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ABSTRACT 

We show that it is always possible to transform the problem of tìnding the mots of 
a generic polynomial to the problem of determining the eigenvalues of tridiagonal 
matrices having only simple eigenvalues. Since this problem is very effìciently solved, 
for example with the familiar QR method, it seems that the present veIy simple 
approach bas the potentiality to supplant the existing ones. 

1. INTRODUCTION 

The problem of finding simultaneously al1 the roots of a polynomial has 
received an increasing amount of attention in the last few decades, perhaps 
because of an increasing need of robust methods in the applications. The 
problem, however, is attractive in itself because of its wonderful history, 
which goes back to Sumerians (= 3000 B.C.) [lol. At the present, the 
situation is the following. For the special subset of orthogonal polynomials, it 
has recently been realized that the most efficient method to approximate 
their roots is to solve an eigenvalue problem for an associate tridiagonal 
matrix. In the genera1 case the following three main ideas are driving the 
current lines of research. 
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1. Homotopy methoak These reach the roots of the polynomial essen- 
tially by following a curve implicitly or explicitly defined by a differential 
equation. They are interesting because they can easily be generalized to 
systems of polynomials and for their potentiality for parallel computation. 
They are crucially dependent on the initial points and on the multiplicity of 
the roots. For a single polynomial they don? seem competitive with the 
methods belonging to the following two classes. 

2. Methods which transform the polynomial equation to an equivalent 
system of equations. This is generally obtained by using some relations 
among symmetrie functions of the roots and the coefficients. The obtained 
system is then solved by using the Newton method. Examples of such 
methods are the Durand-Kemer-Weierstrass method [2, 7, 81 and the 
Pasquini-Trigiante method [12]. Because of the use of the Newton method, 
such methods are potentially dependent on the choice of the starting point 
and on the multiplicities of the roots, unless information about these quanti- 
ties is provided. This information may actually be obtained as the iteration 
proceeds by means of semiempirical techniques; the dependence on the 
starting point may also be essentially eliminated, but then the overall proce- 
dure becomes cumbersome (sec e.g. LET [9] and BTP [l]). Even if these 
methods work very well, the proof of their convergente has been done only 
for special cases, e.g. when the roots are al1 real and simple. 

3. Methods which transforrn the problem to an eigenvalue problem. 
The easiest way of doing this is to construct the companion matrix associated 
to the given polynomial and then look for its eigenvalues, for example by 
taking advantage of the high performance of the QR method. Although this 
procedure may seem rough, it always gives an approximation of the roots (sec 
the function roots in Matlab). However, in the case of multiple roots, the 
obtainable approximations are not sharp. For special subsets of polynomials, 
for example orthogonal polynomials, this idea may be refined by using the 
fact that these polynomials satisfy a three-term recursive relation, and this 
permits the problem to be transformed into an eigenvalue problem for a 
symmetrie tridiagonal matrix with simple eigenvalues. The performance of 
the QR method on such matrices is excellent, and today there is unanimity in 
considering this technique the best. 

In this paper we wil1 show that the third idea may be generalized. Mainly, 
we wil1 show that for a generic real or complex polynomial p(x) the problem 
of finding its roots may always be transformed to one or more eigenvalue 
problems for tridiagonal matrices with only simple eigenvalues. 

The procedure which transforms the original problem is very simple and 
gives rise to a very efficient method whose main features are: 

1. It is possible to get exact information about the multiplicities. 
2. One obtains the same precision for both simple and multiple roots. 
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3. There is no need of starting points. 
4. The order of convergente is that of the QR method for tridiagonal 

matrices and for simple eigenvalues. In the case of al1 real roots, the 
tridiagonal matrix can be taken symmetrie, and this further improves the rate 
of convergente of the QR method [4]. 

