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1. Introduction

In this paper we discuss energy-conservation issues when numerically solv-
ing the following general form of nonlinear Schrödinger equation (NLSE),

iψt(x, t) + ψxx(x, t) + f ′(|ψ(x, t)|2)ψ(x, t) = 0, (x, t) ∈ Ω = [a, b]× [0, T ],
(1)

with i the imaginary unit and f ′ the derivative of f , coupled with suitable
initial data, and periodic boundary conditions.

The interest around the NLSE has been progressively growing in the last
half century. Starting from its first appearance as a mathematical model to
describe laser beams [33], the possible applications of the NLSE has widened
to include several important areas of research. Roughly speaking, the NLSE
can arise as the first-order approximation of Maxwell equations in a nonlin-
ear medium, or as the mean-field approximation of a many-body quantum
problem. In the first case it finds applications to fiber optics communica-
tions [2], plasma physics [53], geophysics [52] and mathematical biology [51].
In the second case, it is largely employed in quantum chemistry and con-
densed matter physics. In low-temperature physics, in particular, it is worth
to mention the fact that a Bose-Einstein condensate behaves like a “giant
wavefunction”, which can be described by means of a suitable version of the
NLSE, known as the Gross-Pitaevskii equation [34, 54].

The reason for such ubiquity of the NLSE is partially explained by its
conservation properties and Galilean invariance [29]. Moreover, it can be
shown that the NLSE is always found as the first-order in the perturbative
expansion of a large class of dispersive nonlinear equations [35].

From the strictly mathematical point of view, the one-dimensional cubic
NLSE has gained great attention since 1972, when Zakharov and Shabat
[62] were able to exhibit a Lax pair for such NLSE, thus proving that it is
a completely integrable PDE. This implies that the NLSE can be studied
with the methods of Inverse Scattering Transform (IST) [1]. Very recently,
it has even been proposed that IST could provide a method of encoding an
information to be optically transmitted, putting somehow the NLSE at the
basis of a possible technological revolution [43, 61].

Because of its many applications and interesting features, the numerical
study of the NLSE is of considerable interest and many numerical meth-
ods have been investigated for its solution. Different approaches have been
considered by different authors in the last decades.

2



Finite-difference and finite-element schemes preserving discrete analogue
of energy and momentum of (1) with a polynomial nonlinearity have been
developed in [36, 55, 57].

A completely different approach is at the basis of multisymplectic integra-
tors, defined by Bridges and Reich [7] as discretizations preserving a discrete
conservation of symplecticity of a general form

δtω
n
i + δ+x κ

n
i ,

where δt and δx represent the (abstract) time and space discretization oper-
ators respectively and ωn

i and κni are discrete forms [8, 49]. Applications of
several multisymplectic schemes to the nonlinear Schrödinger equation can
be found, e.g., in [30, 31, 32, 45, 46, 47, 48].

A different strategy is to use a method of lines approach, where one first
sets a spatial discretization of (1) (usually by means of a Fourier spectral
method [38, 39] or by a finite difference method [3, 40, 60]) providing a
Hamiltonian system of ODEs. Then, for the full discretization in time the
most convenient strategy is to use a symplectic method [7, 32, 44, 56, 58, 59],
or an energy conserving method.

Symplectic methods are able to produce accurate results and to preserve
very well the energy of the original system over long times [58, 6, 42]. In
particular, one can consider splitting methods [3, 37, 38, 39, 40, 50, 60], whose
leading idea is to solve the given system of ODEs by means of a sequence of
steps in which alternatively the dispersive or the nonlinear term is set to zero.
Splitting methods have the advantage to provide symplectic and explicit
schemes. On the other hand, the understanding of the long-time behaviour of
splitting methods for Hamiltonian PDEs is a fundamental ongoing challenge
in the field of geometric integration and they are usually subject to CFL
conditions, imposing some constraint on the stepsize in time depending on the
parameters used in the spatial discretization [3, 38]. In [39] the authors use
a modulated Fourier expansion to investigate the approximate conservation
over long times of energy and momentum of (1) with a cubic nonlinearity,
when a Fourier method is used in space and a Lie-Trotter or a Strang splitting
is used for the full discretization.

Differently, one can choose to use an energy-conserving method in time
for solving the Hamiltonian system of ODEs provided after the discretization
in space as done in [12, 13, 14] or in [41] for a NLSE equation including a
wave operator.
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The latter is the strategy we are going to adopt in this paper. More
specifically, after a Fourier-Galerkin space semi-discretization, we employ a
method in the class of HBVMs (see, e.g., the recent monographh [16]) to get
the full discretized problem, thus extending to the NLSE the approach used
in [14] for the semi-linear wave equation (see also [5], where some preliminary
results are given).

With these premises, in Section 2 we state the main facts about the
NLSE and its space semi-discretization. Then, in Section 3 we sketch the
main properties of the energy-conserving Runge-Kutta schemes known as
HBVMs. The efficient implementation of the methods, when numerically
solving (1) is studied in Section 4. Some numerical tests are reported in
Section 5 and, finally, some concluding remarks are given in Section 6.

