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SUMMARY

In this paper we discuss some linear algebra issues concerning the implementation of blended im-
plicit methods (J. Comput. Appl. Math. 2000; 116:41–62, Appl. Numer. Math. 2002; 42:29–45,
J. Comput. Appl. Math. 2004; 164–165:145–158, In Recent Trends in Numerical Analysis, Trigiante
D (ed.), Nova Science Publication Inc.: New York, 2001; 81–105) for the numerical solution of ODEs.
In particular, we describe the strategies, used in the numerical code BiM (J. Comput. Appl. Math. 2004;
164–165:145–158), for deciding whether re-evaluating the Jacobian and=or the factorization involved in
the non-linear splitting for solving the discrete problem. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational codes represent an outstanding technological aspect of the Mathematical
Sciences. Moreover, these codes constitute basic tools for problem solving in applied �elds.
The construction of such codes requires, in turn, the systematic solution of a number of related
sub-problems, which constitute the intermediate steps to reach the desired goal. This aspect
of Numerical Mathematics is often underestimated and considered to be only of secondary
importance. On the contrary, it is a source of new trends of investigation, and a necessary
building block to make Mathematics usable from people involved in solving real-life problems.
With this premise, our attention will be devoted to the solution of several speci�c sub-

problems which are met when constructing a numerical code for solving sti� IVPs for ODEs.
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Indeed the e�cient solution of such problems requires to properly address (at least) the
following points:

• the choice of appropriate methods,
• the selection of an appropriate mesh, in order to meet a prescribed accuracy requirement,
• the construction of a suitable discrete problem,
• the solution of the discrete problem itself.

Our attention will be mainly devoted to further sub-problems related to the last point. In
more detail, when solving the problem

y′=f(t; y); t ∈ [t0; T ]; y(t0)=y0 ∈Rm (1)

by means of an implicit di�erence scheme, the discrete solution of the local discrete problem,
approximating locally the continuous one, usually requires the evaluation of the Jacobian of
f at the most recently known point, as well as the factorization of a matrix, involved in
the non-linear iteration, which depends on the Jacobian itself and from the current stepsize.
Often, such operations are not performed at each integration step, in order to lower the
computational cost. Essentially, this is done when the non-linear iteration has performed well
in the last step, but the decision whether to re-evaluate the Jacobian and=or to factorize the
matrix is usually made according to some heuristics. This is, indeed, the case for the most
e�cient codes currently available for solving problem (1). For the methods implemented in
the code BiM [1], namely blended implicit methods [1–4], such a decision is supported by
a linear analysis of convergence, which can be carried out because of the particular form of
the discrete problem. This analysis will be the main concern of the paper. For the remaining
computational details of the code BiM, we refer to Reference [1].
The organization of the paper is as follows: in Section 2, we recall the basic facts about the

blended implicit methods implemented in the code BiM; Sections 3 and 4 are devoted to the
analysis of the convergence properties of the iterative procedure for solving the corresponding
discrete problem when, respectively, the Jacobian and the factorization are not updated, in
order to provide a practical criterion.

2. BLENDED IMPLICIT METHODS

Block implicit methods are di�erence methods for the numerical integration of problem (1)
which provide a discrete problem in the form,

F(yn)≡A⊗ Imyn − hnB⊗ Imfn − Wn= 0 (2)

where A and B are r × r non-singular matrices de�ning the method, the block vectors

yn=(y1n; : : : ; yrn)T; fn=(f1n; : : : ; frn)T; fjn=f(tjn; yjn)

contain the discrete solution, and the vector Wn only depends on values of the solution at
previous mesh points. Finally, following a standard notation, yin denotes the approximation to
y(tin), where tin= t0n + ihn, i=1; : : : ; r, t0n≡ tr; n−1, n¿1, (t01≡ t0) and hn is the stepsize used
in the current nth block. Instances of methods falling in this class are the majority of implicit
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Runge–Kutta methods, a number of general linear methods and, more recently, block BVMs
[5]. In References [1, 3] it is possible to �nd all details concerning the methods implemented
in the code BiM. In order to describe their blended implementation, let us apply the methods
to the standard test equation,

y′=�y; y(t0)=y0 ∈R; Re(�)¡ 0 (3)

for which, by setting as usual qn= hn�, the discrete problem (2) assumes the simpler form:

(A− qnB)yn= Wn

By setting I the identity matrix of size r×r and C=A−1B, the previous equation is equivalent
to the following ones:

(I − qnC)yn= W(1)n ≡A−1Wn; (C−1 − qnI)yn= W(2)n ≡B−1Wn (4)

By the way, we observe that in general a loss of sparsity could result when considering the
matrices C and C−1 in place of A and B. This happens when the latter matrices are both
sparse. However, for the methods we are interested in, either A or B are full matrices. By
introducing now the function

�(qn)= (I − qn�I)−1; �¿0 (5)

and by weighting the equations in (4) with weights �(qn) and I −�(qn), respectively, we then
obtain the following equivalent formulation.

M (qn)yn − W(qn)≡ (A(qn)− qnB(qn))yn − W(qn)

≡ ((�(qn)I + (I − �(qn))�C−1)− qn(�(qn)C + (I − �(qn))�I))yn
−(�(qn)W(1)n + (I − �(qn))�W(2)n )= 0 (6)

which de�nes the blended implicit method associated with the block method (2). This name
is due to the fact that the discrete problem is obtained as the ‘blending’ of two equivalent
forms of the same basic block method. The key point concerning a blended implicit method is
that its structure naturally induces the choice of a splitting for iteratively solving (6). In fact,
one easily veri�es that, for qn≈ 0, M (qn)≈ I , and, for |qn|�1, M (qn)≈ −qn�I . Consequently,
instead of solving (6), one may think to solve iteratively

N (qn)y(i+1)n =(N (qn)−M (qn))y(i)n + W(qn); i=0; 1; : : : (7)

where

N (qn)= I − qn�I ≡ �(qn)−1 (8)

For the methods described in References [1, 3], this iteration has been proved to converge for
all Re(qn)60, since, for all such values of qn the spectral radius of the iteration matrix,

I − N (qn)−1M (qn) (9)
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say �(qn), is smaller than 1. As matter of fact, the maximum ampli�cation factor, �∗=
maxx¿0 �(ix), with i denoting the imaginary unit, is smaller than 1. We observe that, from
(5) to (8), one obtains that �(0)=0, and �(∞)≡ limqn→∞ �(qn)=0, since in both cases the
iteration matrix is the zero matrix. Consequently, one has that, because of the second property,
iteration (7) is well-suited for sti� problems, since the sti� ampli�cation factor �(∞) is 0.
Moreover,

�(qn)≈ �̃qn for qn≈ 0 (10)

where �̃ is the non-sti� ampli�cation factor. In Reference [3] the parameter � has been chosen
in order to minimize the maximum ampli�cation factor �∗, thus giving �∗¡1 for all methods
implemented in the code [1]. Moreover, it has been proved [3] that the eigenvalues of the
iteration matrix (9) are given by

qn(�− �)2
�(1− qn�)2 ; �∈�(C) (11)

where

�= |�1| ≡ min
�∈�(C)

|�|; �∗=1− cos �1; �̃=2|�1|�∗ (12)

with �(C) denoting the spectrum of the matrix C ≡A−1B, and �1 the argument of �1. Finally,
again from the arguments in Reference [3], one obtains that the spectral radius of the iteration
matrix (9) is given by (see (12))

�(qn)=
∣∣∣∣ qn(�1 − �)

2

�1(1− qn�)2
∣∣∣∣ (13)

Coming back to problem (1), the blended iteration (7) generated by a blended implicit
method now becomes:

y(i+1)n = y(i)n − �n[�n
(
(I − �C−1)⊗ Imy(i)n − hn(C − �I)⊗ Imf (i)n

)

+ �(C−1 ⊗ Imy(i)n − hnI ⊗ Imf (i)n ) + Wn]; i=0; 1; : : : (14)

where y(i)n =(y
(i)
1n ; : : : ; y

(i)
rn )T, f

(i)
n =(f

(i)
1n ; : : : ; f

(i)
rn )T, f

(i)
jn =f(tjn; y

(i)
jn ), and the vector Wn only de-

pends on (t0n; y0n). Finally,

�n= I ⊗�−1
n ; �n=(Im − hn�Jn) (15)

where Jn is the Jacobian of f at (t0n; y0n). Consequently, if � iterations are performed to obtain
convergence, the overall computational cost is approximately made up from four components:

• the evaluation of the Jacobian matrix Jn,
• the factorization of the m×m matrix �n (see (15)),
• r� function evaluations, and
• 2r� system solvings with the factors of the matrix �n.
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Obviously, the relative computational cost of the �rst two entries with respect to the overall
computational cost depends on the continuous problem and on �. In particular, their relative
cost increases when � decreases. Therefore, when the blended iteration (14) converges rapidly,
the overall computational cost of the iteration can be reduced signi�cantly by means of one
of the following approximations: Jn≈ Jn−1, and=or �n≈�n−1. It is clear that (see (15)) in
both cases a perturbation is introduced in the matrix �n and, therefore, the spectral radius of
the corresponding iteration matrix turns out to be a�ected. In the following two sections, we
shall study this aspect by means of a linear analysis, which relies on the particular structure
of the discrete problem.

3. LINEAR ANALYSIS FOR THE BLENDED ITERATION
WITH APPROXIMATE JACOBIAN

Let us consider the application of the method de�ned by (14) to the test problem:

y′=�(t)y; y(t0)=y0 ∈R; Re(�(t))¡0

If we set

�n≡�(t0n)=�n−1(1 + 	n); 	n ∈C (16)

the approximate blended iteration, corresponding to the use of the previous Jacobian, is

y(i+1)n = y(i)n − �̂n[�̂n((I − �C−1)y(i)n − hn(C − �I)f (i)n )

+ �(C−1y(i)n − hnf (i)n ) + Wn]; i=0; 1; : : : (17)

where

�̂n=(1− �q̂n)−1I; q̂n≡ hn�n−1 (18)

We shall consider the additional �rst order approximation f (i)n ≈�ny(i)n so that the iteration (17)
can be rewritten as

y(i+1)n = y(i)n − �̂n[(�̂n(I − �C−1 − qn(C − �I)) + �(C−1 − qnI))y(i)n + Wn]

= y(i)n − �̂n[(�̂n(I − �C−1 − q̂n(1 + 	n)(C − �I))

+ �(C−1 − q̂n(1 + 	n)I))y(i)n + Wn]; i=0; 1; : : : (19)

where qn≡ hn�n= q̂n(1+	n). The spectral radius of the corresponding iteration matrix depends,
therefore, on both q̂n and 	n: let it be �̂(q̂n; 	n). The following result holds.
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Theorem 1
If (11)–(13) holds true, and |	n| is su�ciently small, then the spectral radius �̂(q̂n; 	n) of the
iteration matrix corresponding to (19) is given by

�̂(q̂n; 	n)=
∣∣∣∣ q̂n
�1(1− �q̂n)2

(
(�1 − �)2 + 	n�1(�1 − �2q̂n)

)∣∣∣∣

Proof
The iteration matrix corresponding to (19) is given by (see (18))

I − �̂2n(I − �C−1 − q̂n(1 + 	n)(C − �I) + ��̂
−1
n (C

−1 − q̂n(1 + 	n)I))

=
q̂n

(1− �q̂n)2
C−1((C − �I)2 + 	nC(C − �2q̂nI))

Therefore, the corresponding spectral radius is given by

�̂(q̂n; 	n)= max
�∈ �(C)

∣∣∣∣ q̂n
�(1− �q̂n)2

((�− �)2 + 	n�(�− �2q̂n))
∣∣∣∣

We observe that, for any �xed �∈�(C) (which is contained in C−) and for any �xed q̂n ∈C−,
the function

∣∣∣∣ q̂n
�(1− �q̂n)2

((�− �)2 + 	n�(�− �2q̂n))
∣∣∣∣

is analytical at 	n=0 so that, for 	n su�ciently small, the result follows from (11) and (13)
since �̂(q̂n; 0)=�(q̂n).

