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ABSTRACT 

Tridiagonal matrices arise in a large variety of applications. Most of the time they 
are diagonally dominant, and this is indeed the case most extensively studied. In this 
paper we study, in a unified approach, the invertibility and the conditioning of such 

matrices. The results presented provide practical criteria for a tridiagonal and 

irreducible matrix to be both invertible and “well conditioned.” An application to a 

singular perturbation boundary value problem is then presented. 

1. INTRODUCTION 

There are many applications in numerical analysis which lead to solving 
either tridiagonal systems or second order difference equations such as 

TifJi+l+ yi + ai-lYi-l=o’ (1.1) 

The two problems are related. For boundary value problems, the connection 
is evident. For initial value problems, the connection arises when we try to 
obtain the minimal solution of (1.1). More precisely, often (1.1) has a minimal 
and a maximal solution [6]: in many applications, one is interested in the 
former. If we try to solve (1.1) iteratively, small errors-either in the initial 
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conditions or arising from the use of finite arithmetic-are amplified, and a 
maximal solution is eventually obtained [6]. One then is obliged to solve an 
approximate boundary problem (Miller and Olver’s algorithm [6, 10, 131). 

Often, especially for problems derived from the discretization of PDEs, 
the matrices are diagonally dominant, and much is known in this case. In this 
paper, we shall study the conditions needed for the tridiagonal matrix 
associated to (1.1) with boundary conditions to be nonsingular and well 
conditioned. If ri and a, are independent of i, such conditions are known 
[7], and essentially they amount to requiring that the characteristic polyno- 
mial of (1.1) have two real roots, ri and rs: one inside and one outside the 
unit circle. In the case where 7i and ai are not constant, there are partial 
results requiring essentially that 7i and ui should be slowly varying in the 
neighborhood of an asymptotic value [6, 71. We shall study the problem (1.1) 
from the matrix point of view, and we shall find new conditions for the 
problem to be well conditioned. The results presented here will provide a 
quite practical tool for testing the well-conditioning of irreducible, tridiago- 
nal matrices. 

2. SUFFICIENT CONDITION FOR NONSINGULARITY 

Even though the problem has been extensively studied [5, 11, 151, the 
main result concerning the conditions on the invertibility will be restated in 
this section, since it turns out to be an easy consequence of the notation and 
of Lemma 2.1, which we need to introduce for further discussion. Let us 
consider, for convenience, the “normalized’ matrices associated to the 
problem (1.1): 

T= 

1 71 

Cl 1 72 
us 1 . 

7,-l 

u n-1 1 

(2.1) 

where a,, ri # 0, i = 1,. . . , n - 1. As a convention we assume u,, = u,, = r0 = 
7” = 0. 

First, we shall review sufficient conditions needed to obtain the factoriza- 
tion 

T = LDU, (2.2.1) 
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where 

L= 

U= 

1 
,T 

Ul 1 

4 

1 +, 

1 

0 

D=diag(d,,...,d,), 

0 

1 

n 
72 
1 

3 (2.2.2) 

b *n--l 
1 _ 

di+,=l-aiqd;‘, i=l,..., n-l, 

d,=l. 

(2.2.3) 

Obviously, the factorization (2.2.1) exists iff dj # 0, i = 1,. . . , n - 1, while T 
is invertible iff di # 0, i = 1,. . . , n. 

Let us define the following functions: 

X+= 
i 

x if x>O, 
0 if x < 0, 

x_=-(-x),. 

Let us consider first the particular case of Toeplitz tridiagonal matrices, that 
is, the case in which q = CT, 7i = T, i = 1,. . , , n - 1. 

LEMMA 2.1. Let A = 1-I, 2 0, and m > 0 be such that 

1_ Al/z 1 + A’/’ 
-<m&- 

2 2 ’ 
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Then f&. di defined by (2.2.3), it results that d, = 12 m, and for i 3 2 

m<d,<l-(aT)_m-‘. 