2. Properties and space semi-discretization

Equation (1) can be rewritten in real form by setting

ψ(x, t) = u(x, t) + iv(x, t), (2)

with u and v the real and imaginary part of ψ, respectively. In so doing, one
obtains:2

ut = −vxx − f ′(u2 + v2)v, (3)

vt = uxx + f ′(u2 + v2)u, (x, t) ∈ Ω,

or, more compactly, by setting

y =

(
u
v

)
, J =

(
0 1
−1 0

)
≡ −J> ≡ −J−1,

as
yt = J∇H[y], (4)

with ∇H[y] the vector with the functional derivatives, w.r.t. u and v, of the
Hamiltonian functional

H[y] ≡ H[u, v] =
1

2

∫ b

a

(
u2x + v2x − f(u2 + v2)

)
dx. (5)

2For sake of brevity, we shall omit the arguments of u and v, when unnecessary.
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Such functional defines the equation which is, therefore, an instance of Hamil-
tonian PDE. Because of the periodic boundary conditions, the following re-
sult holds true.

Theorem 1. Under regularity assumptions on f and on the initial data, the
Hamiltonian functional (5) is constant along the solution of (3).

Proof In fact, from (5) and (3), one obtains3

Ḣ[u, v] =

∫ b

a

(
uxuxt + vxvxt − f ′(u2 + v2)(uut + vvt)

)
dx

=

∫ b

a

(uxuxt + vxvxt + (uxx − vt)ut + (vxx + ut)vt) dx

=

∫ b

a

(uxut + vxvt)x dx = [uxut + vxvt]
x=b
x=a = 0,

because of the periodicity in space of u and v, and of their derivatives w.r.t.
x. �

We also consider the two quadratic functionals

M1[u, v] =

∫ b

a

(u2 + v2)dx, M2[u, v] =

∫ b

a

(vxu− uxv)dx, (6)

representing the mass and the momentum. Also for such functionals, the
following result holds true.

Theorem 2. Under regularity assumptions on f and on the initial data, the
two quadratic functionals (6) are constant along the solution of (3).

Proof In fact, from (3) and (6), one has:

Ṁ1[u, v] = 2

∫ b

a

(uut + vvt) dx

= 2

∫ b

a

(
−u(vxx + f ′(u2 + v2)v) + v(uxx + f ′(u2 + v2)u)

)
dx

= 2

∫ b

a

(vuxx − uvxx + uxvx − uxvx) dx

= 2

∫ b

a

(vux − uvx)xdx = 2 [vux − uvx]x=b
x=a = 0,

3As is usual, the dot denotes the time derivative.
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because of the periodicity in space. For the same reason, by considering that

0 =

∫ b

a

(utv)xdx =

∫ b

a

(uxtv + utvx)dx ⇒
∫ b

a

vuxtdx = −
∫ b

a

utvxds,

0 =

∫ b

a

(vtu)xdx =

∫ b

a

(vxtu+ vtux)dx ⇒
∫ b

a

uvxtdx = −
∫ b

a

vtuxds,

one obtains, by virtue of (3):

Ṁ2[u, v] =

∫ b

a

(vxtu+ vxut − uxtv − uxvt) dx = 2

∫ b

a

(vxut − uxvt)dx

= 2

∫ b

a

(
−vx(vxx + f ′(u2 + v2)v)− ux(uxx + f ′(u2 + v2)u)

)
dx

= −
∫ b

a

(
u2x + v2x + f(u2 + v2)

)
x

dx =
[
u2x + v2x + f(u2 + v2)

]x=b

x=a

= 0. �

Remark 1. It is worth stressing that the three invariants (5) and (6) have
a special physical meaning:

• in the context of quantum mechanics they represent, respectively, total
energy, mass, and momentum (from which their names);

• in the context of optics, they represent electromagnetic energy, power,
and power current associated with the signal (see, e.g., [4]), respectively.

Consequently, when numerically solving the problem it would be desirable
their conservation (exact or approximate) to be inherited by the discrete so-
lution.

In order for numerically solving problem (3), we shall at first consider
a Fourier expansion in space of the solution. In particular, we consider
the following orthonormal basis for L2[a, b], which takes into account of the
periodicity in space:

c0(x) ≡ 1√
b− a

,

cj(x) =

√
2

b− a
cos

(
2jπ

x− a
b− a

)
, (7)

sj(x) =

√
2

b− a
sin

(
2jπ

x− a
b− a

)
, j = 1, 2, . . . .
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In so doing, one obtains, for suitable time dependent coefficients:

u(x, t) = γ0(t)c0(x) +
∑
j≥1

γj(t)cj(x) + ηj(t)sj(x),

(8)
v(x, t) = α0(t)c0(x) +

∑
j≥1

αj(t)cj(x) + βj(t)sj(x).

