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Abstract:Recently, a new family of integrators (Hamiltonian Boundary Value Methods) has been in-
troduced, which is able to precisely conserve the energy function of polynomial Hamiltonian systems
and to provide apractical conservation of the energy in the non-polynomial case.
We settle the definition and the theory of such methods in a more general framework. Our aim is on
the one hand to give account of their good behavior when applied to general Hamiltonian systems
and, on the other hand, to find out what are theoptimal formulae, in relation to the choice of the
polynomial basis and of the distribution of the nodes. Such analysis is based upon the notion of
extended collocation conditionsand the definition ofdiscrete line integral, and is carried out by
looking at the limit of such family of methods as the number of the so calledsilent stagestends to
infinity.
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1 Introduction

We consider canonical Hamiltonian problems in the form

ẏ = J∇H(y), y(t0) = y0 ∈ R
2m, (1)
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18 L. Brugnano, F. Iavernaro, and D. Trigiante

whereJ is a skew-symmetric constant matrix, and the HamiltonianH(y) is assumed to be sufficiently
differentiable. For its numerical integration, the problem is to find numerical methods which preserveH(y)
along the discrete solution{yn}, since this property holds for the continuous solutiony(t).

So far, many attempts have been made inside the class of Runge-Kutta methods, the most successful
of them being that of imposing the symplecticity of the discrete map, considering that, for the continuous
flow, symplecticity implies the conservation ofH(y). Concerning symplectic integrators, a backward error
analysis permits to prove that they exactly conserve a modified Hamiltonian, even though this fact clearly
does not always guarantee a proper qualitative behavior of the discrete orbits.

On the other hand, it is possible to follow different approaches to derive geometric integrators which are
energy-preserving. This has been done, for example, in the pioneering work [6], and later in [14], where
discrete gradient methodsare introduced and studied. An additional example of energy-preserving method
is theAveraged Vector Field (AVF)method defined in [15] (see also [4]). By the way, the latter method can
be retrieved by the methods here studied.

More recently, in [2] a new family of one-step methods has been introduced, capable of providing a
numerical solution{yn} of (1), along which the energy functionH(y) is precisely conserved, in the case
where this function is a polynomial (see also [10, 11, 1]).

These methods, namedHamiltonian Boundary Value Methods(HBVMshereafter), may be also thought
of as Runge-Kutta methods where the internal stages are split into two categories:

- thefundamental stages, whose number, says, is related to the order of the method;

- the silent stages, whose number, sayr, has to be suitably selected in order to assure the energy
conservation property for a polynomialH(y) of given degreeν; the higher isν, the higher must ber.

The resulting method is denoted by HBVM(k, s),6 wherek = s+ r is the total number ofunknownstages.
In [2, 11] it has also been shown that these new methods provide a practical conservation of the energy

even in the non-polynomial case: the term “practical” meansthat, in many general situations, when the
number of silent stages is high enough, the method makes no distinction between the functionH(y) and its
polynomial approximation, being the latter in a neighborhood of sizeε of the former, whereε denotes the
machine precision.

Another relevant issue to be mentioned is that the computational cost for the solution of the associated
nonlinear system is essentially independent of the number of silent stages, and only depends ons (see
[2, 1]). This comes from the fact that the silent stages are actually linear combinations of the fundamental
stages.

These two aspects motivate the following question:what is, if any, the limit method when the number
of silent stages grows to infinity?

This question was first posed by Ernst Hairer,7 who also provided a partial answer by stating formulae
(21), which he calledEnergy Preserving variant of Collocation Methods(EPCMs, hereafter) [7]. We pro-
vide a proof of his statement by clarifying the connection between the limit formulae and HBVMs: we show
that actually one can define several different limit methods,8 each one associated to the specific polynomial
basis, as well as to the choice of the abscissae distribution, used to construct the sequence of HBVMs.
For example, EPCMs are based upon the use of Lagrange polynomials, while, working with the shifted
Legendre basis, yields to different limit methods, that we have calledInfinity Hamiltonian Boundary Value
Methods(in short,∞-HBVMsor HBVM(∞, s), beings the number of theunknownfundamental stages).

Our aim in this paper is threefold:

6The denominationHBVMwith k stepsanddegrees was used in [2].
7During the international conference “ICNAAM 2009”, Rethymno, Crete, Greece, 18-22 September 2009, after the talks, by the

first two authors, where HBVMs were presented.
8In the sense that they generate different discrete problems.
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Hamiltonian Boundary Value Methods 19

1. We settle the definition of HBVMs in a more general framework, also deriving the general formula-
tion of the limit formulae

lim
k→∞

HBVM(k, s).

In particular, we show that such limit coincides with EPCMs if the Lagrange polynomial basis is used
(Section 2).

2. In Section 3, we introduce the new class of∞-HBVMs, which are the limit formulae correspond-
ing to the HBVMs based upon the shifted Legendre polynomial basis. We prove that the order of
such formulae is the same as the Gauss-Legendre methods, that is 2s (wheres is the number of the
unknown fundamental stages).

3. We mention the case whereH(y) belongs to vector spaces different from that of polynomials, thus
providing a natural (and trivial) generalization of the original formulae (see Section 4). Moreover, in
the polynomial case, we determine theoptimaldistribution of the nodes (Section 5).

We stress that any finite approximation of EPCMs or∞-HBVMs based on quadratures leads back to
HBVM(k,s) methods, fork high enough.

We address all the points listed above, by slightly modifying the approach followed to define the class
of HBVMs in [2].

