
Parallel Factorizations and Parallel Solvers
for Trldlagonal Linear Systems*

P. Amodio and L. Brugnanot

Dipartinwnto di Matemutica

Uniuersitir di Bari,

I-70125 Bari, ltaly

Submitted by Robert J. Plemmons

ABSTRACT

We formalize the concept of patm!kZfitorhztim as a set of scalar factorizations.
By means of this concept we are able to give a unified approach to the problem of
solving tridiagonal linear systems on parallel computers. A parallel tridiagonal solver is

associated with each parallel factorization, but a parallel factorization can be associated

with many parallel tridiagonal solvers. As an example, some parallel factorizations are

obtained by simple extension of well-known scalar ones. Numerical tests, obtained on a

network of transputers, are reported for comparison.

1. INTRODUCTION

The solution of tridiagonal linear systems is necessary in many application

fields of numerical analysis. The best scalar algorithm (which derives from the
LU factorization of the coefficient matrix) is very inefficient if we want to use a

parallel or vector computer.
Many parallel tridiagonal solvers have been proposed: the most important

are the partition me&hods [5, 6, 9, 161, the domain decomposition methods

Work supported by the Minister0 della Ricerca Scientifica e Tecnologica (40%) and by

the European Community (P.C.A. contract 4040). Partial support was also given by the P.F.

Calcolo Parallelo (sottoprogetto 1) of C.N.R.

‘E-mail: OOll0570WM.CSATA.IT.

LINEAR ALGEBRA ANZI ITS AZ’Z’LICATZONS 172: 347-364 (1992) 347

0 Elsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0024-3795/92/$5.00

348 P. AMODIO AND L. BRUGNANO

[13], and cyclic reduction [l, 7, 10, 111. In this paper we propose a unified
approach to the problem of solving tridiagonal systems on parallel computers
when the size of the linear system is much greater than the number of parallel
processors used. Our approach is based on the concept of parallel factoriza-
tion, and allows us to optimize existing parallel solvers, as well as to derive
new algorithms from the class of partition and domain decomposition methods.

In Sections 3, 4, 5, 6, and 9 five parallel factorizations are considered; in
Section 7 one of the corresponding algorithms is described in more detail, and
in Section 8 some parallel solvers are compared on a network of transputers.

2. PARALLEL FACTORIZATIONS

Let us consider the problem of solving the linear system

Ax = f,

whose coefficient matrix is tridiagonal,

(24

A=

‘al cl

b2 a2 ~2
. . .

. .

c,-1

bn an

X”)T (2.2)

on a parallel computer with p processors. For simplicity we shall assume

n = kp - 1. In order to derive a wide class of parallel solvers for (2.1) we
consider the following partition of A:

A=

I

1

A(o) cjpllek_,

bi”)eT- 1 fp i#)eT 0

b(‘)el A(‘, cf? lek_ 1

0 bf’ei- 1 fly ’

aiP - 2) @- ve;

bfP_ ‘)e, A(P-l)

r
,

(2.3)

TRIDIAGONAL LINEAR SYSTEMS 349

where e, and ek_l are the first and the last unit vectors in Rk-' respectively,
and

al’) cji) \

A(‘) =
bf) * . @

cfl,
>

b””
k 1 .‘,i’ 1

a!” = aik+,.. b!‘) = bik+,., &’ = Cik+,..

If the blocks A(‘) are nonsingular, we can factorize A as follows:

F=

T=

A = FT,

A(‘) 0
VP)T 1 WP)T 0

0 A(l) 0
0 vWT 1 wP)T 0

0 Ac2) 0
0 vP)T 1

1 ,(P--1)T

0 A(P-1)

Ik-1
y(O)

OT (Y(O) d” +l)

z(l) Ik-1 y(l)

/3(l) dr (Y(l) OT p
z(2) Ik-1 y(2)

pC2) d” ,w

(-JP--2) (y

z(P-l)
Ik-l

(2.4)

(2.5.1)

, (2.5.2)

, (2.5.3)

350 P. AMODIO AND L. BRUGNANO

where lk_ i is the identity matrix of order k - 1 and

,(i) = cg)e 1, vCi) = hf)ek_i,

z(i) = hf)(A(i)) - le,, y(') = ~f~l(A(i))-lek_l,

,(i) = ag) _ b~)cjt),e~_,(A(i))-let_l _ b(,'+l)c~+l)er(A(i+l))-lel,

y(‘) = -cb(f)cf)reT(A(‘))-‘ekl. (2.6)

This formalism is the same used. by Johnsson [9] to derive his algorithm.
However, from (2.5) it is possible to derive different parallel solvers by
observing that the matrices A(‘) may be independently factorized.