By introducing the infinite vectors

w(x) =



c0(x)
c1(x)
s1(x)
c2(x)
s2(x)

...


, q(t) =



γ0(t)
γ1(t)
η1(t)
γ2(t)
η2(t)

...


, p(t) =



α0(t)
α1(t)
β1(t)
α2(t)
β2(t)

...


, (9)

and the infinite matrix

D =
2π

b− a



0

1 ·
(

1
1

)
2 ·
(

1
1

)
. . .


, (10)

we see that (8) can be rewritten as

u(x, t) = w(x)>q(t), v(x, t) = w(x)>p(t), (11)

and the problem can be formulated as the infinite-dimensional Hamiltonian
ODE problem:

q̇ = D2p−
∫ b

a

[
w(x)f ′

(
(w(x)>q)2 + (w(x)>p)2

)
w(x)>p

]
dx,

(12)

ṗ = −D2q +

∫ b

a

[
w(x)f ′

(
(w(x)>q)2 + (w(x)>p)2

)
w(x)>q

]
dx,
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which is Hamiltonian with Hamiltonian function

H(q,p) =
1

2

[
p>D2p+ q>D2q −

∫ b

a

f
(
(w(x)>q)2 + (w(x)>p)2

)
dx

]
.

(13)
By also introducing the infinite matrix

D̃ =
2π

b− a



0

1 ·
(

−1
1

)
2 ·
(

−1
1

)
. . .


, (14)

such that

D̃w(x) = w′(x) ≡ 2π

b− a
(

0, −s1(x), c1(x), −2s2(x), 2c2(x), . . .
)>
,

the following result then holds true.

Theorem 3. The Hamiltonian (13) is equivalent to the Hamiltonian func-
tional (5). Similarly, the two quadratic functionals (6) are equivalent to

M1(q,p) =

∫ b

a

[
(w(x)>q)2 + (w(x)>p)2

]
dx, M2(q,p) = −2q>D̃p, (15)

respectively. Consequently, they are conserved along the solution of (12).

Proof The equivalence of H and M1 with H and M1, respectively, follows
quite straightforwardly from (11). Concerning the last quadratic invariant,
by considering that

ux(x, t) =
(
D̃w(x)

)>
q(t), vx(x, t) =

(
D̃w(x)

)>
p(t), D̃> = −D̃,

and, because of the orthormality of the basis (7),∫ b

a

w(x)w(x)>dx = I,
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the identity operator, one obtains:

M2[u, v] =

∫ b

a

[vxu− uxv]dx

=

∫ b

a

[
(D̃w(x))>pq>w(x)− q>(D̃w(x))w(x)>p

]
dx

= −
∫ b

a

[
q>w(x)w(x)>D̃p+ q>D̃w(x)w(x)>p

]
dx

= −q>
[∫ b

a

w(x)w(x)>dx

]
D̃p− q>D̃

[∫ b

a

w(x)w(x)>dx

]
p

= −2q>D̃p = M2(q,p). �

As is clear, in order to obtain a practical computational procedure, the
series in (8) have to be truncated to a finite sum, i.e., for a suitable large N :

u(x, t) = γ0(t)c0(x) +
N∑
j=1

γj(t)cj(x) + ηj(t)sj(x),

(16)

v(x, t) = α0(t)c0(x) +
N∑
j=1

αj(t)cj(x) + βj(t)sj(x),

where, for sake of brevity, we continue to use the same symbols to denote
the truncated approximations. For each t, such functions will belong to the
functional space

VN = span {c0(x), c1(x), s1(x), . . . , cN(x), sN(x)} . (17)

Consequently, the dimension of the vectors and matrices (9)–(10) and (14)
becomes 2N + 1. As an example, matrix (10) now becomes:

D =
2π

b− a



0

1 ·
(

1
1

)
2 ·
(

1
1

)
. . .

N ·
(

1
1

)


, (18)
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However, in this case, the approximations will no more satisfy, in general, the
equations (12). Nevertheless, by requiring the residual be orthogonal to VN ,
one formally retrieves again the set of equations (12) which, however, has now
dimension 4N + 2. Such equations are still Hamiltonian with Hamiltonian
function formally still given by (5). Moreover, also the truncated versions
of (15) are still constants of motion. It can be proved (see, e.g., [28]) that,
under regularity assumptions, the truncated version of the solution and of
the invariants converge at least exponentially to the exact counterparts as
N → ∞ (spectral accuracy). In so doing, one obtains a Fourier-Galerkin
space semi-discretization of the original problem (3).

We also observe that the integrals in (12) need to be computed. Never-
theless, since the argument is a periodic function, this can be done by using
a composite trapezoidal rule, based at the discrete points

xi = a+
i

m
(b− a), i = 0, 1, . . . ,m, (19)

which allows, under regularity assumptions, to approximate the integrals
within machine accuracy, by choosing m large enough (see [13] for details).4

As a result, the equations (12), with the truncated expansions (16), along
with the approximation of the involved integrals on the abscissae (19), define
the semi-discrete Hamiltonian problem to be solved in time. In the next
sections we shall consider its numerical solution.