2 Reformulation of Hamiltonian BVMs

The key formula which HBVMs rely on, is theline integraland the related property of conservative vector
fields:

H(y1) −H(y0) = h

∫ 1

0

σ̇(t0 + τh)T∇H(σ(t0 + τh))dτ, for anyy1 ∈ R
2m, (2)

whereσ is any smooth function such that

σ(t0) = y0, σ(t0 + h) = y1. (3)

Here we consider the case whereσ(t) is a polynomial (of degree at mosts), yielding an approximation
to the true solutiony(t) in the time interval[t0, t0 + h]. The numerical approximation for the subsequent
time-step,y1, is then defined by (3). After introducing a set ofs distinct abscissaec1, . . . , cs, (0 < ci ≤ 1),9

we set

Yi = σ(t0 + cih), i = 1, . . . , s, (4)

so thatσ(t) may be thought of as an interpolation polynomial,Yi, i = 1, . . . , s, being the internal stages.
Let us consider the following expansions ofσ̇(t) andσ(t) for t ∈ [t0, t0 + h]:

σ̇(t0 + τh) =

s∑

j=1

γjPj(τ), σ(t0 + τh) = y0 + h

s∑

j=1

γj

∫ τ

0

Pj(x) dx, (5)

where{Pj(t)} is any suitable basis of the vector space of polynomials of degree at mosts − 1 and the
(vector) coefficients{γj} are to be determined.10 Before proceeding, one important remark is in order.

9As a convention, whenc = 0 is to be considered, as in the case of the Lobatto abscissae in[0, 1], thenc0 = 0 is formally added
to the abscissaec1, . . . , cs, and the subsequent formulae are modified accordingly.

10More general function spaces will be considered in the sequel.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)
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Remark 1. As will be clear in a while, we observe that the numerical method which the following procedure
will define is “basis-dependent”, in that to different choices of the basis{Pj(t)} there will, in general,
correspond different numerical methods. In this section, in order to let the theory be presented as general
as possible, we leave the basis not better specified. This will allow us to achieve the results listed at point
1. in the introduction. The question about how to choose the basis properly is faced in Section 3, where
∞-HBVMs will be introduced. Therefore, just in the present section, to avoid confusion, we will always
specify what is the basis we are working with. This will be notnecessary anymore starting from Section 3,
after determining the optimal basis.

In this section we assume thatH(y) is a polynomial, which implies that the integrand in (2) is also a
polynomial so that the line integral can be exactly computedby means of a suitable quadrature formula.
It is easy to observe that in general, due to the high degree ofthe integrand function, such quadrature
formula cannot be solely based upon the available abscissae{ci}: one needs to introduce an additional set
of abscissae,̂c1, . . . , ĉr, distinct from the nodes{ci}, in order to make the quadrature formula exact:

∫ 1

0

σ̇(t0 + τh)T∇H(σ(t0 + τh))dτ = (6)

s∑

i=1

βiσ̇(t0 + cih)
T∇H(σ(t0 + cih)) +

r∑

i=1

β̂iσ̇(t0 + ĉih)
T∇H(σ(t0 + ĉih)),

whereβi, i = 1, . . . , s, andβ̂i, i = 1, . . . , r, denote the weights of the quadrature formula corresponding
to the abscissae{ci} and{ĉi}, respectively, i.e.,

βi =

∫ 1

0




s∏

j=1,j 6=i

t− cj
ci − cj








r∏

j=1

t− ĉj
ci − ĉj



dt, i = 1, . . . , s,

(7)

β̂i =

∫ 1

0




s∏

j=1

t− cj
ĉi − cj








r∏

j=1,j 6=i

t− ĉj
ĉi − ĉj



dt, i = 1, . . . , r.

According to [11], the right-hand side of (6) is calleddiscrete line integral, while the vectors

Ŷi = σ(t0 + ĉih), i = 1, . . . , r, (8)

are calledsilent stages: they just serve to increase, as much as one likes, the degreeof precision of the
quadrature formula, but they are not to be regarded as unknowns since, from (5), they can be expressed in
terms of linear combinations of thefundamental stages(4).

In [2], the method HBVM(k,s), with k = s + r is then defined by substituting the quantities in (5)
into the right-hand side of (6) and by choosing the unknowns{γj} in order that the resulting expression
vanishes.

Instead of carrying out our computation on the right-hand side of (6), as was done in [2], we apply the
procedure directly to the original line integral appearingin the left-hand side. Of course, since these two
expressions are equal, the final formula will exactly match the HBVM(k,s) method, written in a different
guise.

With this premise, by considering the first expansion in (5),the conservation property reads

s∑

j=1

γT
j

∫ 1

0

Pj(τ)∇H(σ(t0 + τh))dτ = 0, (9)

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)



Hamiltonian Boundary Value Methods 21

which, as is easily checked, is certainly satisfied if we impose the following set of orthogonality conditions

γj = ηj

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, j = 1, . . . , s, (10)

with {ηj} suitablynonzeroscaling factors that will be defined in a while. Then, from thesecond relation of
(5) we obtain, by introducing the operator

L(f ;h)σ(t0 + ch) = (11)

σ(t0) + h

s∑

j=1

ηj

∫ c

0

Pj(x)dx

∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ, c ∈ [0, 1],

thatσ is the eigenfunction ofL(J∇H;h) relative to the eigenvalueλ = 1:

σ = L(J∇H;h)σ. (12)

Definition 1. Equation (12) will be called theMaster Functional Equationdefiningσ.

Remark 2. We also observe that, from (10) and the first relation in (5), one obtains the equations

σ̇(t0 + cih) =
s∑

j=1

ηjPj(ci)

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, i = 1, . . . , s, (13)

which may be viewed asextended collocation conditionsaccording to [11, Section 2], where the integrals
are (exactly) replaced by discrete sums (see, e.g., (6)–(7)).

To practically computeσ, we set (see (4) and (5))

Yi = σ(t0 + cih) = y0 + h

s∑

j=1

aijγj , i = 1, . . . , s, (14)

where

aij =

∫ ci

0

Pj(x)dx, i, j = 1, . . . , s. (15)

Inserting (10) into (14) yields the final formulae which define the HBVMs class based upon the basis{Pj}:

Yi = y0 + h

∫ 1

0




s∑

j=1

ηjaijPj(τ)



 J∇H(σ(t0 + τh))dτ, i = 1, . . . , s. (16)

The constants{ηj} have to be chosen in order to make the formula consistent. Problem (14)–(16) can be
actually solved, provided that all the{ηj} are different from zero,11 and the matrix





∫ c1

0
P1(x)dx . . .

∫ cs

0
P1(x)dx

...
...∫ c1

0
Ps(x)dx . . .

∫ cs

0
Ps(x)dx





is nonsingular (which we shall obviously assume hereafter). Indeed, such a matrix allows us, by using (5),
to reformulate equation (16) in terms of the (unknown) fundamental stages (4). Let us now formally set

f(y) = J∇H(y), (17)

and report a few examples for possible choices of the basis{Pj(x)}.

