37-10~11
5.88-10713

OO AN

with ¢o = ¢2,m11 = 0, m = 3, w = 50, and starting vector
pi=0, ¢ =(i—1)/10, i=1,....6.

In such a case, the Hamiltonian function is a polynomial afrde 4, so that the fourth-order HBVM(4,2)
method, either when using the Lobatto nodes or the GaussHdeg nodes, is able to exactly preserve
the Hamiltonian, as confirmed by the plot in Figure 6, obtdindth stepsizeh = 0.05. Conversely, by
using the same stepsize, both the fourth-order Lobattodhd Gauss-Legendre methods provide only an
approximate conservation of the Hamiltonian, as shownerpibts in Figures 4 and 5, respectively.

5.3 Test problem 3 (non-polynomial Hamiltonian)

In the previous examples, the Hamiltonian function was gmahial. Nevertheless, as observed above,
also in this case HBVM,s) are expected to producepaactical conservation of the energy when applied
to systems defined by a non-polynomial Hamiltonian functiwat can be locally well approximated by a
polynomial. As an example, we consider the motion of a ctiapgticle in a magnetic field with Biot-
Savart potentiad? It is defined by the Hamiltonian [2]

H(z,y,z2,%,0,%2) = (45)
1 . 7> . Y 2 . | 2
g |(2-0%) +(1-0%) +Gratonor.

with o = v/22 + y2, a = e By, m is the particle massg,is its charge, an®, is the magnetic field intensity.
We have used the values
m=1, e=—1, By =1,

with starting point
x=05, y=10, z2=0, =-0.1, y=-0.3, 2=0.

By using the fourth-order Lobatto 1lIA method, with stepsiz = 0.1, a drift is again experienced in
the numerical solution, as is shown in Figure 7. By using theth-order Gauss-Legendre method with
the same stepsize, the drift disappears even though, asishdvigure 8, the value of the Hamiltonian is
preserved within an error of the orderidf—2. On the other hand, when using the HBVM(6,2) method with
the same stepsize, the error in the Hamiltonian decreasesdader ofl0~1° (see Figure 9), thus giving a
practical conservation. Finally, in Table 1 we list the nmaxim absolute difference between the numerical
solutions overl0? integration steps, computed by the HBVM2) methods based on Lobatto abscissae
and on Gauss-Legendre abscissad; geows, with stepsizé = 0.1. As expected, the difference tends to
0, ask increases, since the two sequences of methods tend to tleelisaitn given by the HBVMoo, 2)
(see (24) withs = 2).

24This kind of motion causes the well known phenomenoawbra borealis

(© 2010 European Society of Computational Methods in Sciesme&ngineering (ESCMSE)



Hamiltonian Boundary Value Methods 33

x 10~

H-H0

¢} 10 20 30 40 50
t

Figure 4: Fourth-order Lobatto lIA methodl,= 0.05, problem (44)|H — Hy| ~ 1073,

-4
4x 10

(¢] 10 20 30 40 50
t

Figure 5: Fourth-order Gauss-Legendre metliog, 0.05, problem (44)|H — Hy| ~ 1073.

—14
1'5x 10

1r 4

[0} 10 20 30 40 50
t

Figure 6: Fourth-order HBVM(4,2) methodl,= 0.05, problem (44):|H — Hy| ~ 10~ 4.
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x 10°°

T —

[0} 500 1000 1500 2000
t

Figure 7: Fourth-order Lobatto I1IA method,= 0.1, problem (45): drift in the Hamiltonian.

-3

7 SRR

Figure 8: Fourth-order Gauss-Legendre mettiod, 0.1, problem (45):|H — Hy| ~ 1073.

x 10°*°

2

) 500 1000 1500 2000
t
Figure 9: Fourth-order HBVM(6,2) methodl,= 0.1, problem (45);|H — Hy| ~ 10715,
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5.4 Test problem 4 (non-polynomial Hamiltonian)

We finally solve the Hamiltonian system (38) by using the {#&ime method (33), the fourth-order formula
(40)—(41), and the HBVMI(,2), which has order four and degree of precisior(that is, according to (42),
it precisely conserves the energy of polynomial Hamiltosiaf degree up t®0). We have sett = b = 1

in formula (37), and integrated over a time interfggl5000] with stepsizéx = 0.5 and(go, po) = (0.5,0.5)

as initial condition.

Figure 10 reports the numerical Hamiltonian function agged with the three methods. The occur-
rence of jumps in the first two graphs (left picture) is duehte fiact that both formulae (33) and (40)—(41)
may become ill-conditioned for certain values of the staeter. For example (see Figure 11), at the two
consecutive times = 2830.5 andt = 2831, the state vectors associated with the Itoh-Abe methodg&3)
respectively,

[q1, 1] ~ (0.39988668, 1.4216560)",  [qo, p2] ~ (0.39988872,0.67130503)7 ,

which shows that;; may be very close tg, even for large values df. This causes some cancellation in
the subtraction at the right-hand side of (33) and, henoama jof the subsequent branch of the numerical
trajectory on a different level curve. However, since, imgal, the numerical trajectory densely fills
the level curveH (y) = H(yo), it may be argued that the occurrence of such jumps are sgtteand
frequent when the dynamics is traced over a long time. Theotifi@ite arithmetic eventually destroys
the theoretical conservation property. A similar argunmaaly be applied to discuss the behavior of the
fourth-order method (40)—(41).

Although the HBVM method does not provide a theoretical eovation of the energy, as is the case for
the above cited methods, its behavior in finite arithmeticMicuggest the opposite (see the right picture
in Figure 10), as already emphasized at the beginning of piat

6 Conclusions

In this paper, the newly introducddiamiltonian Boundary Value Methods (HBVMs)class of numerical
methods able to exactly preserve polynomial Hamiltonidnasny degree, have been re-derived in a uni-
fying framework. Such framework relies on the use of linegmals, which are approximated by suitable
discrete counterparts (actually, they are exact, when #Hmailtbnian is a polynomial). In this context, the
limit of the methods, as the number of the so callddnt stagesends to infinity, is easily obtained. When
the underlying polynomial basis upon which the HBVM is cousted is the Lagrange basis, such limit for-
mulae coincide with the recently introducBdergy Preserving variant of Collocation Methodsinstead
one uses the shifted Legendre polynomial basis, the camespg HBVMs have the highest possible order
and so do their limit formulae, thmfinity Hamiltonian Boundary Value Methodmdependently of the
considered abscissae. Any limit formula, when discretifatinto the HBVMs class. Possible extensions
of the approach have been also sketched, along with a numhbemerical tests. Such tests confirm that,
in the limit of the silent stages tending to infinity, all HB\AWwith s (unknown)fundamental stagetend

to thesamelimit method, which is characterized by the eigenfunctimigtive to the unit eigenvalue) of a
certain operator, which is independent of the choice of tisziasae.
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Figure 10: Left picture: absolute error of the Hamiltoniamdtion (37) evaluated along the numerical
solutions computed by the Itoh-Abe method (33) (lower chare formula (40)—(41) (upper curve). The
jumps are symptomatic of ill-conditioning of the formulae ertain values of the solution. Right picture:
the same kind of plot produced by the HBVM formula of ordeandk = 10 Gaussian abscissagi —
Ho‘ ~ 10712).

2.2

0.2 0.4 0.6 0.8 1 12 1.4 16 18 2 22

Figure 11: Trajectory in the phase plane computed by theAtod method (33). The small circles locate
the solution at the two consecutive times 2830.5 andt = 2831. The very close values of the variakje
for such two points causes loss of significant digits in tHeseguent branch of the trajectory.
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