3. Hamiltonan Boundary Value Methods

In this section, we sketch the basic facts concerning Hamiltonian Bound-
ary Value Methods (HBVMs), which are a class of energy-conserving Runge-
Kutta methods, recently devised for the efficient numerical solution of Hamil-
tonian systems [24, 17, 18, 21, 22] (see also the monograph [16]).

Let then
ẏ = J∇H(y), y(0) = y0, J> = −J, (20)

be a Hamiltonian problem we want to solve, which is defined by the (au-
tonomous) Hamiltonian H. Having fixed a stepsize h > 0, we look for a
numerical method defining a suitable path σ such that:

σ(0) = y0, σ(h) =: y1, H(y1) = H(y0). (21)

4In general, m is conveniently chosen in the form m = `N + 1, for a suitable ` ∈ N.
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Namely, the new approximation y1 ≈ y(h) satisfies the energy conservation
property. In particular, we look for σ ∈ Πs

5 and, by considering the scaled
orthonormal Legendre basis {Pj}j≥0 for L2[0, 1],

Pj ∈ Πj,

∫ 1

0

Pi(x)Pj(x)dx = δij, ∀i, j = 0, 1, . . . , (22)

with δij the Kronecker delta, we define the expansion

σ̇(ch) =
s−1∑
j=0

Pj(c)γj, c ∈ [0, 1], (23)

for suitable coefficients {γj} to be determined. By imposing the first condi-
tion in (21), we obtain

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0

Pj(x)dx γj, c ∈ [0, 1]. (24)

Consequently, from (22) and considering that P0(x) ≡ 1, one has (see the
second expression in (21)):

y1 ≡ σ(h) = y0 + hγ0. (25)

The coefficients γ0, . . . , γs−1 are then determined by imposing the last re-
quirement in (21), i.e., energy-conservation: this will be done by resorting to
a line integral approach. In more details, from (20)–(24), one has:

0 = H(y1)−H(y0) = H(σ(h))−H(σ(0)) =

∫ h

0

∇H(σ(t))>σ̇(t)dt

= h

∫ 1

0

∇H(σ(ch))>σ̇(ch)dc = h

∫ 1

0

∇H(σ(ch))>
s−1∑
j=0

Pj(c)γj dc

= h

s−1∑
j=0

[∫ 1

0

∇H(σ(ch))Pj(c)dc

]>
γj,

which holds clearly true, by virtue of the skew-symmetry of J , by setting

γj =

∫ 1

0

J∇H(σ(ch))Pj(c)dc, j = 0, . . . , s− 1. (26)

5As is usual, Πs denotes the vector space of polynomials of degree s.
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Approximating such integrals by means of a suitable quadrature formula,
provides us with HBVMs. In more details, by considering the Gauss formula
based at the k Legendre nodes, i.e.

Pk(ci) = 0, i = 1, . . . , k,

so that equation (26) is replaced by

γj =
k∑

`=1

b`J∇H(Y`)Pj(c`), j = 0, . . . , s− 1, (27)

with b1, . . . , bk the Legendre weights, one derives the method HBVM(k, s).6

The resulting method may be shown to be actually a k-stage Runge-Kutta
method, with stages

Yi := σ(cih) = y0 + h
s−1∑
j=0

∫ ci

0

Pj(x)dx
k∑

`=1

b`J∇H(Y`)Pj(c`), i = 1, . . . , k,

(28)
and the new approximation given by:

y1 = y0 + h
k∑

i=1

biJ∇H(Yi). (29)

From (28)-(29) one derives that HBVM(k, s) is the k-stage Runge-Kutta
method with Butcher tableau

c IsP>s Ω

b>
, (30)

with b =
(
b1, . . . , bk

)>
, c =

(
c1, . . . , ck

)>
,

Is =
( ∫ ci

0
Pj−1(x)dx

)
ij
, Ps =

(
Pj−1(ci)

)
ij
∈ Rk×s, (31)

and

Ω =

 b1
. . .

bk

 . (32)

The following result holds true.

6Different quadratures can be also considered, as is shown, e.g., in [24].
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Theorem 4. Under suitable regularity assumptions on H, for all k ≥ s a
HBVM(k, s) method:

• is symmetric and has order 2s;

• for k = s it reduces to the (symplectic) s-stage Gauss-collocation method;

• is energy-conserving for all polynomial Hamiltonians H of degree no
larger than 2k/s;

• for general Hamiltonians, H(y1) = H(y0) +O(h2k+1).

Proof See, e.g., [22]. �

We observe that, from the last point of Theorem 4, even in the non-
polynomial case one can always gain a practical energy conservation, by
choosing k large enough. This, in turn, is not a big issue since, as we are
going to see in the next section, the discrete problem to be solved at each
step has always (block) dimension s, independently of k.