2. THE EUCLIDEAN ALGORITHM 

The Euclidean algorithm is usually used to find the common divisor 
between two polynomials, but it can also be regarded as a three-term 
recurrence relation similar to that satisfied by orthogonal polynomials. Let 

po(x) = 2 qX+, co = 1, 
i=O 

be the polynomial we are interested in. Let pr(x> be any other polynomial of 
degree n - 1. The Euclidean algorithm performs iteratively the division 
between successive polynomials according to the following scheme: 

Po(X) = 4lWPd4 - Pzbh 

PdX) = 92WPd-4 - PdX), 
(1) 

PwdX) = 4m-dX)Pm-d4 -P,(x)> 

P”L-w = %(4Pm(~)~ 

where m < n and 0 < deg pj+ , < deg pj, j = 1, . . . , m - 1. One easily 
realizes that P..,(X) is a common factor of po(x), p,(x), . . . , p,_,(x). It is, , ,.. 
indeed, the gcd of p, and pr. Then, if p,(x) f const, the functions 

i=O ,...,m, 

are polynomials as well. Since the degree of pl( x) has been taken equal to 
n - 1, the degree of gr(x) has to be one. Conceming the degree of p,(x), 
what can be said is that it is not greater than n - 2. In general, when it 
happens that 

degp,(x) =n-i, i=O ,..., m=n, (2) 
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we shall say that the algorithm (1) terminates regularly. 
when the gcd of p,, and p, is nontrivial, or when k E 
that 

AND D. TRIGIANTE 

When it does not, i.e. 
11,. . . , m} exists such 

deg p,(x) = n - i, i = O,...,k - 1, 

(3) 
deg p,(x) < n - i, i >k, 

we say that a breakdown has occurred at the kth step of (1). We use this 
term because this situation seems analogous to what happens when one tries 
to transform a genera1 square matrix to tridiagonal form [3, 11, 131. 

If we are not forced to use a specific p,(x), it is always possible to choose 
it such that the algorithm (1) terminates regularly: in fact, it is enough to 
consider that the conditions on the coefficients which lower the degrees of 
the polynomials pi(x), i > k, are necessarily a finite number, while the 
coefficients of pl( x) can be chosen in dl- ’ possible ways. 

3. THE NEW METHOD 

When (2) is satisfied, the relation (1) defines a complete three-term 
recurrence relation among the polynomials pi(x), i = 0,. . . , n. It follows 
that al1 the polynomials 9,(x) are linear. By setting 9i(x) = r - ai and 
supposing that p,(x) and p,(x) are monic polynomials, one obtains 

(4 

Pn-dX) = (x - %>P,(X), 

where p,(r) = 1. The quantities Pi have been introduced in order to have 
the successive polynomials p,(x) monic. Then, if (1) terminates regularly, po 
and p, are coprime, and the polynomials generated by (11, when normalized 
by the leading coefficient, coincide with those obtained from (4). On the 
other hand, if the procedure (1) has a breakdown at the k th step, it means 
that the procedure (4) is able to produce only the polynomials p,, . . . , pk. 
These polynomials coincide again with the first k + 1 ones obtained from (1) 
scaled by the leading coefficient. It follows that we can switch, if necessary, 
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If the process (1) with (6) t erminates regularly, that means that p,(x) has 
no multiple roots, since p,(r) is of degree zero, and then the starting 
polynomial and its derivative have no common roots. It follows that also the 
process (4) terminates regularly; moreover, the matrix í”, [see (5>] wil1 have 
only simple eigenvalues. 

Conversely, if a breakdown occurs at the (T + I)st step in the procedure 
(4) then two cases are possible: 

P,+ IC x) = 0, 

Pr+lb) f 0. 

In the first case, it follows that the roots of p,(x) are given by the roots of 
f,(x) = p,(x)/p,(x), which has only simple roots, and those of p,(x). 
Moreover, the roots of f,( ) x are the eigenvalues of the matrix T, [see (5)] 
already formed. It follows that it is sufficient to apply the same procedure to 
the polynomial p,(x) alone. 

In the second case, we switch from the procedure (4) to the procedure 
(1). Two subcases may then occur: 

deg p,, = 0, 

deg P,,, > 0. 

In the first subcase p,, is necessarily a constant. This implies that p,(x) 
and p;(x) have no common factors, and then al1 the roots of p,(x) need to 
be simple. In this case we are no longer interested in (6). As a matter of fact, 
as stated in the previous section, it is possible to find infinitely many 
polynomials pJx> such that the procedure (4) applied to p,(x) terminates 
regularly. In general, it is sufficient to choose pl( x) as a random monic 
polynomial of degree n - 1. 