Proof. From the hypothesis on A it follows that the equation x2 - x + 
(IX)+ = 0 has real roots. For such values of m it is true that m2 - m + 
(UT)+ 6 0, that is, 0 < m < 1 -(u)+m-‘. By setting f(x) = 1 -(uT)x-i, 
we have (a~)f~ > 0, and then the minimum of f(x) in the domain 0, = 
{x:r>m} is given by l-(aT)+m- ‘. It follows then that m < f(x) for all 
x > m, and then di 2 m for all i > 2. The proof ends on considering that 
f(x) < 1 -(CT)_ x-l < 1 -(u)_m-l. n 

We shall take the most favorable value of m (because it minimizes the 
interval of variation of di), that is, m = (1 + Ai”)/2. 

Going back to the general case with ai and 7i varying, the previous result 
can be generalized. Denoting 

Ai = 1-4(OiTi)+, (CT)_=mp{(CriTi)_}, m=mm 

one has (see also [4] for a more general version) 

THEOREM 2.1. ZfAh,>Ofori=l,...,n-1, then 

m<d,<l-(aT)_m-’ fw i= l,...,n. 

Proof. Let f&r) = 1 -(cT~T~)x-', 0, ={r :x > ml. Since Ai > 0 and 

1 - A?/’ 
+grn< 

1 + A?” 

2’ ’ 

from Lemma 2.1 it follows that for x B m, fi(x) 2 m. Moreover 
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FIG. 1. 

The condition Ai 2 0 implies that in the (o,~) plane, the points (cri,~i) 
must lie inside the region bounded by the hyperbola 1 - 4~7 = 0 (see Figure 
l), that is, 

Outside this region it 

UiTi < $, i=l ,...,fl-1. (2.4) 

may happen that the matrix T is singular (see for 
example [l, 151 for the case of Toeplitz matrices). 

3. SUFFICIENT CONDITIONS FOR WELL-CONDITIONING 

We shall now suppose that the conditions required by Theorem 2.1 are 
satisfied, that is, (a,,~~) are inside the region of Figure 1. This does not 
ensure that the matrix T is well conditioned. We say that the matrix T is 
well conditioned if its condition number K(T) is bounded from above by a 
quantity independent of the dimension n of the matrix. In the applications, 
however, this quantity can be allowed to grow like a small power of n, for 
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example n or n2 [7]. In th’ is case, we shall say that T is weakly well 
conditioned. We shall derive now additional conditions to get K(T) indepen- 
dent of n, or growing, at most, as a power of n. In order to get the result, we 
need an estimate of IIT-‘II. From (2.2.1) we have 

IIT-‘II < ~IL-‘II~IID-‘II~IIU-lll. 

From Theorem 2.1 we have 

~~D-‘~~ = ( m~{di})-i <m-l. 

The previous estimate is independent of the dimension of the matrix. Now 
we shall derive estimates for IIL-‘ll and IIU-‘ll. Let us define the sequences 

L,=l, 

‘i+l = 1 + LJl&Jl, 

SYzr=l, 

mi+l = 1 + ~illb~-ill, 

tzl = 1, 

@I+1 = 1-t qll~n-ill, 

Cl = 1, 

pit-1 = 1 + c+ll, 

i=l...n-1; (3.1.1) 

i=l...n-1; (3.1.2) 

i=l...n-1; (3.1.3) 

i=l...n-1, (3.1.4) 

where gi and +i are defined in (2.2.2), (2.2.3). The following theorem is 
essentially due to Higham [9]. 