4. Implementation of the methods

We here explain the efficient implementation of HBVM(k, s): even though
this issue has been the subject of previous investigations [10, 11, 16, 20],
nevertheless, we report here the main facts, also considering that the general
approach will be suitably adapted to the efficient solution of problem (12).

The natural implementation of the HBVM(k, s) method, cast as the k-
stage Runge-Kutta method with tableau (30), would result in the solution,
at each integration step, of the nonlinear system of equations in the k stages:

Y :=

 Y1
...
Yk

 = e⊗ y0 + h
(
IsP>s Ω⊗ J

)
∇H(Y ),

with e =
(

1, . . . , 1
)> ∈ Rk, and an obvious meaning of ∇H(Y ). Nev-

ertheless, whichever k, one can always recast the discrete problem in term of
the s coefficients (27) of the polynomial σ. This results in [20]

γ :=

 γ0
...

γs−1

 =
(
P>s Ω⊗ J

)
∇H(Y ).
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Summing up the last two equations, one eventually obtains the discrete prob-
lem 7

G(γ) := γ −
(
P>s Ω⊗ J

)
∇H (e⊗ y0 + hIs ⊗ I γ) = 0, (33)

whose (block) dimension is s, independently of k. In order for efficiently
solving (33), one can use the simplified Newton method which, by taking
into account that [20]

P>s ΩIs = Xs :=


1
2
−ξ1

ξ1 0
. . .

. . . . . . −ξs−1
ξs−1 0

 ∈ Rs×s, ξi =
1

2
√

4i2 − 1
,

(34)
results in the iteration

for ` = 0, 1, . . . :

solve : (I − hXs ⊗ J∇2H0)δ
` = −G(γ`)

update : γ`+1 = γ` + δ`

where ∇2H0 = ∇2H(y0).
8 Even though the coefficient matrix is the same

during the whole iteration, its size is s times that of the continuous problem
to be solved, thus resulting in a possibly costly iteration. In order to get
rid of this problem, in [20] a blended iteration has been considered. This
approach, which has been at first proposed in [9, 25], has already been suc-
cessfully implemented in the computational codes BiM [26] and BIMD [27].
The resulting iteration is as follows (we refer to [16, 20] for full details):

set : ρs = min{|λ| : λ eigenvalue of Xs}
set : M = I − hρsJ∇2H0 (35)

for ` = 0, 1, . . . :

set : η` = −G(γ`), η`
1 = (ρsX

−1
s ⊗ I)η`

solve : (Is ⊗M)u` = η` − η`
1

solve : (Is ⊗M)δ` = η`
1 + u`

update : γ`+1 = γ` + δ`

7When not explicitly specified, hereafter the dimension of the identity matrix I is
unambiguously deduced from the context.

8Moreover, one usually takes the initial guess γ0 = 0.
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As is clear, now only the factorization of matrix M defined at (35) is needed,
thus greatly reducing the cost per iteration.

A further substantial improvement can be gained when considering the
solution of problem (12), whose dimension is 4N + 2. In fact, by assuming
that the solution is bounded and (see (18))

‖f ′‖, ‖f ′′‖ � ‖D2‖ =

(
2πN

b− a

)2

,

one easily obtains that, in such a case, matrix M can be approximated as

M ≈M0 :=

(
I2N+1 −hρsD2

hρsD
2 I2N+1

)
. (36)

Matrix M0 has the following important features:

• it is independent of the current step;

• it is a 2× 2 block matrix, with diagonal blocks of dimension 2N + 1.

Moreover, the following result holds true.

Theorem 5. Matrix M0 is nonsingular, and

M−1
0 =

(
(I2N+1 +B2)−1 B(I2N+1 +B2)−1

−B(I2N+1 +B2)−1 (I2N+1 +B2)−1

)
, B = hρsD

2. (37)

Proof In fact, one obtains:(
I2N+1 −B
B I2N+1

)
·
(

(I2N+1 +B2)−1 B(I2N+1 +B2)−1

−B(I2N+1 +B2)−1 (I2N+1 +B2)−1

)
=

(
I2N+1

I2N+1

)
. �

The result of Theorem 5 allows us to recast the blended iteration (35) for
solving (12) in a simplified (and more efficient) form, as follows:

set : ρs = min{|λ| : λ eigenvalue of Xs}
set : M−1

0 as in (37)

for ` = 0, 1, . . . : (38)

set : η` = −G(γ`), η`
1 = (ρsX

−1
s ⊗ I2N+1)η

`

set : u` = (Is ⊗M−1
0 )

(
η` − η`

1

)
set : δ` = (Is ⊗M−1

0 )
(
η`
1 + u`

)
update : γ`+1 = γ` + δ`
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From this algorithm, one clearly deduces the following facts:

• matrix M−1
0 is built only once and, moreover, it can be stored into

two diagonal matrices (i.e., vectors), of dimension 2N + 1. That is,
(I2N+1 +B2)−1 and B(I2N+1 +B2)−1;

• the complexity of the linear algebra in the improved iteration is linear
in s(2N + 1);

• on the other hand, the complexity of the evaluation of G (see (33))
is proportional to the product sk(2N + 1). Moreover, it requires k
function evaluations of the right-hand side of (12). In turn, a function
evaluation has a cost which is proportional to m, where m + 1 (see
(19)) is the number of grid points used for approximating the involved
integrals.