11For example, the choicePj(x) = xj−1, j = 1, . . . , s, would lead toη1 = 1, andηj = 0, j = 2, . . . , s. This implies that, with
this choice of the basis,σ can only be a line (i.e.,s = 1).

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)



22 L. Brugnano, F. Iavernaro, and D. Trigiante

1. In [11] we have chosen{P1(x), . . . , Ps(x)} as the Newton basis. This has allowed us the construction
of a family of methods of order 2 and 4.

2. In [2], the abscissae{c0 = 0} ∪ {ci} ∪ {ĉi} are disposed according to a Lobatto distribution with
k + 1 points in [0, 1] and{P1(x), . . . , Ps(x)} is the shifted Legendre basis in the interval[0, 1].12

Consequently, choosing in (16)t0 = 0, h = 1, andf(y(τ)) = Pj(τ), the consistency condition
yields

ηj =

(∫ 1

0

P 2
j (x)dx

)−1

= 2j − 1, j = 1, . . . , s, (18)

which is exactly the value found in [2]. In such a case, it has been shown that the resulting method
has order2s, just the same as the generating Lobatto IIIA method (obtained fork = s).

3. In a similar way, when using the Lagrange basis{ℓj(x)}, by settingf(y(τ)) ≡ 1, one obtains
ηj = 1/bj with

bj =

∫ 1

0

ℓj(x)dx, ℓj(x) =

s∏

i=1, i 6=j

x− ci
cj − ci

. (19)

Consequently, formulae (16) become

Yi = y0 + h

∫ 1

0




s∑

j=1

aij

bj
ℓj(τ)



 J∇H(σ(t0 + τh))dτ, i = 1, . . . , s. (20)

Moreover, by introducing the new variablesKi = σ̇(t0 + cih), which are therefore related to theYi

as

Yi = y0 + h

s∑

j=1

aijKj , i = 1, . . . , s,

system (20) can be recast in the equivalent form provided by theextended collocation conditions(13):

Ki =
1

bi

∫ 1

0

ℓi(τ)J∇H(σ(t0 + τh))dτ, i = 1, . . . , s. (21)

Formulae (21) are the ones E. Hairer proposed in the general case, that is for any kind of Hamiltonian
function. They were calledEnergy Preserving variant of Collocation Methods(EPCMs) [7]. The above
discussion then proves that if the integral can be substituted by a finite sum, as in the case whereH(y) is a
polynomial, formulae (16), and consequently (21), become aHBVM(k, s), with a suitable value ofk.13

For sake of completeness, we report the nonlinear system associated with the HBVM(k, s) method, in
terms of the fundamental stages{Yi} and the silent stages{Ŷi} (see (8)), by using the notation (17). In
this context, they represent the discrete counterpart of (16), and may be directly retrieved by evaluating, for
example, the integrals in (16) by means of the (exact) quadrature formula introduced in (6):

Yi = y0 + h




s∑

l=1

βl




s∑

j=1

ηjaijPj(cl)



 f(Yl) +

r∑

l=1

β̂l




s∑

j=1

ηjaijPj(ĉl)



 f(Ŷl)





(22)

= y0 + h

s∑

j=1

ηjaij

(
s∑

l=1

βlPj(cl)f(Yl) +

r∑

l=1

β̂lPj(ĉl)f(Ŷl)

)
, i = 1, . . . , s.

12More precisely,Pj(x) is here the shifted Legendre polynomial of degreej − 1, j = 1, . . . , s.
13The same clearly happens when the integral is onlyapproximatedby a finite sum.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)
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From the above discussion it is clear that, in the non-polynomial case, supposing to choose the abscissae
{ĉi} so that the sums in (22) converge to an integral asr = k−s→ ∞, the resulting formula is (16).14 Con-
sequently, EPCMs may be viewed as the limit of HBVMs family, when the Lagrange basis is considered,
as the number of silent stages grows to infinity.

The above arguments also imply that HBVMs may be as well applied in the non-polynomial case since,
in finite precision arithmetic, HBVMs are indistinguishable from their limit formulae (16), when a sufficient
number of silent stages is introduced. The aspect of having apractical exact integral, fork large enough,
was already stressed in [2, 10, 11].

3 Infinity Hamiltonian Boundary Value Methods

As is easily argued (and emphasized in Remark 1), the choice of the basis along whicḣσ(t0 + τh) is
expanded (see (5)), somehow influences the shape of the final formulae (16), that is, to two different poly-
nomial bases there may correspond two different families offormulae.15 The question then naturally arises
about the best possible choice of the basis to consider. Thisissue has been a crucial point in devising the
class of HBVMs in [2] and deserves a particular attention.16

Indeed, we recall that our final goal is to devise methods thatmake the sum (9), representing the line
integral, vanish. This is accomplished by the orthogonality conditions (10), whose effect is to make null
each term of the sum in (9). It follows that such conditions are in general too demanding, in that they are
sufficient but not necessary to get conservativeness. In fact, the sum could in principle vanish even in the
case when two ore more of its terms are different from zero. This extra constraintmay affect the general
properties of the conservative methods we are interested in, and in particular their order.

This was a problem already encountered in [11] where the authors realized that the use of the Newton
basis didn’t assure the expected growth of the order of the resulting method when the degree of the polyno-
mial σ(t0 + τh) was increased. This barrier has been definitively overcome in [2], where it was understood
that the proper polynomial basis to be used by default was that of the shifted Legendre polynomials in the
interval[0, 1]. We emphasize that, contrary to what happens for the Lagrange and Newton bases, the Legen-
dre polynomials are orthogonal and symmetric in the interval [0, 1] and in addition they areabscissae-free,
that is they by no means depend on the specific distribution ofthe abscissae{ci} adopted. This, in turn,
implies that theMaster Functional Equation(12) is independent of the choice of both the abscissae{ci}
and{ĉi}: the only requirement being that (6) holds true.17

From the above arguments, it is clear that the orthogonalityconditions (10), i.e., the fulfillment of the
Master Functional Equation(12), is only a sufficient condition for the conservation property (9) to hold.
Such a condition becomes also necessary, when the basis{Pj} is orthogonal.