The previous theorem immediately implies that

�̂(0; 	n)=0; �̂∞(	n)≡ lim
q̂n→∞

�̂(q̂n; 	n)= |	n| (20)

Consequently, even though in general �̂∞(	n)¿0, one is still able, by estimating |	n|, to
control the convergence properties of such iteration when |q̂n|�1. On the other hand, when
q̂n≈ 0 the following result holds true.
Theorem 2
If q̂n≈ 0, 
¿0 is a �xed parameter and (see (12)–(13))

|	n|6 �̃

(1 + 
)�̃+ �

(21)

then �̂(q̂n; 	n) is approximately bounded by �(qn)(1 + 
).
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Table I. Parameters of the methods used in the code BiM.

r p � �∗ �̃ x1 x2 dminn dmaxn

3 4 0.7387 0.3398 0.5021 −1:4487 2.3593 0.90 1.10
4 6 0.8482 0.5291 0.8975 −1:4983 3.1163 0.91 1.09
6 8 0.7285 0.6299 0.9177 −1:4662 3.5197 0.92 1.08
8 10 0.6745 0.6885 0.9288 −1:4290 3.7538 0.93 1.07
10 12 0.6433 0.7276 0.9361 −1:3964 3.9104 0.94 1.06
12 14 0.6227 0.7560 0.9415 −1:3689 4.0240 0.95 1.05

Proof
From Theorem 1 it follows that, for q̂n≈ 0,

�̂(q̂n; 	n)≈ |q̂n|
∣∣∣∣ (�1 − �)

2

�1
+ 	n�1

∣∣∣∣ (22)

Moreover, since |	n| is bounded, then qn= q̂n(1 + 	n)≈ 0 as well and, therefore, see (10),
�(qn)≈ �̃|qn|= �̃|q̂n||1 + 	n|. From (12) and (21)–(22), it then follows that,

�̂(q̂n; 	n)≈ |q̂n| |�̃+ 	n�1|6|q̂n|(�̃+ |	n�1|)6|q̂n|�̃(1− |	n|)(1 + 
)6�(qn)(1 + 
)
An immediate consequence of the previous theorem is that an estimate of |	n| is needed

in order to control the perturbation on the spectral radius of the iteration matrix. From (16)
we obtain 	n=(�n − �n−1)=�n−1. Consequently, an estimate of |�n − �n−1| and of |�n−1| are
needed. In general, when we are solving problem (1), we will need to estimate 	n= ‖Jn −
Jn−1‖=‖Jn−1‖. By considering a suitable vector u∈Rm, having unit norm, we then evaluate
the vector gn=f(t0n; y0n + s · u) − f0n, with s¿0 a suitably small parameter, thus obtaining
the following estimates:

‖Jn‖∞≈ 1s ‖gn‖∞; ‖Jn − Jn−1‖∞≈
1
s
‖gn − gn−1‖∞

We observe that, for the linear autonomous equation y′= Jy, one obtains ‖gn − gn−1‖∞=0,
so that the re-evaluation of the Jacobian is not needed, in such case, as one would expect.
Concerning the choice of the parameter 
 (see (21)) made in the code BiM, if p is the

order of the method with blocksize rp (see Table I) then, by using arguments similar to
those used in Reference [1], the corresponding parameter, say 
p, is chosen as follows:


4 = 5× 10−2; 
p=(
p−2)rp=rp−2 ; p=6; 8; 10; 12; 14

4. THE BLENDED ITERATION WITH APPROXIMATE FACTORIZATION

We now study the case where, at step n, one considers the approximation,

�n≈�n−1 (23)
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(see (14)–(15)), in order to not evaluate the new factorization. We shall again resort to a
linear analysis, by applying the method to the test problem (3). In such a case, the blended
iteration (14) becomes

y(i+1)n = y(i)n − �n−1[(�n−1(I − �C−1 − qn(C − �I)) + �(C−1 − qnI))y(i)n + Wn]

= y(i)n − �n−1[(�n−1(I − �C−1 − qn−1dn(C − �I))

+ �(C−1 − qn−1dnI))y(i)n + Wn]; i=0; 1; : : : (24)

where

qn≡ hn�=
(
hn
hn−1

)
qn−1≡dnqn−1 (25)

Therefore, the spectral radius, say ��, of the corresponding iteration matrix will now depend
on both qn−1 and dn. The following theorem holds true.