Overall, one concludes that the cost per iteration is linear in the number of
terms of the truncated expansion (16).

5. Numerical tests

In this section, we aim to give evidence of the various theoretical aspects
mentioned above.

Spectral accuracy

Let us consider the problem (1) with

b = −a = 10, f(ζ) = −1

2
ζ6, ψ(x, 0) = e−x

2

+ i e−(x−1)
2

. (39)

We now consider the accuracy of the truncated HamiltonianH, of the quadra-
tic invariants M1 and M2, and of the initial data, depending on the number
N of terms in the truncated expansions (16). In particular, we computed the
initial truncated Hamiltonian for N = 10, 20, 30, 40, 50 (the involved integrals
are computed by using the composite trapezoidal rule with m = 250 (see
(19))), along with the truncated quadratic integrals. We also computed the
maximum error in the initial data, E0, once it is projected into the subspace
(17). The actual values of the invariants are:

H ≈ 2.1931, M1 ≈ 2.5066, M2 ≈ −0.0760.
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Figure 1: Accuracy of the truncated Fourier expansion (16): errors in the truncated
Hamiltonian (solid line and squares); truncated mass (dashed line and triangles); truncated
momentum (dash-dotted line and diamonds); errors on the initial data (dotted line and
circles).

Figure 1 summarizes the obtained results for H, M1, M2, and E0. In par-
ticular, one has that the error decreases exponentially in N (at least), thus
confirming the phenomenon of spectral accuracy.

Approximation of the invariants

We now consider the same problem (1)-(39) with T = 10. We solve it by
using the methods HBVM(k,s), with k ≥ s, aiming at showing that:

• all methods have order 2s;

• for k = s one has the s-stage symplectic Gauss collocation method,
so that one expects the quadratic invariants M1 and M2 to be exactly
conserved, with the Hamiltonian conserved up to order 2s;

17



• for k > s one has that the Hamiltonian is conserved up to order 2k
(until round-off is reached), whereas the two quadratic invariants are
conserved up to order 2s.

In the numerical tests, we shall consider decreasing time-steps h, having
fixed (see (16) and (19)) N = 50 and m = 250. The maximum error on the
solution is numerically estimated via the doubling of the time mesh. The
previous statements are duly confirmed by the figures in Tables 1–4, for the
case s = 1, and Tables 5–6, for the case s = 2.

In addition to this, it is worth noticing that no appreciable drift can
be observed in the numerical invariants. This is confirmed by the plots in
Figure 2, with the errors in the three invariants H, M1, and M2, for the
implicit mid-point (i.e., HBVM(1,1)) and the HBVM(8,1) methods when
solving the above problem with time-step h = 0.1 on the interval [0, 103]:
the former a symplectic method, the latter a (practically) energy-conserving
one, for the given time-step h.

Computational cost

In this subsection, we compare the previous methods in terms of mean
number of iterations for getting convergence (we remind that the nonlinear
iteration (38) is performed until round-off). In more details, in Table 7 we
list the mean number of iterations per step to reach full convergence, for the
considered couples of (k, s) and decreasing values of the time-step h. As one
may see, the iterations decrease with the time-step and essentially depends
only on s.

Conservation of the Hamiltonian

In some situations, the conservation of the energy may result in a more
robust numerical method. In particular, in the previous example (39), the
function f(ζ) was non positive. This, in turn, in view of the Hamiltonian
function (4), implies the boundedness of the solution. Consequently, pro-
vided that the discrete Hamiltonian (13) is conserved (even approximately),
also the discrete solution will be bounded. Conversely, when f(ζ) is a non
negative function, a blow-up in finite time may occur, depending on the ini-
tial condition and, in such a case, a more precise conservation of H could be

18



useful. This is, in fact, the case for the problem defined by

b = −a = 20, f(ζ) = 0.2526896 · ζ6, ψ(x, 0) =
1

cosh(x)
. (40)

With such parameters, one obtains

H ≈ 0.24, M1 = 2, M2 = 0,

and moreover, the solution has a blow-up at about t = 2, as is shown in
Figure 3,9 containing the plot of |ψ(x, t)|2. We solve the problem by means
of the symplectic 2-stage Gauss method (i.e., HBVM(2,2)) and the (prac-
tically) energy-conserving HBVM(8,2) method (both methods are fourth-
order), with parameters:

N = 100, m = 400, h = 0.1, nsteps = 1000. (41)

In so doing, one obtains that the error in the initial data is E0 ≈ 10−10.
Moreover:

• for the 2-stage Gauss method, one obtains the solution depicted in the
upper plot in Figure 4, with all the 1000 steps performed, the two
quadratic invariants are exactly preserved, and the Hamiltonian error
is ≈ 2 · 10−6;

• for the HBVM(8,2) method, one obtains the solution depicted in the
lower plot in Figure 4. In such a case, the nonlinear iteration breaks
down after 20 steps, with H and M2 exactly conserved, and an error
in M1 which is ≈ 2 · 10−4.