Theorem 1. Let {Pj} be an orthogonal basis on the interval[0, 1]. Then, assumingH(y) to be suitably
differentiable, (9) implies that each term in the sum has to vanish.

Proof Let us consider, for simplicity, the case of an orthonormal basis, and the expansion

g(τ) ≡ ∇H(σ(t0 + τh)) =
∑

ℓ≥1

ρℓPℓ(τ), ρℓ = (Pℓ, g), ℓ ≥ 1,

where, in general,

(f, g) =

∫ 1

0

f(τ)g(τ)dτ.

14This obvious requirement for the abscissae will be always assumed in the sequel.
15For example, see the method presented in subsection 4.2.
16The argument presented here is the analog of the one appearingin [11, Remark 3.1].
17We emphasize that this is not the case when using, for example, the Lagrange basis.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)
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Substituting into (9), yields

s∑

j=1

γT
j (Pj , g) =

s∑

j=1

γT
j



Pj ,
∑

ℓ≥1

ρℓPℓ



 =

s∑

j=1

γT
j ρj = 0.

Since this has to hold whatever the choice of the functionH(y), one concludes that

γT
j ρj = 0, j = 1, . . . , s. � (23)

Remark 3. In the case where{Pj} is the shifted Legendre basis, from (23) one derives that

γj = Sρj , i = 1, . . . , s,

whereS is any nonsingular skew-symmetric matrix. The natural choiceS = J then leads to (10), with
ηj = (Pj , Pj)

−1 = 2j − 1.

The use of the Legendre basis allows the resulting methods tohave the best order and stability properties
that one can expect. This aspect is elucidated in the two theorems and the corollary below, which represent
the main result of the present work.

Although, up to now, we have maintained the treatment of HBVMs at a general level, it is clear that, in
view of the result presented in Theorem 2, when the curveσ(t0 + τh) is assumed of polynomial type, we
will implicitly adopt the Legendre basis.18 This important assumption will be incorporated in the HBVM
methods from now on: if needed, the use of any other kind of basis will be explicitly stated, in order not to
create confusion.

Taking into account the consistency conditions (18), formula (16)–(15) takes the form:

Yi = y0 + h

∫ 1

0




s∑

j=1

(2j − 1)aijPj(τ)



 J∇H(σ(t0 + τh))dτ, i = 1, . . . , s. (24)

If the HamiltonianH(y) is a polynomial, the integral appearing at the right-hand side is exactly computed
by a quadrature formula, thus resulting into a HBVM(k,s) method with a sufficient number of silent stages.
As already stressed in the previous section, in the non-polynomial case such formulae represent the limit of
the sequence HBVM(k,s), ask → ∞.

Definition 2. We call the new limit formula (24) anInfinity Hamiltonian Boundary Value Method(in short,
∞-HBVM or HBVM(∞, s)).

We emphasize that, in the non-polynomial case, (24) becomesan operative method, only after that
a suitable strategy to approximate the integral is taken into account (see the next section for additional
examples). In the present case, if one discretizes theMaster Functional Equation(11)–(12), HBVM(k, s)
are then obtained, essentially by extending the discrete problem (22) also to the silent stages (8). In order
to simplify the exposition, we shall use (17) and introduce the following notation:

{ti} = {ci} ∪ {ĉi}, {ωi} = {βi} ∪ {β̂i}, yi = σ(t0 + tih), fi = f(σ(t0 + tih)). (25)

The discrete problem defining the HBVM(k, s) then becomes, withηj = 2j − 1,

yi = y0 + h

s∑

j=1

ηj

∫ ti

0

Pj(x)dx

k∑

ℓ=1

ωℓPj(tℓ)fℓ, i = 1, . . . , k. (26)

18Actually, the termHamiltonian Boundary Value Methodhas been coined in [2], after introducing the Legendre basis.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)



Hamiltonian Boundary Value Methods 25

We can cast the set of equations in vector form, by introducing the vectorsy = (yT
1 , . . . , y

T
k )T , e =

(1, . . . , 1)T ∈ R
k, and the matricesI,P ∈ R

k×s, with

Iij =

∫ ti

0

Pj(x)dx, Pij = Pj(ti), and Λ = diag(η1, . . . , ηs), Ω = diag(ω1, . . . , ωk), (27)

as
y = e⊗ y0 + h(IΛPT Ω) ⊗ I f(y), (28)

with an obvious meaning off(y). Consequently, the method can be seen as a Runge-Kutta method with
the following Butcher tableau:

t1
...
tk

IΛPT Ω

ω1 . . . ωk

(29)

Remark 4. We observe that, provided that the matrixΛ is independent of the basic abscissae{ci} (as in the
case of the Legendre basis), the role of such abscissae and ofthe silent abscissae{ĉi} is interchangeable.
This is not true, for example, for the Newton and Lagrange bases.

The following result then holds true.

Theorem 2. Provided that the quadrature has order at least2s (i.e., it is exact for polynomials of degree
at least2s− 1), HBVM(k,s) has orderp = 2s ≡ 2 deg(σ), whatever the choice of the abscissaec1, . . . , cs.

Proof From the classical result of Butcher (see, e.g., [9, Theorem7.4]), the thesis follows if the
simplifying assumptionsC(s), B(p), p ≥ 2s, andD(s − 1) are satisfied. By looking at the method (28)–
(29), one has that the first two (i.e.,C(s) andB(p), p ≥ 2s) are obviously fulfilled: the former by the
definition of the method, the second by hypothesis. The proofis then completed, if we proveD(s − 1).
Such condition can be cast in matrix form, by introducing thevector ē = (1, . . . , 1)T ∈ R

s−1, and the
matrices

Q = diag(1, . . . , s− 1), D = diag(t1, . . . , tk), V = (tj−1
i ) ∈ R

k×s−1,

(see also (27)) as
QV T Ω

(
IΛPT Ω

)
=
(
ē eT − V TD

)
Ω,

i.e.,

PΛIT ΩV Q =
(
e ēT −DV

)
. (30)