In the second subcase one applies the whole procedure to the two 
polynomials p,,,(x) and f,(x) = p,,(x)/p,,( x) as starting polynomials. As 
before, f,(x) has only simple roots. 

The previous considerations may be summarized as follows. 

THEOREM 2 (Main result). The roots of a real or complex polynomial 
p(x) of degree n are the eigenvalues of a black diagonal matrix 

(7) 
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Each black T(j) bas only simple eigenvalues, and has the farm 

213 

where 

and 

d = k, > k, 2 .*. z k, > 1 

Ckj=n. 
j=l 

The number of diagonal blocks s is equal to the maximum multiplicity of the 
roots of p(x), while d is the number of distinct roots. Moreover, if a root 
appears in the jth black and not in the (j + 1)st one, it bas exact multiplicity 
j and must appear in al1 the previous blocks. 

The method based on the previous main result has the potential to fumish 
the exact multiplicities of the roots. This is never achieved by usual methods, 
although some methods (for example LPT [9]> may give this information with 
good reliability. 

It is known that for the existing methods, in the case where the roots of 
p,(x) are al1 real and simple, the problem simplifies. This is essentially due to 
the fact that in this case Rolle’s theorem applies in the usual form. The 
counterpart for our procedure is the following: 

THEOREM 3. Suppose that p,(x) is a monic polynomial. Then it has only 
real and simple roots iff the procedure (4) with (6) terminates regularly and 
pi > 0, i = 1, . . . , n - 1. 

Let US prove the first implication. Although the proof could be done by 
observing that in this case the sequence {pi) is a Sturm sequence, we prefer 
to prove the result in a different way which shows the meaning of the 
quantities pi. From Rolle’s theorem one has that the roots of p,(r) separate 
those of p,(r). Let x1 < x2 < *.* < x,_~ be the roots of p,(r). Then the 
quantities 

PO( ‘i) 
gi = nj+i(xi _ xj) ’ i=l >...> n - ‘, 
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have constant sign, that is, 

sign gi = sign pa( ri) sign n ( xi - xj) 
j#i 

= sign po( x,) sign n (x1 - xi) 
j=Z 

where sign pO( x1) = (- l)“- ’ f o ows from the hypothesis that p,(x) is 11 
monic. By considering the divided differente of pO( X) over x1, . . . , x, _ 1, 
from the first relation in (4) one has 

n-1 

PrJh..., xr,-11 = -P1 = c gj < 0, 
i=l 

that is, B1 > 0. Moreover one has 

PO( 'i> 
~ = -pl < 0, 
P2( ‘i) 

i=l ,...,n - 1. 

Therefore p,(r) has n - 2 real roots, which separate those of p,(x). The 
proof is completed by induction. The next Pi, i = 2, . . . , n - 1, are 

pi = -pi_Jq,..., zn-J, 

where .zl < .** < z?~_~ are the roots of p,(x). 
Concerning the converse implication, since al1 the pi are positive, the 

matrix T, [see (5)] may be transformed to the symmetrie tridiagonal matrix 

f,, = 

\ 
al Yl 

YI . 

Y,-1 ’ 
\ Yn-‘1 “n 1 
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where 
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Yi = JBi> i=l ,...,n - 1. 

Since the matrix T,, is symmetrie and unreduced, its eigenvalues have to be 
real and distinct. ??

4. NUMERICAL EXAMPLES 

In the previous sections we have described a procedure which is able to 
find al1 the roots of a polynomial along with the respective multiplicities. The 
procedure consists in the construction of the black diagonal matrix T* in (7), 
whose blocks are tridiagonal with only simple eigenvalues. 