DEFINITION. We define a parallel factorization of the matrix A as a set of
p independent factorizations for the blocks A(‘), i = 0, . . . , p - 1.

The parallel factorizations are very useful in deriving efficient parallel
algorithms for solving (2.1); from (2.5) it follows that the solution of (2.1) is

completely parallelizable on p processors. The only sequential part of the
algorithm concerns the solution of the reduced system with the reduced matrix

[see (2.5.3)]:

Tp =

I (y(o) +‘) \

p & * .

+J-2) (2.7)

\
fi(P-2) a(P-2)

I (P-l)x(P--l)

By means of (2.5) it is possible to derive many partition methods by simply
considering different parallel factorizations of the matrix A. It is also possible
to derive domain decomposition methods [I3] if we consider the permuted
matrix

P A PT, (2.8)

TRIDIAGONAL LINEAR SYSTEMS

where P is the following permutation matrix:

351

P=

l,_, 0 0 ‘*’

0 0 I&1 0 0 . . .

000 0 lk-l o
.

0 . . .

. #

(y . . .

From (2.8) it follows that the reduced system (2.7) can be obtained by
performing one step of the block cyclic reduction of the matrix A (see also

PI)-
Given the problem (2.1), for each solver derived from a parallel factoriza-

tion, the reduced matrix (2.7) is the same [this is easily derived from (2.511.
This fact is very important, because the stability of the corresponding parallel
soher depends on:

(I) the stability of the parallel factorization;
(2) the stability of the algorithm for soIving the reduced system.

Consequently, the two problems can be examined separately.
Regarding the reduced matrix (2.7) if the parallel factorization (2.5) exists,

then the following results hold true [2, 91:

THEOREM 2.1. The reduced matrix (2.7) preserves the properties of
diugonal dominance of the matrix (2.2).

THEOREM 2.2. If the matrix (2.2) is irreducible, then the reduced matrix
(2.7) is irreducible.

THEOREM 2.3. The reduced matrix (2.7) preserves the symmetty and
positive definiteness of thf? matrix (2.2).

Let us derive an ahernative formahsm to represent the partition
(2.3), which is more convenient for our purposes. Let us consider the
(n + p - 1) x n matrix R, recursively defined as follows:

R, = I&1, Ri =

Ik-1

1
1

Ri-1

, i = 2,. . . , p.

352 I’. AMODIO AND L. BRUGNANO

We have

A = R$ M R,,

where M is block diagonal:

M= ,
M(P-1)

and

M(o) =
A(o)

bme=
k k-l

0 cme=
0 1

M(‘) = brjel A(‘) i= l,..., p - 2, (2.9)
0 bf)ei_ 1

M(P-1) =

i

0

b(P--l)e
1 1

If the parallel factorization exists, we can state (with obvious differences for
M(O) and M(P-')) that

The vectors ~(~1, wci), zci), y(‘) and the scalars P(i) and y(‘) are the same as in

(2.5). Moreover, we have [see (2.6) and (2.7)]

,w = q + ,f+l), i= ,...,p- 0 2,

of) = - b$‘J,$,‘Jey(A(‘)) -le,, a$’ = at’ - bf)c&ef_l(A(')) -lek_l.

TRIDIAGONAL LINEAR SYSTEMS 353

From (2.10) it follows that a parallel factorization of the matrix (2.2) can be
characterized by the factorizations of the blocks A(‘).

Some authors (for instance [6]) also examine the problem of solving the
reduced system in parallel. We assume n *_ p (the number of parallel process-
ing units); in this case, that problem is not relevant.

3. TWISTED FACTORIZATION

To this factorization corresponds a parallel method for only p = 2 proces-
sors [4, 14, 151. Nevertheless, on two processors this algorithm is optimal; it
has the same scalar count of operations as the scalar LU algorithm, that is, 8n
operations.