Since the quadrature is exact for polynomial of degree2s− 1. one has

(
IT ΩV Q

)
ij

=

(
k∑

ℓ=1

ωℓ

∫ tℓ

0

Pi(x)dx (jtj−1
ℓ )

)
=

(∫ 1

0

∫ t

0

Pi(x)dx(jt
j−1)dt

)

=

(
δi1 −

∫ 1

0

Pi(x)x
jdx

)
, i = 1, . . . , s, j = 1, . . . , s− 1,

where the last equality is obtained by integrating by parts,with δi1 the Kronecker symbol. Consequently,

(
PΛIT ΩV Q

)
ij

=

(
1 −

s∑

ℓ=1

ηℓPℓ(ti)

∫ 1

0

Pℓ(x)x
jdx

)
= (1 − tji ), i = 1, . . . , k, j = 1, . . . , s− 1,
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that is, (30), where the last equality follows from the fact that

s∑

ℓ=1

ηℓPℓ(t)

∫ 1

0

Pℓ(x)x
jdx = tj , j = 1, . . . , s− 1. �

Concerning the stability, the following result holds true.

Theorem 3. For all k such that the quadrature formula has order at least2s ≡ 2 deg(σ), HBVM(k,s) is
perfectlyA-stable, whatever the choice of the abscissaec1, . . . , cs.

Proof As it has been previously observed, a HBVM(k, s) is fully characterized by the corresponding
polynomialσ which, fork sufficiently large (i.e., assuming that (6) holds true), satisfies theMaster Func-
tional Equation(11)–(12), which is independent of the choice of the nodesc1, . . . , cs (since we consider the
Legendre basis). When, in place off(y) = J∇H(y) we put the test equationf(y) = λy, we have that the
collocation polynomial of the Gauss-Legendre method of order 2s, sayσs, satisfies theMaster Functional
Equation, since the integrands appearing in it are polynomials of degree at most2s − 1, so thatσ = σs.
The proof completes by considering that Gauss-Legendre methods are perfectlyA-stable.�

A worthwhile consequence of Theorems 2 and 3 is that one can transfer to HBVM(∞, s) all those
properties of HBVM(k,s) which are satisfied starting from a givenk ≥ k0 on: for example, the order and
stability properties.

Corollary 1. Whatever the choice of the abscissaec1, . . . , cs, HBVM(∞, s) (24) has order2s and is per-
fectlyA-stable.

Remark 5. From the result of Corollary 1, it follows that HBVM(∞, s) has order2s and is perfectlyA-
stable foranychoice for the abscissaec1, . . . , cs. Since such abscissae can be arbitrarily chosen, we can
formally place them at the roots of the Gauss-Legendre polynomial of degrees. On the other hand, by
considering that, at such abscissae, by setting{ℓi(c)} and{bi} the corresponding Lagrange polynomials
and quadrature weights, respectively (see (19)),

1

bi

∫ 1

0

Pj(x)ℓi(x)dx =
1

bi

s∑

r=1

brPj(cr)ℓi(cr) = Pj(ci), j = 1, . . . , s,

one obtains (withηj = 2j − 1 and by using the notation (17)):

σ′(t0 + cih) =
s∑

j=1

ηjPj(ci)

∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ

=

s∑

j=1

ηj

(
1

bi

∫ 1

0

Pj(x)ℓi(x)dx

)∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ

=
1

bi

∫ 1

0




s∑

j=1

ηjPj(τ)

∫ 1

0

Pj(x)ℓi(x)dx



 f(σ(t0 + τh))dτ

=
1

bi

∫ 1

0

ℓi(τ)f(σ(t0 + τh))dτ, i = 1, . . . , s.

Consequently,for any choice of the abscissae{ci}, HBVM(∞, s) provide the same polynomialσ as the
“optimal EPCMs” (21) of order2s [7]. 19 Conversely, an EPCM is optimal (i.e., it has order2s) only when

19In this sense, they areequivalent, even though they generate different discrete problems.
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the abscissaec1, . . . , cs define a quadrature formula of order at least2s − 1, whereas different choices
result in methods of lower order [7, Theorem 1].

Remark 6. We also observe that, due to the choice of the shifted Legendre polynomial basis (see (24))

HBVM(∞, s) = lim
k→∞

HBVM(k, s),

whatever is the choice of the fundamental abscissae{ci}. Consequently, for allk large enough, so that
theMaster Functional Equation(12) holds true (e.g., in the case of a polynomial Hamiltonian H(y)), all
HBVM(k, s) provide the same polynomialσ of degrees, independently of the choice of the abscissae{ci}.
Hence, they areequivalentto each other. This result doesn’t change in the case whereH(y) is not a
polynomial, provided thatH(y) is sufficiently differentiable. In this case, in fact, one formally obtains, in
place of theMaster Functional Equation (12), an equation of the form

σk = L(J∇H;h)σk + ψk(h), (31)

whereψk(h) = O(hqk−s+2), qk being the degree of precision of the quadrature at the right-hand side in
(6), so thatqk → ∞ ask → ∞. From (12) and (31), one then obtains that ash → 0, assuming thatf is
Lipschitzian with constantµ, and for a suitable constantM independent ofh:

‖σk − σ‖ ≤ hµM‖σk − σ‖ + ‖ψk(h)‖,

i.e.,
‖σk − σ‖ ≤ (1 − hµM)−1‖ψk(h)‖ = O(hqk−s+2) → 0, k → ∞.

One then concludes that, when using finite precision arithmetic, σk is indistinguishable fromσ, for all k
large enough.

Example 1. As previously mentioned, for the methods studied in [2], based on a Lobatto distribution of
the nodes{c0 = 0, c1, . . . , cs} ∪ {ĉ1, . . . , ĉk−s}, one has thatdeg(σ) = s, so that the order of HBVM(k,s)
turns out to be2s, with a quadrature satisfyingB(2k).

Example 2. For the same reason, when one considers a Gauss distributionfor the abscissae{c1, . . . , cs}∪
{ĉ1, . . . , ĉk−s}, one also obtains a method of order2s with a quadrature satisfyingB(2k). This case will
be further studied in Section 5.