Owing to the logica1 simplicity of the procedure, the tridiagonal matrix T* 
may be constructed either numerically or formally. Of course, the numerical 

TABLE 1 

btroots P 

l.O~OOOOOO~~OEOO 6 
- 1 .OOO~~OOOOO~EOO 2 

1.110223024625157~ - 16 + 1.000000000000000~00i 3 
1.110223024625157~ - 16 - 1.000000000000000~00i 3 
2.000000000000000E00 1 

roots 

1.999999999999988EoO 

-9.999999999999982E - 01 + 
-9.999999999999982E - 01 - 

2.784917664012954E - 06 + 
2.784917664012954E - 06 - 

-5.332793704612704E - 06 + 
-5.332793704612704E - 06 - 

2.547876037664598E - 06 + 
2.547876037664598E - 06 - 

1.741703483489851E - 08i 
1.741703483489851E - 08i 
1.000004549925426E~i 
1.00000454992~26E~i 
1000000136873613~00i 
1.000000136873613~00i 
9.999953132009639E - Oli 
9.999953132009639E - Oli 

1.~1555590371782EOO + 2.702808664651358~ - 03i 
1.0015555590371782EOO - 2.702808664651358~ - 03i 
9.98439550313493OE - 01 + 2.694392347437423E - 03i 
9.98439550313493OE - 01 - 2.694392347437423E - 03i 
1.003120952472778EOO 
9.968887661566825E - 01 
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implementation may have difficulties, in pathological cases, in recognizing 
whether a breakdown has occurred in the procedure (4) or not. This problem 
disappears if a forma1 implementation for constructing T * is used. However, 
once the diagonal blocks of the matrix T * are obtained, no more forma1 
operations are needed, since the QR method works quite well. 

As usual, in finite-precision arithmetic one must distinguish the following 
two cases: 

1. the coefficients of the polynomial are exactly represented; 
2. the coeffcients of the polynomial are not exactly represented. 

In the latter case, the represented polynomial may have different multiplici- 
ties from the exact one. A typical example is given by the polynomial X” if 
represented as x” + E, where a multiple root splits into 72 simple roots. In 
this case the method wil1 fail in the determination of the multiplicities. 

In the fìrst case, troubles are expected in some pathological cases, even 
though some of them can be overcome. For example, the polynomial (X + 
EX x + 2 E) can be transformed to the more favorable ( y + 1X y + 2) with 
the change of variable x = EY, but we do not go into details of the effective 
implementation of the method. 

TABLE 2 

btroots P 

l.O~OOOOOOOOOOOOEOO 10 
2.000000000000002E00 2 
2.359223927328458E - 16 + 1.000000000000000~00i 1 
2.359223927328458E - 16 - l.O~O~OOOOO~OEOOi 1 

roots 

2.0~000000139061E~ + 6.67097804075235lE - 06i 
2.~~000139061E00 - 6.67097804075235lE - 06i 
4.996003610813204E - 15 + 9.999999999999956E - Oli 
4.996003610813204E - 15 - 9.999999999999956E - Oli 
1.057137071108160~00 + 1.96198412287598OE - 02i 
1.057137071108160~00 - 1.96198412287598OE - 02i 
1.032737676591875EOO + 4.933406972009342E - 02i 
1.032737676591875&0 - 4.933406972009342E - 02i 
9.970809692262279E - 01 + 5.734748579346576E - 02i 
9.970809692262279E - 01 - 5.734748579346576E - 02i 
9.6542718790905820 - 01 + 4.377197476036213E - 02i 
9.654271879090582E - 01 - 4.377197476036213E - 02i 
9.476170950256143o - 01 + 1.614499615703074E - 02i 
9.476170950256143E - 01 - 1.614499615703074E - 02i 
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We shall report the results obtained from a preliminary version of the 
algorithm here described, which has been coded in Matlab and called 
bt root s. The obtained results are compared with the output of the Matlab 
function roots, which uses the QR method applied to the companion 
matrix. We mention that other known solvers such as the Jenkins-Traub [6] 
and the Durand-Kemer method are much more entangled, and they do not 
fumish any information about multiplicities. 