For this method, the corresponding parallel factorization is the following
[see (2.9)]:

A(o) = L(o)u(o), A(‘) = fJ(‘)L(‘).

It follows that

The vectors in (3.1) are defined in a manner such that a LU factorization of
M(O) and a UL factorization of MC’) are obtained.

From Theorems 2.1 and 2.2, it follows that the solver is stable if the matrix
(2.2) is diagonally dominant or weakly diagonally dominant and irreducible.

4. PARALLEL LV FACTORIZATION

In several papers, for instance in [5, 91, the LU factorization has been used
to factorize the blocks A(‘). In particular, Johnsson’s algorithm has a scalar
count of (parallelizable) operations of about 22n (see [9]). However, the
parallel factorization corresponding to this algorithm is (2.10) with A(‘) =
L(‘kJ(‘). This leads to a cost of about 18n (parallelizable) operations [2].

354 P. AMODIO AND L. RRUGNANO

It is better to consider the alternative parallel factorization defined by

MC’) = (4.1)

The matrices L(‘), UC”), the vectors vci), y(‘), and the scalar og) in (4.1) are
defined so that

is an LU factorization of the submatrix [see (2.9)]

This implies that the matrix L(‘) is lower bidiagonal, the matrix UC’) is upper
bidiagonal, and only the last component of the vectors y(‘) and vci) is nonzero.

Moreover, from (4.1) and (2.9) we obtain

af) = _w(i)Tz(9, B(i) = _ v(i)Tz(i) > #‘) = - w WY(i).

We observe that zti) and wci) are full vectors ($&in vectors). It is a simple

matter to show that the corresponding parallel solver has a scalar count of

(parallelizable) operations of about 17tr.
From widely known results concerning the LU factorizations and from

Theorems 2.1 and 2.2, it follows that the parallel solver corresponding to (4.1)
is stable if A is diagonally dominant or weakly diagonally dominant and
irreducible.

5. PARALLEL LUD FACTORIZATION

An alternative factorization, which preserves the band structure of the
matrix A(‘), derives from the Gauss-Jordan elimination algorithm. The matrix
A(‘) is factorized in the form L(‘)U(‘)D(‘) where L(‘) and U(‘) are lower and

TRIDIAGONAL LINEAR SYSTEMS 355

upper bidiagonal with unitary diagonal entries, respectively, and DC’) is

diagonal. It follows that

where

u(i)y(i) = Cl,i[lek_l, D(‘)v(“) = bt)ek_-l,

“ii) = _ w(Wz(i), ag) = af) _ v(Vy(i),

$9 = _ W(Vy(i) p(i) = _ v(Vz(i)s

Both the vectors vci) and wci) have only one nonzero entry, while zci) and y(‘)
are fill-in vectors.

Concerning the stability of the factorization, the results are similar to those
for tbe parallel LU factorization. The parallel solver corresponding to (5.1) is
an optimized version of Wang’s algorithm [12, 14, 161; the scalar count of

(parallelizable) operations is decreased from about 21n (see [16]) to about
17 n.

6. PARALLEL CYCLIC REDUCTION FACTORIZATION

Cyclic reduction is an interesting algorithm for the solution of linear
tridiagonal systems on vector and parallel computers [7, 8, 10, 131. However,
its parallel implementation requires synchronization among the processors at
each step of the reduction (see [lo]).

To overcome this problem, in [2] we proposed a block variant of the
algorithm. Our proposal is to apply the cyclic reduction factorization to each
block A(‘) in (2.9). This implies that communication is necessary only for
solving the reduced system (2.7).

356 P. AMODIO AND L. BRUGNANO

First, we recall some notions concerning the cyclic reduction factorization
[3]. If we consider an odd-even permutation matrix P, of dimension k - 1, it
follows that

(we omit the upper index to simplify the notation). C, and B, are diagonal
matrices containing the odd and even diagonal entries of A(‘), respectively; S,
and Tl are bidiagonal matrices with the off-diagonal entries on the even and
odd rows of A(‘). If Cc’ exists, then we define

A(‘) = P~L,D,~,~, = pT l(Sl&l I)(’ Al)(Cl :)‘I. c6.1)

where A, = B, - S,C;‘T, is again tridiagonal (of dimension 1 (k - 1)/2]).
We can again repeat the same operations for D, by considering the matrix

where Qa is the odd-even permutation matrix of order I(k - 1)/2]. The
process stops when D, (r = [log, kl) is the identity matrix of order k - 1.