As one may clearly see, the solution provided by the 2-stage Gauss method
is wrong, even though the two quadratic invariants are exactly conserved,
whereas the solution of the energy-conserving HBVM(8,2) method is quali-
tatively correct.

9This reference solution has been computed by using a higher order method with a
much smaller time-step, over a finer space semi-discretization.
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6. Concluding remarks

In this paper, we studied the numerical solution of the nonlinear Schrödin-
ger equation, showing that the Hamiltonian ODE problem deriving from
its Fourier-Galerkin space semi-discretization can be conveniently solved by
means of energy-conserving methods in the class of HBVMs. In particular, in
some circumstances, the use of energy-conserving methods may confer more
robustness on the numerical solution.

We plan to extend this approach to different space semi-discretizations, as
well as to different kinds of line integral methods. In particular, the EQUIP
methods studied in [19, 23, 15, 16], being energy conserving and defined by
a symplectic Runge-Kutta map at each step, would be able to conserve both
the energy and the quadratic invariants of the semi-discrete Hamiltonian
problem.
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Table 1: k = s = 1.

h H-error rate M1-error M2-error solution error rate
1.0000e-01 1.5263e-01 – 3.5527e-15 1.1102e-16 3.1647e-01 –
5.0000e-02 5.4933e-02 1.47 3.1086e-15 8.3267e-17 2.1236e-01 0.58
2.5000e-02 1.6073e-02 1.77 5.3291e-15 9.7145e-17 1.1841e-01 0.84
1.2500e-02 4.2411e-03 1.92 5.7732e-15 1.8041e-16 7.2974e-02 0.70
6.2500e-03 1.0834e-03 1.97 4.8850e-15 6.9389e-17 3.8272e-02 0.93
3.1250e-03 2.7399e-04 1.98 4.4409e-15 8.3267e-17 1.4807e-02 1.37
1.5625e-03 6.8749e-05 1.99 1.0658e-14 1.9429e-16 4.7065e-03 1.65
7.8125e-04 1.7199e-05 2.00 1.1102e-14 1.5266e-16 1.2715e-03 1.89

Table 2: k = 2, s = 1.

h H-error rate M1-error rate M2-error rate solution error rate
1.0000e-01 7.7440e-03 – 4.4228e-02 – 6.8433e-04 – 3.3727e-01 –
5.0000e-02 9.9802e-04 2.96 1.4068e-02 1.65 1.7293e-04 1.98 2.1560e-01 0.65
2.5000e-02 8.4482e-05 3.56 3.8528e-03 1.87 4.2546e-05 2.02 1.1837e-01 0.86
1.2500e-02 5.8796e-06 3.84 9.9038e-04 1.96 1.0776e-05 1.98 7.3826e-02 0.68
6.2500e-03 3.7958e-07 3.95 2.4973e-04 1.99 2.8205e-06 1.93 3.7448e-02 0.98
3.1250e-03 2.4044e-08 3.98 6.2607e-05 2.00 7.3188e-07 1.95 1.4685e-02 1.35
1.5625e-03 1.5091e-09 3.99 1.5663e-05 2.00 1.8490e-07 1.98 4.6908e-03 1.65
7.8125e-04 9.4400e-11 4.00 3.9163e-06 2.00 4.6296e-08 2.00 1.2625e-03 1.89

Table 3: k = 3, s = 1.

h H-error rate M1-error rate M2-error rate solution error rate
1.0000e-01 1.6584e-04 – 4.6712e-02 – 7.2022e-04 – 3.3837e-01 –
5.0000e-02 8.5550e-06 4.28 1.4336e-02 1.70 1.7617e-04 2.03 2.1567e-01 0.65
2.5000e-02 2.2872e-07 5.23 3.8738e-03 1.89 4.2801e-05 2.04 1.1837e-01 0.87
1.2500e-02 4.3306e-09 5.72 9.9179e-04 1.97 1.0794e-05 1.99 7.3826e-02 0.68
6.2500e-03 7.1244e-11 5.96 2.4982e-04 1.99 2.8216e-06 1.94 3.7448e-02 0.98
3.1250e-03 1.1289e-12 5.98 6.2612e-05 2.00 7.3195e-07 1.95 1.4685e-02 1.35
1.5625e-03 1.7319e-14 6.03 1.5663e-05 2.00 1.8490e-07 1.99 4.6908e-03 1.65
7.8125e-04 7.1054e-15 ** 3.9163e-06 2.00 4.6297e-08 2.00 1.2625e-03 1.89
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Table 4: k = 4, s = 1.