Theorem 3
If (11)–(13) holds true and |dn − 1| is su�ciently small, then the spectral radius �� of the
iteration matrix corresponding to (24) is given by

��(qn−1; dn)=
∣∣∣∣ qn−1
�1(1− �qn−1)2

(
(�1 − �)2 + (dn − 1)�1(�1 − �2qn−1)

)∣∣∣∣

Proof
We observe that iteration (24) formally coincides with iteration (18)–(19) with the substi-
tutions q̂n← qn−1 and 	n←dn − 1. Consequently, from Theorem 1, one immediately obtains
��(qn−1; dn)= �̂(qn−1; dn − 1), and hence the result follows.
From the previous theorem one immediately obtains that (see (20))

��(0; dn)=0; lim
qn−1→∞ ��(qn−1; dn)= |dn − 1| (26)

so that dn ∈ (0; 2), in order to have a satisfactory behaviour for sti� problems. Moreover
(compare with (22)), for qn−1≈ 0, which we shall assume hereafter, one obtains

��(qn−1; dn)≈ |qn−1|
∣∣∣∣ (�1 − �)

2

�1
+ (dn − 1)�1

∣∣∣∣ ≡ |qn−1|�̃(dn) (27)

Finally, if the factors of the matrix �n are computed, then the spectral radius of the corre-
sponding iteration matrix is given by ��(qn; 1)≡�(qn) (see (13)).
The following analysis is devoted to provide an estimate of the number, say ��, of iterations

in (24), depending on the number of iterations � that would have been required without the
approximation (23). The latter number can be estimated from the iteration parameters, as
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shown in Reference [1]. In order to derive the criterion used in the code BiM, we shall look
for values of dn (see (25)) such that,

��6��; �=1+m(6r�)−1 (28)

where r is the blocksize of the blended implicit method and m is the size of the continuous
problem. Indeed, for such value of the parameter �, one veri�es that the cost of the linear
algebra involved in the blended iteration with the approximation (23) is less than or equal to
the cost of the exact iteration plus the cost to factor �n (evidently, for sake of simplicity, the
cost of function and Jacobian evaluations has been neglected). If the same stopping criterion
must be satis�ed, then ��(qn−1; dn) ��= ��(qn; 1)� and, therefore,

��= �
log ��(qn; 1)
log ��(qn−1; dn)

Consequently, the inequality in (28) can be written as

��(qn−1; dn)�

��(qn; 1)
61 (29)

We observe that (see (25)), since dn is bounded, then qn−1≈ 0 implies qn≈ 0 as well. There-
fore (see (27)),

��(qn−1; dn)≈ |qn−1|�̃(dn)≈
(
�n−1
�̃

)
�̃(dn); ��(qn; 1)≈ |qn|�̃≈�n−1dn (30)

where �n−1 is the spectral radius of the iteration matrix at the previous integration step. From
(29) and (30), we then obtain that dn must satisfy

�̃(dn)�

dn
6�n−1

(
�̃
�n−1

)�
(31)

Moreover, from (27), one easily obtains that (see (12))

�̃(dn)≡
∣∣∣∣ (�1 − �)

2

�1
+ (dn − 1)�1

∣∣∣∣ = �(d2n + 2x1dn + x2)1=2 (32)

where, x1 = (1− 2 cos �1) cos 2�1 − 2 sin �1 sin 2�1, and x2 = 5− 4 cos �1. The values of x1 and
x2 for the methods implemented in the code BiM are listed in Table I. From (31) and (32),
we then obtain that the stepsizes ratio dn must satisfy

(d2n + 2x1dn + x2)
�
2

dn
6�n−1

(
�̃

��n−1

)�
(33)
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Only one of the following two cases may then occur:

(1) dn¿1; (2) dn ¡ 1

In the �rst case, i.e. when the stepsize has been increased, from Table I it is easy to verify
that inequality (33) is satis�ed for �=1 and dn ∈ [1; 2). Clearly, from (28) one obtains that
this will hold true for all �¿1. Consequently, (see (25)) in the code BiM re-factorization is
avoided, when the stepsize has been increased, unless dn¿dmaxn (see Table I), where the last
inequality is aimed to guarantee fast convergence for sti� problems (see (26)).
In the second case, i.e. when the stepsize has been decreased, we can assume 1¿dn¿dminn ,

for a �xed dminn ¿0 (see Table I, for the values used in the code BiM). In such a case, one
derives that a su�cient condition for (33) to be satis�ed is given by

d2n + 2x1dn + x360 (34)

where

x3 = x2 − ( �dn�n−1)
2
� (�̃=(��n−1))2

Consequently, in the design of the code BiM, re-factorization is avoided, when the stepsize is
reduced, unless (34) turns out to be not satis�ed or dn¡dminn .
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