In al1 the examples, the Matlab function poly has been used to obtain 
the coefficients of the polynomial. The outputs of the functions btroot s 
and root s are reported (for btroot s, the second column in each table 
contains the found multiplicity ~1: 

TABLE3 

btroots CL 
0 + 1.000000000000051E00i 5 
0 - 1.000000000000051E00i 5 
0 + 5.000000000002114~ - Oli 4 
0 - 5.OOOOO0000002114~ - Oli 4 
0 + 7.5OO~O~l7798E - Oli 1 
0 - 7.5OO~~OOl7798E - Oli 1 

roots 

- 8.677727078576503~ - 10 + ~.001364240450085E00i 

-8.677727078576503~ - 10 - 1.001364240450085E00i 
-1.297904655584797E - 03 i- 1.000422932206438EOOi 
-1.297904655584797E - 03 - 1.0~42293%!06438EoOi 
1.297903969489856E - 03 + 1.~422933%&%5Eooi 

1.297903969489856E - 03 - ~.ooo422933~4355Eooi 

-8.037626826402702~ - 04 + 9.988949461055121E - Oli 
-8.037626826402702~ - 04 - 9.988949461055121E - Oli 
8.037642364997766E - 04 + 9.988949473339882E - Oli 
8.037642364997766E - 04 - 9.988949473339882E - Oli 
3.608224830031759E - 16 + 7.500000000007786~ - Oli 
3.608224830031759E - 16 - 7.500000000007786~ - Oli 

-1.464917736879456E - 04 + 5.001463361006820~ - Oli 
-1.464917736879456E - 04 - 5.001463361006820~ - Oli 
1.464917536932175E - 04 + 5.001463361205132~ - Oli 
1.464917536932175E - 04 - 5.001463361205132~ - Oli 

-1.461809791177826E - 04 + 4.9985366387875070 - Oli 
-1.461809791177826E - 04 - 4.998536638787507E - Oli 
1.461809991131213E - 04 + 4.998536638988948E - Oli 
1.461809991131213o - 04 - 4.998536638988948E - Oli 
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EXAMPLE 1. 

p(x) = (x - ly(x + ly(x + i)"(x - i)"(x - 2). 

The results are shown in Table 1. 

EXAMPLE 2. 

J?(x) = (x - l)lO(r -2)7x - i)(x + i). 

The results are shown in Table 2. 

EXAMPLE 3. 

p(x) = (x - i)"(r + q5(x - o.5q4(x + o.5q4(x - 0.75i)(x + 0.75i). 

The results are shown in Table 3. 

TABLE4 

btroots h 
1.~OOOOOOO~OOOEOO 3 

-1 .OOO~OOOOOOO~OEOO 4 
4.999999999999961E - 01 + 1.000000000000003E00i 3 
4.999999999999961E - 01 - 1.000000000000003E00i 3 
4.999999999999963E - 01 + 5.000000000000068~ - Oli 2 
4.999999999999963E - 01 - 5.000000000000068~ - Oli 2 

roots 

- 1.000081182476063~00 
-1.0000~~0770496E00 + 8.118324186043912E - 05i 
-1.000000000770496~00 - 8.118324186043912E - 05i 
-9.99918815982947OE - 01 
4.999958489694322E - 01 + 1.000012649037798E00i 
4.999958489694322E - 01 - 1.000012649037798E00i 
5.000130304823061~ - 01 + 9.9999727044872970 - Oli 
5.000130304823061~ - 01 - 9.999972704487297E - Oli 
4.999911205482621E - 01 + 9.999900805135149E - Oli 
4.999911205482621E - 01 - 9.999900805135149E - Oli 
l.OOOOO4941876991EOO + 8.559855154400441E - 06i 
1.000004941876991o00 - 8.559855154400441E - 06i 
9.999901162460169E - 01 
5.000000692175076E - 01 + 4.9999997097311020 - Oli 
5.000000692175076E - 01 - 4.999999709731102E - Oli 
4.999999307824918E - 01 + 5.000000290268498E - Oli 
4.999999307824918E - 01 - 5.000000290268498o - Oli 
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EXAMPLE 4. 

p(x) = (X - 1)3(x + 1)4(X - 0.5 - i)“( x - 0.5 + i)” 

x(x - 0.5 - 0.5$(x - 0.5 + 0.5iy. 

The results are shown in Table 4. 

Note added in proof After the manuscript was accepted, the authors 
were advised that a result similar to Theorem 3 had been obtained by 
Schmeisser and published in this @urnal 193:14 (1993). 
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