Remark 7. Finally, we also mention that, from Remark 4, HBVM(k,s) are symmetric methods,20 provided
that the abscissae{ti} (see (25)) are symmetrically distributed (see also [2]).

4 Generalization of Hamiltonian BVMs

The approach that has allowed the construction of methods that conserve energy functions of polynomial
type is quite general: that is, by no means it depends on the particular vector space generating the curve
σ(t) nor on the quadrature technique used. As was emphasized in [11, Section 2], it solely relies on the
following two ingredients: the definition ofdiscrete line integraland theextended collocation conditions
(13), which zero the line integral (6).

Therefore, in a more general context, this procedure can be formalized as follows. One first picks a
curveσ(t0 + τh), τ ∈ [0, 1], joining two points of the phase spacey0 = σ(t0) andy1 = σ(t0 + h). Such
a curve is assumed to lie in a proper finite dimensional vectorspaceW = span{P1(x), . . . , Ps(x)}, where
nowPj(x), j = 1, . . . , s, are any linearly independent functions. Therefore the curvesσ(t) andσ̇(t) will
admit an expansion in the form (5).

20According to thetime reversal symmetry conditiondefined in [3, p. 218].
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The fundamental hypothesis, for this approach to work, is that the choice ofW must guarantee that the
functionsPj(τ)∇H(σ(t0 + τh)) appearing in (9) (and hencėσ(t)T∇H(σ(t))) be elementary integrable,
that is they are required to admit a primitive that can be expressed in terms of elementary functions. If
this is the case, all the steps performed to obtain (16) may berepeated with the integral substituted by the
primitive.

This represents a generalization of what done for polynomial Hamiltonian functions not only because
the vector spaceW may be generated by non-polynomial functions but also because the analytic solution of
the line integral may be carried out by any available technique. Hereafter, we report a couple of examples
in the class (24).21

4.1 A method of order two

We consider a separable Hamiltonian function (for simplicity we assumem = 1)

H(q, p) = V (p) − U(q). (32)

Let σ(t) be the segment joiningy0 = (q0, p0)
T to y1 = (q1, p1)

T :

σ(t0 + τh) = y0 + τ(y1 − y0).

We havec0 = 0, c1 = 1, and the corresponding method (24) becomes:





q1 − q0
h

p1 − p0

h



 =





∫ 1

0

V ′(p0 + τ(p1 − p0))dτ

∫ 1

0

U ′(q0 + τ(q1 − q0))dτ



 =





V (p1) − V (p0)

p1 − p0

U(q1) − U(q0)

q1 − q0



 . (33)

Formula (33) is one of the simplestdiscrete gradient methodsdue to Itoh and Abe [12], whose general
form, for non-separable Hamiltonian functions with one degree of freedom, reads





q1 − q0
h

p1 − p0

h



 = J





H(q1, p0) −H(q0, p0)

q1 − q0
H(q1, p1) −H(q1, p0)

p1 − p0



 . (34)

The vector appearing at the right-hand side of (34) is obtained by replacing the partial derivatives ofH(q, p)
with increments along theq andp axes. Method (34) is in general first order and nonsymmetric.However,
when confined to separable Hamiltonian systems, it turns outto be second order and symmetric.22

4.2 A method of order four

To construct a method of order four in the form (24) applied to(32), we pick a curveσ(t) of degree two,
based upon the abscissaec0 = 0, c1 = 1/2, andc2 = 1. Such a method has been already described in
[11] for polynomial Hamiltonian functions: here we consider its generalization to the non-polynomial case.
SettingY1 = (q1/2, p1/2)

T and, observing thatY2 = (q1, p1)
T , the two components of the curveσ(t0+τh)

are (
σ1(t0 + τh)

σ2(t0 + τh)

)
=

(
2(q0 − 2q1/2 + q1)τ

2 − (3q0 − 4q1/2 + q1)τ + q0

2(p0 − 2p1/2 + p1)τ
2 − (3p0 − 4p1/2 + p1)τ + p0

)
. (35)

21While the method in Section 4.1 is equivalently obtainable by applying either (24) or (16), the same is not true for the fourth-order
method derived in Section 4.2 where, the use of the Lagrange basis, would produce a coefficientb2 = 0 (appearing as a denominator
in the resulting formulae (21)).

22A generalization of (34) introduced in [13] also becomes method (33) when applied to Hamiltonian functions in the form (32).
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Consequently, (24) becomes

Y1 ≡




q1/2

p1/2



 =




q0

p0



+ h





∫ 1

0

(−
3

2
τ +

5

4
)V ′(σ2(t0 + τh))dτ

∫ 1

0

(−
3

2
τ +

5

4
)U ′(σ1(t0 + τh))dτ




,

Y2 ≡




q1

p1



 =




q0

p0



+ h





∫ 1

0

V ′(σ2(t0 + τh))dτ

∫ 1

0

U ′(σ1(t0 + τh))dτ




.

(36)

Substituting (35) into (36) we obtain a system in the unknowns q1/2, p1/2, q1, p1. Looking at (36), we
realize that even in the simpler case of a system deriving from a Hamiltonian function in the form (32), the
elementary integrability of the integrals in (24) is not a priori guaranteed. This means that, in this case, we
cannot arrive at a general formula analogous to (33), in terms ofU(q) andV (p).

On the other hand, in several cases of interest, such primitive can be explicitly computed: hereafter we
report a significant example, which we shall use later in the numerical tests in Section 5.

Example 3. The role of this example is also to show that, when finite precision arithmetic is used, it may be
not convenientto use theinfinite versionof the methods, even if the integrals can be analytically evaluated.
This will be evident from the numerical results in Section 5.4. The system we consider is the one defined
by the Hamiltonian function

H(q, p) = a(log q − q) + b(log p− p), (37)

wherea andb are positive constants. The associated system (1) reads

q̇ = b

(
1

p
− 1

)
, ṗ = −a

(
1

q
− 1

)
. (38)

This system is strictly related to the Lotka-Volterra model
{
q̇ = b q (1 − p),
ṗ = −a p (1 − q),

(39)

in that system (39) may be recast as the Poisson systemẏ = 1
η(q,p)J∇H(y), whereη(q, p) = − 1

qp is called
integrating factor.