THEOREM 3.1. For the sequences (3.1.1)~(3.1.4), 

IIL-‘IL= mp{di}, ll~-‘ll1= my{mi}, 

IL-‘IL= mf=={rJ, lIU_‘111 = max ( ei}. 
i 

Proof. See [9]. n 
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We shall now consider the abovementioned sequences in more detail. It 
is easy to check that 

i-l i-l 

Ji=l+ c I-I 141, 
j=l k=j 

(3.2.1) 

i-l i-l 

mi=l+ C jJ Ien-k(> 

j=l k=j 
(3.2.2) 

i-l i-l 

@i=l+ C n I’n-kl> 
j=l k=j 

(3.2.3) 

i-l i-l 

pi==l+ c n I+$(. 
j-1 k=j 

(3.2.4) 

In order to evaluate the products in the previous expressions, let us define 
the sequence {ok} by setting 

(3.3) 

It follows that 

i-l 

k~jldkl=$-f, j<i. (3.4) 

The same can be done for the other products. Let us examine now the 
sequence{~k}inthetwocases0;:~i<Oandai~i>O,i=1,...,n-1. 

3.1. The First Case: airi < 0 
In this case, from (2.2.3) we have 
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and thus the following iterative scheme is obtained: 

ak = bkl-‘, b, = l~k-l,-l~kl-l, (3.5) 

we have, finally, 

ok = akwk_l + bkwk-2y k 81, 

o,=l, w-,=0. (3.61 

This is a linear second order difference equation, with nonconstant and 
positive coefficients. From the positiveness of ak, bk, the positiveness of the 
sequence {wk} follows. But we need additional conditions for the products 
(3.4) to be bounded. In particular, we shall prove that it is sufficient that 

ak + b, > 1, k>l. (3.7) 

Let us define the following quantities: 

f=mk={ak+bk}> “/=ITlfIl{Uk+bk}. (3.8) 

It is evident that, if the condition (3.7) is satisfied, then 9 > y > 1. Moreover, 

in the following, the notation (X J means the integer part of-r. 

LEMMA 3.1. With reference to the sequence defined by (3.61, let us 
define the following sequences: 

gj = ylw’)/210 
-) jar, _ ~=min{w,,o,+,}, 

(j. = pa, 
_I 

j > r, &=max(w,,w,+i}. 

If the condition (3.7) is satisfied and o,, w,+~ > 0, then 

6Jj<Wj"Gj, j B r. 
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Proof. By induction on 
obviously, gj < oj for j = r 
Onehasforj=k+l 

139 

j. Starting from the first inequality, we have, 
and j = r + 1. Suppose it holds true for j Q k. 

>, y.ylck-‘-‘mo = ylck-‘+‘)/210 = ok+1 

- - 
- 

-- 

In a similar manner, for the second inequality one has wj < hj for j = r and 
j = r + 1. Let us suppose it true for j < k. For j = k + 1 we have 

Wk+l = ak+l~k+bk+lOk-l~(ak+l+bk+l)maxbk~~k-l~ 

69.Y 
Ak-r$ = pk-r+l& = &k+l. w 

From this result, the following theorem follows. 

THEOREM 3.2. with reference to the sequence defined by (3.61, if the 
condition (3.7) is satisfied, then there exists k E N such that 

Oi - <l ifj>i+k, fwall i&l. 
@j 

Proof. From Lemma 3.1, choosing r = 1, it follows that limj _,_ oj = +m. 
Let us consider then the generic element wi. We define n = minlw,, wi+i]. 
It may happen that: 

(a) vcwi+l. In this case, from Lemma 3.1, we find Wi+k > Y’k’21~i+l. 
It follows that the thesis will be true if Yik’21~i+l > oi, that is, - 

10gmaxifwi /@i+ll 

log Y 

where [see (3.3) and Theorem 2.11 

(3.9) 
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(b) n=wi. In this case wi+i>wi; moreover ~~+a=a~+~o~+i+ 

bi+2 wi > wi. It follows that w~+~ > wi for all k > 1. n 

It remains to be seen what happens for 0 < j - i < k. 