Then, we extend the factorization (6.1) to the matrix MC’) by means of the
following matrices:

$1 = l 1
PI

1

11 CT dr 0

t, 0 100 =

0 s,c;i z

I

0 ’
ri, =

0 iy OT 1 OoToTl

TRIDIACONAL LINEAR SYSTEMS 357

and

P-2)

By defining the vector wT = (i;lT w;), and similarly the vectors vr, zr, and yr,

we obtain [see (S.l)]

Urrwr = cg)e,, Ur’vr = bf)PTek _ 1,

L,z? = br)e,, L,y, = clcil_lP~ek-l,

.
a1 = -i%&,

^
a2 = up - qy,,

6 = -s$,, 3 = - iC&.

It results that all the vectors C,, Z,, Cr, ?r, i,, i,, it,, f1 have, at most, one
nonzero entry. The absence of fill-in vectors implies that the corresponding
parallel solver has a minimum memory requirement. In fact, only four vectors

of length k per processor are needed, while six vectors are necessary for the
parallel LV and the parallel LU D factorization algorithms.

We observe that a = 0 and + = 0 if r > 1; moreover, if one removes the
blocks on the second row and second column of fiI, the resulting matrix is still

tridiagonal.
The structure of the matrices fii (for i = 2, . . . , r - 1) is similar to (6.2).

At the rth step, we have

where of), CY~), PC’), y(‘) are the scalars defined in (2.10).
The corresponding parallel solver, which we call the parallel cyclic reduc-

tion algorithm is stable when A is strongly diagonally dominant or weakly
diagonally dominant and irreducible (see [3, 7). Moreover, its scalar count of
(parallelizable) operations is of about 17n.

Finally, we observe that, as the cyclic reduction algorithm is vectorizable,
the parallel cyclic reduction algorithm can be efficiently implemented on a
parallel computer with vector facilities. This is not true for the algorithms
examined in the previous sections.

358 P. AMODIO AND L. BRUGNANO

7. THE PARALLEL CYCLIC REDUCTION ALGORITHM

The algorithms deriving from the twisted factorization, the parallel LU

factorization, and the parallel LU D factorization are (if not already known)

very straightforward to derive. This is not true for the parallel cyclic reduction

algorithm, derived from the parallel cyclic reduction factorization, which is not

so immediate (moreover, it will be used later in Section 9). Therefore, we shall

describe it by using a programming-like language. We shall assume that

processor i is involved with the corresponding block MC’) in (2.9) for i =

0 .., p - 1. The vectors a(0 : k), b(1: k), c(0 : k - 1) contain the three diag-

onals of MC’), while the vector x = ~(0 : k) is initialized with r(O) = 0 and

~(1: k) = (&+I ... hi+&; in output x(1 : k) will contain (zik+i a**

~(~+r)~)~ [see (2.1) and (2.2)]; it is obvious that fpk and z,,k are not considered

when i = p - 1:

%
% Parallel cyclic reduction algorithm

%
begin procedure on processor i

%
% Initialization

%
< input of data >

%
r := 0

s := 1

neq := k-l

x(O) := 0

do while (neq > 0 >
r:=r+l

flag := 1 - mod(neq,2)

naq : = int (neq/2)

nl := s
n2 := nl + 8

n3 :=rQ+s
if (i >

c(O) :=

a(O) :=
x(O) :=

c(O) :=

end if
do m := 1

0)
-c(O)/abl)
a(O) + c(O)*b(nl)
x(O) + c(O)*x(nl)
c(O)*c(nl)

to (neq - flag)

TRIDIAGONAL LINEAR SYSTEMS 359

b(n2) := -b(n2)/a(nl)

c(n2) := -c(n2>/a(n3>

a(n2> := a(n2) + c(nl)*b(n2) + c(n2)*b(n3)