Systems (39) and (38) share the same Hamiltonian function (37) as first integral and, consequently, they
share the same curves as trajectories in the phase plane. Method (36) applied to (39) reads





q1/2 − q0

h/2

p1/2 − p0

h/2




=





−b + 3
4
b

log(|p0/p1|)
p0−2p1/2+p1

+ 1
2

b
C1

p0−8p1/2+7p1

p0−2p1/2+p1

·
(
arctanh(

−3p0+4p1/2−p1

C1
) − arctanh(

p0−4p1/2+3p1

C1
)
)

a − 3
4
a

log(|q0/q1|)
q0−2q1/2+q1

− 1
2

a
C2

q0−8q1/2+7q1
q0−2q1/2+q1

·
(
arctanh(

−3q0+4q1/2−q1
C2

) − arctanh(
q0−4q1/2+3q1

C2
)
)





, (40)





q1 − q0

h

p1 − p0

h




=





−b − 2b
C1

[
arctanh(

p0−4p1/2+3p1

C1
) + arctanh(

3p0−4p1/2+p1

C1
)
]

a + 2a
C2

[
arctanh(

q0−4q1/2+3q1
C2

) + arctanh(
3q0−4q1/2+q1

C2
)
]



 , (41)
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where 



C1 = (p2

0 + 16p2
1/2 + p2

1 − 8p0p1/2 − 2p0p1 − 8p1/2p1)
1/2,

C2 = (q20 + 16q21/2 + q21 − 8q0q1/2 − 2q0q1 − 8q1/2q1)
1/2.

5 HBVMs based upon Gauss quadrature

As anticipated in Example 2, we now study the properties of the HBVM(k, s) which is defined over the set
of k distinct abscissae,

{t1, . . . , tk} ≡ {c1, . . . , cs} ∪ {ĉ1, . . . , ĉk−s},

coinciding with the Gauss-Legendre nodes in[0, 1], i.e., the roots of the shifted Legendre polynomial of
degreek. The corresponding polynomialσ has then degrees. By virtue of Theorems 2 and 3 (see also
Remark 7), such methods are symmetric, perfectlyA-stable, and of order2s. They reduce to Gauss-
Legendre collocation methods, whenk = s, and are exact for polynomial Hamiltonian functions of degree
ν, provided that

k ≥
νs

2
. (42)

By recalling what stated in Remark 6, for allk sufficiently large so that (6) holds, HBVM(k, s) based on
thek Gauss-Legendre abscissae in[0, 1] areequivalentto HBVM(k, s) based onk + 1 Lobatto abscissae
in [0, 1] (see [2]), since both methods define the same polynomialσ of degrees.23

As matter of fact, we have run HBVM(k, s) based on Gauss-Legendre nodes, and HBVM(k, s) based
on the Lobatto nodes, obtaining the same results on the polynomial test problems reported in [2], which are
briefly recalled in the sequel.

5.1 Test problem 1

Let us consider the problem characterized by the polynomialHamiltonian (4.1) in [5],

H(p, q) =
p3

3
−
p

2
+
q6

30
+
q4

4
−
q3

3
+

1

6
, (43)

having degreeν = 6, starting at the initial pointy0 ≡ (q(0), p(0))T = (0, 1)T , so thatH(y0) = 0. For
such a problem, in [5] it has been experienced a numerical drift in the discrete Hamiltonian, when using the
fourth-order Lobatto IIIA method with stepsizeh = 0.16, as confirmed by the plot in Figure 1. When using
the fourth-order Gauss-Legendre method the drift disappears, even though the Hamiltonian is not exactly
preserved along the discrete solution, as is shown by the plot in Figure 2. On the other hand, by using the
fourth-order HBVM(6,2) with the same stepsize, the Hamiltonian turns out to be preserved up to machine
precision, as shown in Figure 3, since such method exactly preserves polynomial Hamiltonians of degree up
to 6. In such a case, the numerical solutions obtained by using the Lobatto nodes{c0 = 0, c1, . . . , c6 = 1}
or the Gauss-Legendre nodes{c1, . . . , c6} are the same.

5.2 Test problem 2

The second test problem, having a highly oscillating solution, is the Fermi-Pasta-Ulam problem (see [8,
Section I.5.1]), defined by the Hamiltonian

H(p, q) =
1

2

m∑

i=1

(
p2
2i−1 + p2

2i

)
+
ω2

4

m∑

i=1

(q2i − q2i−1)
2

+
m∑

i=0

(q2i+1 − q2i)
4
, (44)

23In the non-polynomial case, they converge to the same HBVM(∞, s), ask → ∞.
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Figure 1: Fourth-order Lobatto IIIA method,h = 0.16, problem (43): drift in the Hamiltonian.
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Figure 2: Fourth-order Gauss-Legendre method,h = 0.16, problem (43):H ≈ 10−6.
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Figure 3: Fourth-order HBVM(6,2) method,h = 0.16, problem (43):H ≈ 10−16.
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Table 1: Maximum difference between the numerical solutions obtained through the fourth-order
HBVM(k, 2) methods based on Lobatto abscissae and Gauss-Legendre abscissae for increasing values of
k, problem (45),103 steps with stepsizeh = 0.1.

k h = 0.1
2 3.97 · 10−1

4 2.29 · 10−3

6 2.01 · 10−8

8 1.37 · 10−11

10 5.88 · 10−13

with q0 = q2m+1 = 0,m = 3, ω = 50, and starting vector

pi = 0, qi = (i− 1)/10, i = 1, . . . , 6.

In such a case, the Hamiltonian function is a polynomial of degree 4, so that the fourth-order HBVM(4,2)
method, either when using the Lobatto nodes or the Gauss-Legendre nodes, is able to exactly preserve
the Hamiltonian, as confirmed by the plot in Figure 6, obtained with stepsizeh = 0.05. Conversely, by
using the same stepsize, both the fourth-order Lobatto IIIAand Gauss-Legendre methods provide only an
approximate conservation of the Hamiltonian, as shown in the plots in Figures 4 and 5, respectively.