THEOREM 3.3. With reference to the sequence defined by (3.61, if the 
condition (3.7) is satisfied, it follows that 

Oi -<<Tk jbr O<j-i<k. 
Oj 

Proof. From Theorem 3.2 it follows that mi+k > oi. Moreover, from 
Lemma 3.1 we have o. B(jWiPk) < t+k , max ( oj, oj+ i}. Two cases are possible: 

(a) max{oj, oj+i) = wj. It follows that 

wi wi 
-sg- Y 

*k-(j-i) < qk. 

wj Wi+k 

6) mdwj,Wj+1I=Wj+l. It follows that 

wi wi 
-<- 

Oj @i+k 

The thesis follows by observing that (see Theorem 2.1) 

From these results, considering (3.1.1), (3.1.2), (3.2.1), (3.2.2), and Theo- 
rem 3.1, it follows that 

E 
i 1 

i-l i-l 

IIL-‘IL= max{Z,} = max l+ C n l&k1 
j=r k=j 

) 

2 
<l+akj++- 

y-l’ - 
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In a similar manner, it can be shown that ]]L-‘]]i also is bounded from above 
by the same quantity. 

REMARK 3.1. By considering (3.5), it is easy to verify that condition (3.7) 
is equivalent to the following set: 

a, + Tk-1-c 1 if u,>O, rk_r<O, 

uk-rk-i<l if u,>O, r&r > 0, 

ak+Tk_l>-l if a,<O, T~_~>O, 
k > 1. (3.11) 

C7k-rk_r>-1 if u~<O, rk-1 <O, 

The geometric interpretation of this set of conditions is the following: the 
o$diugonaZ elements in the columns of the matrix T [that is, the pair 
(ck, 7k _ ,)I must lie in the region of the (a, T) plane shaded in Figure 2. 

A similar result holds for ((u- ‘1). By defining 

ck = lTkl-l> ek = bk_ll’lTkl-l~ 

the following scheme is derived: 

(3.12) 

4k =Ck4k-1+ ek4k-2, k 21, 

40=1, 4_1=0. 

FIG. 2. 



142 L. BRUGNANO AND D. TRIGIANTE 

In order to bound ]]U-‘]I, one needs to bound the products in (3.2.3) and 
(3.2.4). The condition corresponding to (3.7) is now _ 

ck + ek > 1, k>l, 

From the above the equivalent set of conditions [corresponding 
obtained [see (3.12)]: 

(3.13) 

to (3.101 is 

rk+ck-_l<l if rk > 0, uk-iCo, 

rk -uk_l<l if rk>O, o&r>O, 

k a 1. (3.14) 
rk+ok_i> -1 if rk < 0, ok-1 > 0, 

rk-ffk__l> -1 if rk<O, o&i<O, 

that is, the off-diagonal elements in the rows of the matrix T [that is, the 
pair (u~_~, rk)] must stay in the region of the (a, T) plane shaded in 
Figure 3. 

FIG. 3. 
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REMARK 3.2. Let us examine, more in detail, what happens when the 
inequalities (3.7) and (3.13) become equalities. We get 

uk + b, = 1, k al, (3.15) 

ck+ek=l, k>l. (3.16) 

We shall study the former: a similar result holds for the latter. If (3.15) holds, 
the sequence (3.6) is still positive, and wi approaches a limit point as i + m. 
In fact, by setting 

6, = wi - oi_1, 

we can obtain, from (3.6) and (3.15), 

&=(a, -1)c0_~+ biwi_2 = - bicSi_l. 

Since 0 < bi = 1 - ai < 1, it follows that Si -+i ,,O. This implies that 

w - w, = constant. 
’ i+m 

It turns out that a, < oi < 1, and then, from (3.1.1), Theorem 3.1, and (3.2.1), 
we obtain the following result: 

This means that llL-‘llm< O(n). The same result holds obviously for IIL-‘lli. 
In a similar manner, from (3.16), it follows that IIU-‘ll < O(n). In the worst 
case, when both (3.15) and (3.16) occur, it follows that K(T) Q 0(n2). 