XW) := x(n2) + x(nl)*b(n2) + c(n2>*x(n3>

b(n2) := b(nl)*b(n2)

c(n2) := c(n2>*c(n3>

nl := n3

n2 := nl + s

n3 := n2 + s

end do

if (flag = 0 >

n2 := k

end if

if ((p-I-i+flag) > 0 >

b(n2) := -b(n2)/a(nl)

a(n2> := a(n2) + c(nl)*b(n2)

xw> := x(n2) + x(nl)*b(n2)

b(n2) := b(nl>*b(n2>

end if

s := s*2

end do

The information concerning the reduced system is in:

a(O) c(O) x(O)

b(k) a(k) x(k)

solution of the reduced system >

do j := 1 to r

s := s/2

nl :=0

n2 := nl + s

n3 := n2 + s

do m := 1 to neq

x(n2) := (x(n2) -x(nl)*b(n2)

nl := n3

n2 := nl + s

n3 := n2 + s

end do

neq := neq*2

if (n2 < k >

xw> := (xw> - x(nl>*b(n2)

c(n2>*x(n3>)/a(n2)

c(rQ)*x(k) >/a(n2>

(*>

360 P. AMODIO AND L. BRUGNANO

4 := neq + 1
end if

end do
t %

end procedure

8. NUMERICAL TESTS

The parallel methods examined in the previous sections are here compared

with the scalar LU algorithm for solving the linear system (2.1). The twisted
factorization is neglected, because it is an algorithm for two processors only.

The algorithms examined in Sections 4, 5, and 6 have been implemented
in Parallel Fortran [17] with the Express communication library [18] on
a MicroWay Multiputer, which has a network of 32 transputers TSOO-20,

each one with a local memory of 1 Mb. We have not considered the imple-
mentation of other parallel tridiagonal solvers, because of their higher cost,

either in the number of parallelizable operations (see Sections 4 and 5), or in
communication overhead (see Section 6).

For all the parallel methods, the topology of interconnection among the

processors is a pipeline, since the reduced system is solved with a UL
factorization algorithm. If the parallel solution of the reduced system is
needed, then a hypercube configuration is more suitable, since cyclic reduc-
tion is the algorithm of choice [6]. The scalar LU algorithm has been imple-

mented in Fortran on a single T800-20 with 16 Mb of memory.
The speedup (with respect to the dimension of the problem) obtained on 4,

8, 16, and 32 processors is outlined in Figure 1; the solid line is for the parallel
LU algorithm, the dashed line is for the parallel cyclic reduction algorithm,

and the dotted line is for the parallel LU D algorithm.

9. MODIFIED PARALLEL CYCLIC REDUCTION ALGORITHM

If we have a small number of parallel processors, then it might be useful to
have an algorithm with slightly better performance than those examined in the
previous section. From Figure 1 it seems that the parallel cyclic reduction

algorithm proposed in Sections 6 and 7 is the best one. Nevertheless, an
improvement is possible if the blocks A(‘) and A(P-‘) in (2.5.2) are factorized

TRIDIAGONAL LINEAR SYSTEMS 361

18 0
_.--

.

16 -

14 -

12 -

10 -

8-

6-

4-

2-

I 1002
UJ

10’ 10’ 105 106

DIMENSION

Frc. 1. Measured speedup.

as LU and UL, respectively, and cyclic reduction is used for the blocks A(‘),

i= ,...) 1 p - 2. Concerning what was stated in Section 3 about the twisted
factorization, it is implied that if the data are equally distributed among the
processors, the first and the last processors perform a smaller number of scalar
operations than the intermediate ones. It follows that the computational load
can be redistributed in order to have all the processors performing the same
number of operations. This results in better performance of the whole algo-
rithm. The improvement is not so evident if we have many parallel processors,
but it is significant when p is small.

The final algorithm is constituted by that described in Section 7 running on
processor i, i = 1,2,. . . , p - 2 (the two controls with the mark (*> are no
longer necessary in this case), while the algorithms on processors 0 and p - 1
are listed below:

% Modified parallel cyclic reduction
%
begin procedure on processor 0

%

algorithm

362 P.AMODIOANDL.BRUGNANO

1 Initialization

%
< input of data >

%
do m := 2 toko

b(m) := -b(m)/a(m- 1)

a(m) := a(m) + b(m)*c(m-1)

x(m) := x(m) + b(m>*x(m-1)

end do

%
% The information concerning the reduced system is in:

% a&J x(k,)