h H-error rate M1-error rate M2-error rate solution error rate
1.0000e-01 1.6354e-06 – 4.6766e-02 – 7.2118e-04 – 3.3840e-01 –
5.0000e-02 3.5456e-08 5.53 1.4338e-02 1.71 1.7620e-04 2.03 2.1567e-01 0.65
2.5000e-02 3.1101e-10 6.83 3.8738e-03 1.89 4.2802e-05 2.04 1.1837e-01 0.87
1.2500e-02 1.6178e-12 7.59 9.9179e-04 1.97 1.0794e-05 1.99 7.3826e-02 0.68
6.2500e-03 9.3259e-15 7.44 2.4982e-04 1.99 2.8216e-06 1.94 3.7448e-02 0.98
3.1250e-03 4.4409e-15 ** 6.2612e-05 2.00 7.3195e-07 1.95 1.4685e-02 1.35
1.5625e-03 4.4409e-15 ** 1.5663e-05 2.00 1.8490e-07 1.99 4.6908e-03 1.65
7.8125e-04 5.7732e-15 ** 3.9163e-06 2.00 4.6297e-08 2.00 1.2625e-03 1.89

Table 5: k = s = 2.

h H-error rate M1-error M2-error solution error rate
1.0000e-01 5.0415e-03 – 5.3291e-15 1.6653e-16 1.2173e-01 –
5.0000e-02 9.2412e-04 2.45 3.5527e-15 2.4980e-16 5.0456e-02 1.27
2.5000e-02 6.3056e-05 3.87 4.4409e-15 6.9389e-17 1.7528e-02 1.53
1.2500e-02 4.3554e-06 3.86 4.8850e-15 5.5511e-17 3.2850e-03 2.42
6.2500e-03 2.7750e-07 3.97 5.3291e-15 1.6653e-16 4.9393e-04 2.73
3.1250e-03 1.7396e-08 4.00 1.2879e-14 8.3267e-17 4.3386e-05 3.51
1.5625e-03 1.0880e-09 4.00 1.0658e-14 9.7145e-17 2.8164e-06 3.95
7.8125e-04 6.8009e-11 4.00 1.1546e-14 1.6653e-16 1.7802e-07 3.98

Table 6: k = 4, s = 2 (n.c. means non convergence of the nonlinear iteration).

h H-error rate M1-error rate M2-error rate solution error rate
1.0000e-01 n.c. – n.c. – n.c. – n.c. –
5.0000e-02 6.2703e-07 – 9.3456e-05 – 3.4242e-06 – 5.0766e-02 –
2.5000e-02 2.9231e-09 7.75 5.9252e-06 3.98 3.7482e-07 3.19 1.7521e-02 1.53
1.2500e-02 1.2728e-11 7.84 3.8789e-07 3.93 2.7360e-08 3.78 3.2841e-03 2.42
6.2500e-03 4.8406e-14 8.04 2.4439e-08 3.99 1.7773e-09 3.94 4.9391e-04 2.73
3.1250e-03 5.7732e-15 ** 1.5298e-09 4.00 1.1215e-10 3.99 4.3387e-05 3.51
1.5625e-03 6.2172e-15 ** 9.5647e-11 4.00 7.0264e-12 4.00 2.8167e-06 3.95
7.8125e-04 1.0658e-14 ** 5.9779e-12 4.00 4.3947e-13 4.00 1.7804e-07 3.98
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Table 7: Mean number of blended iterations (38) per step.

s = 1 s = 2
h k = 1 k = 2 k = 3 k = 4 k = 2 k = 4

1.0000e-01 8.7 9.1 9.2 9.2 16.6 –
5.0000e-02 6.3 6.4 6.4 6.5 16.1 16.1
2.5000e-02 5.5 5.6 5.6 5.7 15.0 15.0
1.2500e-02 4.8 4.9 4.9 4.9 13.0 13.0
6.2500e-03 4.4 4.5 4.5 4.6 11.0 11.0
3.1250e-03 4.3 4.3 4.3 4.3 9.0 9.0
1.5625e-03 4.1 4.1 4.2 4.2 7.0 8.0
7.8125e-04 3.7 3.9 3.9 3.9 6.0 7.0
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Figure 2: Problem (1)-(39), errors in the numerical invariants (H, M1, M2) for the implicit
mid-point (upper plot) and the HBVM(8,1) methods, both used with time-step h = 0.1.
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Figure 3: Problem (1)-(40), solution blow-up about t = 2.
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Figure 4: Problem (1)-(40), solution provided by the symplectic 2-stage Gauss method
(upper plot) and the energy-conserving HBVM(8,2) method (lower plot) both using the
parameters (41).
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