REMARK 3.3. We have seen that (3.7) and (3.13) are sufficient conditions 
for the matrix T to be well conditioned. This means, following the definition, 
that K(T) is bounded from above by a quantity that is independent of its 
dimension n. We observe that this does not mean that such bound is small. 
In fact, if we consider the bound (3.10) (or the equivalent bound obtainable 
for(JU-‘II), it is proportional to the quantity 2/(-y - 1). From (3.5) and (3.8), 
it follows that 
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Even if the condition (3.7) [or equivalently (3.11)] is satisfied, nevertheless 

one has y + 1 if lail,l~i--ll -03. In this case, it follows that the integer k 
defined in Theorem 3.2 tends to m [see (3.9)]. If the matrix T is normalized 
so that its entries are in the interval [ - 1, 11, then la,], lri_ II --+Q) is equivalent 
to saying that T -P 9, w h ere, denoting nonzero entries by *, 

a= 

0 * 0 
* 0 

* T, * 
* 

0 * 0 

3.2. The Second Case: airi > 0 
This case is quite similar to the first one. For this reason we shall omit 

the proofs of the statements (see [l] for details). With the same notation of 
(3.5), from (2.2.3) the following second order equation is obtained: 

Ok = akuk-l - b+Jk-_e> k 21, 

Wg= 1, w-,=0. (3.17) 

In this case a sufficient condition for the condition number of matrix L to be 
bounded is the following: 

ak - bk > 1, k>,l. (3.18) 

LEMMA 3.2. Zf the condition (3.18) is satisfied, the sequence de$ned by 
(3.17) is positive and monotone increasing. 

Define now y = mink{ak - bk}. Observe that if (3.18) is satisfied, then 

y> 1. 
_ 

THEOREM 3.4. With reference to the sequence defined by (3.17), $ the 
condition (3.18) is satisfied, then 

2 < yi-j+l fin- j>i. 
wj - 

From this result, it follows that I] L- ‘11 < ~/(r - 1). 
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FIG. 4. 

REMARK 3.4. One verifies that the condition (3.18) is equivalent to the 
following set: 

a, + Tk-1 < 1 if u,>O, rk_1 > 0, 

ok - rk-i <I if ok>O, rk-r<O, 
k > 1. (3.19) 

ok +rk_i> -I if ok<O, rk_l<O, 

ok--k-i> -I if ok<O, rk-l>O, 

These are equivalent to asking that the off-diagonal elements in the columns 
of the matrix T [that is, the pair (ok, rk_ ,)I should be inside the region 
shaded in Figure 4. 

A similar result holds for IIU-‘ll. One obtains that I]U-‘(1 is bounded from 
above by a quantity independent of its dimension if the following conditions 
are satisfied: 

Tk + ok-1 < 1 

rk -ok-l <I 

if rk>O, ok_,>0 

if rk > 0, uk_i < 0 
k > 1. (3.20) 

rk+uk__l> -I if rk<O, ok-1 < 0 

rk-uk__l>-I if T~<O, ok-1 > 0 

These are equivalent to the requirement that the off-diagonal elements in 
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the rows of the matrix T [that is, the pair (a,_,,~,>1 should be inside the 
region shaded in Figure 4. 

REMARK 3.5. As seen in Remark 3.2, if instead of (3.18) we have 

a& - b, = 1, (3.21) 

then llL-‘11< O(n). A similar argument can be made for IlU-‘Il. Observe that 
if (3.21) is satisfied and T is symmetric, then necessarily we have Il~-‘l/ < 
O(n) and consequently K(T) Q 0(n2). 

4. A PARTICULAR CASE 

A relevant case, common to many applications, is the one in which ai and 
ri have constant sign in the submatrices in which the products a,~~ have 
constant sign. In this case we have seen that the matrix T defined by (2.1) is 
invertible if the condition (2.4) is satisfied. Observe that this condition is 
obviously satisfied if the following holds true: 

Iq + Til < 1. (4.1) 

Moreover, the conditions (3.11) (3.14) (3.19) (3.20), which ensure the 
well-conditioning of the matrix, will be satisfied if the following two condi- 
tions hold true: 

Ia, + Ti-_ll < l, lui_l + TiI < 1. (4.2) 

This means that all the pairs (a,_ i, ri). (a,, TJ, (a,, ri_ i) are inside the strip 
in the (o,r) plane shaded in Figure 5. The three conditions (4.1) (4.2) are 
very simple to test, and provide a practical tool to test both invertibility and 
conditioning for the matrices examined in this section. 