%
< solution of the reduced system >

%
do m :=k, - 1 to 1 step -1

x(m) := (x(m) - c(m>*x(m+l> >/a(m)

end do
.,

end procedure

% Modified parallel cyclic reduction algorithm

%
begin procedure on processor p-l

%
% Initialization

%
C input of data >

%
do m := k,_l - 2 to 0 step -1
c(m) := -c(m>/a(m+l)

a(m) :=a(m> + c(m)*b(m+l)

x(m) := x(m) + c(m)*x(m+l>

end do

%
% The information concerning the reduced system is in:

% a(O) x(O)

%
< solution of the reduced system >

%
do m := 1 to k,_, - 1

TRIDIAGONAL LINEAR SYSTEMS 363

2

2

2

3 2

0

I

I

I

!.8 -

!.6 -

!.4 -

!2 -

2-

..8 -

..6 -

_.___.-

,._._.-.-’

. .

_.___.-.

,*_....~~-~

/

/

_/*

,/

,i’
.i’ __d--

_-me---

,..’ _/- _-
__,.----

.#.’ _.--

__,,,(,~,_,._.__.___...........“.”

103 104

DIMENSION

FIG. 2. Speedup on four processors.

1

x(m) := (x(m) - b!m)*x(m- 1) >/a(m)
end do

%
end procedure

In Figure 2 (p = 4) the algorithms of Figure 1 are compared with the
modified version of tbe parallel cyclic reduction algorithm (dash-dotted line).

We ezpress our thmks to Mrs. Padene Butts fat her help in the preparation
of the munusm pt.

REFERENCES

1 P. Amodio, Optimized cyclic reduction for the solution of linear tridiago-
nal systems on parallel computers, submitted for publication.

2 P. Amodio, L. Brugnano, and T. Politi, Parallel factorizations for tridiago-
nal matrices, submitted for publication.

364 P. AMODIO AND L. BRUGNANO

3 P. Amodio and F. Mazzia, Stability of the cyclic reduction for the solution
of tridiagonal systems, submitted for publication.

4 I. Babuska, Numerical stability in problems of linear algebra, SIAM J.
Numer. Anal. 9:53-77 (1972).

5 L. Brugnano, A parallel solver for tridiagonal linear systems for dis-
tributed memory parallel computers, Parallel Comput. 17:1017-1023
(1991).

6 I. N. Hajj and S. Skelboe, A multilevel parallel solver for block tridiagonal
and banded linear systems, Parallel Cumput. 15:21-45 (1990).

7 D. Heller, Some aspects of the cyclic reduction algorithm for block

tridiagonal linear systems, SlAM J. Numer. Anal. 13:484-496 (1976).

8 R. W. Hackney and C. Il. Jesshope, Parallel Computers, Adam Hilger,
Bristol, 1981.

9 S. L. Johnsson, Solving narrow banded systems on ensemble architec-

tures, ACM Trans. Math. Software 11:271-288 (1985).

10 S. L. Johnsson, Solving tridiagonal systems on ensemble architectures,
SIAM J. Sci. Statist. Comput. 8:354-392 (1987).

11 D. Kershaw, Solution of single tridiagonal linear systems and vectoriza-
tion of the ICCG algorithm on the Cray 1, in Parallel Computations
(G. Rodrigue, Ed.), Academic, New York, 1982, pp. 85-99.

12 P. H. Michielse and H. A. Van Der Vorst, Data transport in Wang’s
partition methods, Parallel Cumput. 7:87-95 (1988).

13 J. M. Ortega, Introduction to Parallel and Vector Solution of Linear
Systems, Plenum, New York, 1988.

14 H. A. Van Der Vorst, Large tridiagonal and block tridiagonal linear
systems on vector and parallel computers, Parallel Comput. 5~45-54
(1987).

15 H. A. Van Der Vorst, Analysis of a parallel solution method for tridiagonal

linear systems, Parallel Cumput. 5:303-311 (1987).
16 H. H. Wang, A parallel method for tridiagonal equations, ACM Trans.

Math. SojIware 7:170-183 (1981).
17 Parallel Fortran User Guide, 3L Ltd., 1988.
18 Express: A Communication Environment for Parallel Computers, ParaSoft

Corp., 1988.

Received 18 July 1991; jhzl mmw.mipt accepted 10 February 1992