5.3 Test problem 3 (non-polynomial Hamiltonian)

In the previous examples, the Hamiltonian function was a polynomial. Nevertheless, as observed above,
also in this case HBVM(k,s) are expected to produce apractical conservation of the energy when applied
to systems defined by a non-polynomial Hamiltonian functionthat can be locally well approximated by a
polynomial. As an example, we consider the motion of a charged particle in a magnetic field with Biot-
Savart potential.24 It is defined by the Hamiltonian [2]

H(x, y, z, ẋ, ẏ, ż) = (45)

1

2m

[(
ẋ− α

x

̺2

)2

+

(
ẏ − α

y

̺2

)2

+ (ż + α log(̺))
2

]
,

with ̺ =
√
x2 + y2, α = eB0,m is the particle mass,e is its charge, andB0 is the magnetic field intensity.

We have used the values
m = 1, e = −1, B0 = 1,

with starting point

x = 0.5, y = 10, z = 0, ẋ = −0.1, ẏ = −0.3, ż = 0.

By using the fourth-order Lobatto IIIA method, with stepsize h = 0.1, a drift is again experienced in
the numerical solution, as is shown in Figure 7. By using the fourth-order Gauss-Legendre method with
the same stepsize, the drift disappears even though, as shown in Figure 8, the value of the Hamiltonian is
preserved within an error of the order of10−3. On the other hand, when using the HBVM(6,2) method with
the same stepsize, the error in the Hamiltonian decreases toan order of10−15 (see Figure 9), thus giving a
practical conservation. Finally, in Table 1 we list the maximum absolute difference between the numerical
solutions over103 integration steps, computed by the HBVM(k, 2) methods based on Lobatto abscissae
and on Gauss-Legendre abscissae, ask grows, with stepsizeh = 0.1. As expected, the difference tends to
0, ask increases, since the two sequences of methods tend to the same limit, given by the HBVM(∞, 2)
(see (24) withs = 2).

24 This kind of motion causes the well known phenomenon ofaurora borealis.
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Figure 4: Fourth-order Lobatto IIIA method,h = 0.05, problem (44):|H −H0| ≈ 10−3.
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Figure 5: Fourth-order Gauss-Legendre method,h = 0.05, problem (44):|H −H0| ≈ 10−3.
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Figure 6: Fourth-order HBVM(4,2) method,h = 0.05, problem (44):|H −H0| ≈ 10−14.
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Figure 7: Fourth-order Lobatto IIIA method,h = 0.1, problem (45): drift in the Hamiltonian.
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Figure 8: Fourth-order Gauss-Legendre method,h = 0.1, problem (45):|H −H0| ≈ 10−3.
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Figure 9: Fourth-order HBVM(6,2) method,h = 0.1, problem (45):|H −H0| ≈ 10−15.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)



Hamiltonian Boundary Value Methods 35

5.4 Test problem 4 (non-polynomial Hamiltonian)

We finally solve the Hamiltonian system (38) by using the Itho-Abe method (33), the fourth-order formula
(40)–(41), and the HBVM(10,2), which has order four and degree of precision10 (that is, according to (42),
it precisely conserves the energy of polynomial Hamiltonians of degree up to10). We have seta = b = 1
in formula (37), and integrated over a time interval[0, 5000] with stepsizeh = 0.5 and(q0, p0) = (0.5, 0.5)
as initial condition.

Figure 10 reports the numerical Hamiltonian function associated with the three methods. The occur-
rence of jumps in the first two graphs (left picture) is due to the fact that both formulae (33) and (40)–(41)
may become ill-conditioned for certain values of the state vector. For example (see Figure 11), at the two
consecutive timest = 2830.5 andt = 2831, the state vectors associated with the Itoh-Abe method (33)are,
respectively,

[q1, p1] ≃ (0.39988668, 1.4216560)T , [q2, p2] ≃ (0.39988872, 0.67130503)T ,

which shows thatq1 may be very close toq2 even for large values ofh. This causes some cancellation in
the subtraction at the right-hand side of (33) and, hence, a jump of the subsequent branch of the numerical
trajectory on a different level curve. However, since, in general, the numerical trajectory densely fills
the level curveH(y) = H(y0), it may be argued that the occurrence of such jumps are systematic and
frequent when the dynamics is traced over a long time. The useof finite arithmetic eventually destroys
the theoretical conservation property. A similar argumentmay be applied to discuss the behavior of the
fourth-order method (40)–(41).

Although the HBVM method does not provide a theoretical conservation of the energy, as is the case for
the above cited methods, its behavior in finite arithmetic would suggest the opposite (see the right picture
in Figure 10), as already emphasized at the beginning of Example 3.

6 Conclusions

In this paper, the newly introducedHamiltonian Boundary Value Methods (HBVMs), a class of numerical
methods able to exactly preserve polynomial Hamiltonians of any degree, have been re-derived in a uni-
fying framework. Such framework relies on the use of line integrals, which are approximated by suitable
discrete counterparts (actually, they are exact, when the Hamiltonian is a polynomial). In this context, the
limit of the methods, as the number of the so calledsilent stagestends to infinity, is easily obtained. When
the underlying polynomial basis upon which the HBVM is constructed is the Lagrange basis, such limit for-
mulae coincide with the recently introducedEnergy Preserving variant of Collocation Methods; if instead
one uses the shifted Legendre polynomial basis, the corresponding HBVMs have the highest possible order
and so do their limit formulae, theInfinity Hamiltonian Boundary Value Methods, independently of the
considered abscissae. Any limit formula, when discretized, fall into the HBVMs class. Possible extensions
of the approach have been also sketched, along with a number of numerical tests. Such tests confirm that,
in the limit of the silent stages tending to infinity, all HBVMs with s (unknown)fundamental stagestend
to thesamelimit method, which is characterized by the eigenfunction (relative to the unit eigenvalue) of a
certain operator, which is independent of the choice of the abscissae.
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Figure 10: Left picture: absolute error of the Hamiltonian function (37) evaluated along the numerical
solutions computed by the Itoh-Abe method (33) (lower curve) and formula (40)–(41) (upper curve). The
jumps are symptomatic of ill-conditioning of the formulae for certain values of the solution. Right picture:
the same kind of plot produced by the HBVM formula of order4 andk = 10 Gaussian abscissae (|H −
H0| ≈ 10−12).
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