5. EXAMPLES 

We report two examples of application of the results presented here. The 
former one is relative to a matrix which is not diagonally dominant, but 
nevertheless well conditioned. The latter derives from the discretization of a 
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\ 
- I\ - u+7=1 

\ \ 
-l \- 0 ; 

> 

\=I \ u 
=+7=-1W \ 

-1 I\ 
FIG. 5. 

differential boundary value problem. By imposing the conditions presented 
here for the resulting tridiagonal matrix, a good numerical solution can be 
obtained. 

5.1. The First Example 
Consider the following tridiagonal matrix: 

1 -0.9 

0.9 1 - 1.8 

1.8 1 

2.7 

2.7 

1 -3.6 

3.6 1 -4.5 

4.5 1 -5 

5 1 5 

-5 1 -5 

5 1 5 
-5 

-5 

5 1 5 

-5 1 

0 -4.5 1 3.6 

-3.6 1 2.7 

-2.7 I 1.8 

-1.8 1 0.9 

-0.9 1 

0 

4.5 

This matrix is not diagonally dominant. Nevertheless, it satisfies the condi- 
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n 

FIG. 6. 

tion (2.4). It follows that it is invertible, and its factorization is bounded (see 
Theorem 2.1). Moreover, it is well conditioned: its LDU decomposition [see 
(2.2.1)-(2.2.3)] has the norms ]]L-‘11 and ]lU-‘I] bounded, because both 
conditions (3.11) and (3.14) are satisfied. So the boundedness of the condi- 
tion number follows. In Figure 6 the ]]L-‘111 (solid line) and the IIU-‘]]1 
(dashed line) are plotted against the dimension n of the matrix. 

5.2. The Second Example 
This example derives from the discretization of the following singular 

perturbation differential boundary value problem: 

Eyn( t) + y’(t) = 0, tE[o,al 

y(0) = 0, y(a) = 1, (5.1) 

where CX, E > 0. When E is small, we have a stiff problem. From the 
discretization of the problem (5.1) with variable step size, a discrete bound- 
ary value problem derives, where 

-hi+l(2E-hi+l) - hi__1(2E + hi-,) 

ai= (hi+hi+l)(2&+hi-hi+l) ’ Ti = (hi + hi__1)(2e + hi-1 - hi) ’ 
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, 0.03, 

I- 

0.8 - 

0.6 - 

h 

0.4 - 

0.2 - 

O- 

0.02 - 

0.01 - 

O- 

E -0.01 - 

-0.02 - 

-0.03 - 

-0.04 - 

I I I 
-0.1 0 0.1 0.2 0.3 0.4 -“.o:o.l 0 0.1 0.2 0.3 

t t 

FIG. 7. 

where hi is the ith step of discretization. From the consistency we have 
(a,_ 1 + T~[= 1. We increase the step of discretization monotonically by at 
most 2.5 at each step. In this way, the quantities in the denominator are 
positive. It follows that 7i is negative, while oi is negative if hi+, < 2~5, 
positive if h,+i > 2~. The resulting matrix is invertible, because the condi- 
tion (2.4) turns out always to be satisfied. Moreover, if we increase the 
discretization step so that also 

ITi_ + Vi1 = 1, 

then it follows, in accordance with Section 4, that the resulting tridiagonal 
matrix, far from being diagonally dominant, is at least weakly well condi- 
tioned. The resulting computed solution, as well as the error are shown in 
Figure 7 (E = 10d4, LY = 0.3). 
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