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Abstract

One main issue, when numerically integrating autonomous Hamiltonian systems, is
the long-term conservation of some of its invariants; among them the Hamiltonian
function itself. For example, it is well known that classical symplectic methods can
only exactly preserve, at most, quadratic Hamiltonians. In this paper, we report
the theoretical foundations which have led to the definition of the new family of
methods, called Hamiltonian Boundary Value Methods (HBVMs). HBVMs are
able to exactly preserve, in the discrete solution, Hamiltonian functions of poly-
nomial type of arbitrarily high degree. These methods turn out to be symmetric
and can have arbitrarily high order. A few numerical tests confirm the theoretical
results.

Keywords: Collocation methods, Energy-preserving methods, Runge-Kutta
methods.
2010 MSC: 65P10, 65L05.

1. Foreword

The numerical solution of Hamiltonian problems is a relevant issue of investiga-
tion since many years: we refer to the recent monographs [1, 2] for a comprehensive
description of this topic, and to the references therein.

In a certain sense, the use of a numerical method acts as introducing a small
perturbation in the original system which, in general, destroys all of its first inte-
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grals. The study of the preservation of invariant tori in the phase space of nearly
integrable Hamiltonian systems has been a central theme in the research since the
pioneering work of Poincaré, the final goal being to asses the stability of the solar
system. From a numerical point of view, results in this respect are still poor, and
this is justified by considering the delicacy of the problem: as testified by KAM
theory, even small Hamiltonian perturbations of completely integrable systems do
not prevent the disappearance of most of the tori, unless a Diophantine condition
on the frequencies of the unperturbed system is satisfied.

At the times when research on this topic was started, there were no available
numerical methods possessing such conservation features. A main approach to the
problem was the devising of symplectic methods. However, though the numerical
solution generated by symplectic (and/or symmetric) methods shows some inter-
esting long-time behavior (see, for example, [1, Theorems X.3.1 and XI.3.1]), it
was observed that symplecticity alone can only assure, at most, the conservation
of quadratic Hamiltonian functions, unless they are coupled with some projection
procedure (see, e.g., [1, Section IV.4] and [20]). In the general case, conservation
cannot be assured, even though a quasi-preservation can be expected for reversible
problems, when symmetric methods are used. On the other hand, a numerical
“drift” can be sometimes observed in the discrete solution [3, 4]. One of the first
successful attempts to solve the problem of loss of conservation of the Hamiltonian
function by the numerical solution, is represented by discrete gradient methods (see
[5] and references therein). Purely algebraic approaches have been also introduced
(see, e.g., [6]), without presenting any energy-preserving method.

A further approach was considered in [7], where the averaged vector field method
was proposed and shown to conserve the energy function of canonical Hamiltonian
systems. As was recently outlined (see [8]), approximating the integral appear-
ing in such method by means of a quadrature formula (based upon polynomial
interpolation) yields a family of second order Runge-Kutta methods. These lat-
ter methods represent an instance of energy-preserving Runge-Kutta methods for
polynomial Hamiltonian problems: their first appearance may be found in [9], un-
der the name of s-stage trapezoidal methods. Additional examples of fourth and
sixth-order Runge-Kutta methods were presented in [10] and [11].

In [9, 10, 11], the derivation of such energy-preserving Runge-Kutta formulae
relies on the definition of the so called “discrete line integral”, first introduced in
[12]. However, a comprehensive analysis of such methods has not been carried
out so far, so that their properties were not known and, moreover, their practical
construction was difficult.

This was the situation when the results in the unpublished work [17] were
obtained. Later on, there has been a flourishing of new results on energy-preserving
methods, which we do not mention here. One of the aims of the present paper is to
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give an account about the theoretical foundations of the class of energy-preserving
Runge-Kutta methods, named Hamiltonian Boundary Value Methods (HBVMs).
Even though they were derived in 2009, the results reported here have remained
unpublished, so far. The first two authors agreed to publish them, in memory of
the third author (passed away on September 18, 2011) on the occasion of the second
death anniversary. The remaining part of the paper is essentially unchanged, with
respect to the original version, including the references (apart [17] and [18], the
latter being the proceedings of the conference where the methods were presented,
and [19], introduced to answer to one of the referees), though the arguments have
been slightly rearranged, to improve clarity.

2. Introduction

In this paper we derive and analyse symmetric methods, of arbitrarily high
order, able to preserve Hamiltonian functions of polynomial type, of any specified
degree. Such methods are named Hamiltonian Boundary Value Methods (HB-
VMs), since the above approach has been at first studied in the framework of block
Boundary Value Methods (see, e.g., [10, 11]). The latter are block one-step methods
[13]. However, the equivalent Runge-Kutta formulation of HBVMs will be here
also considered. Before that, we need to introduce the background information
concerning the approach. Let then

y′ = J∇H(y), y(0) = y0 ∈ R2m, (1)

be a Hamiltonian problem in canonical form, where, by setting as usual Im the
identity matrix of dimension m,

J =

(
Im

−Im

)
, (2)

and where the Hamiltonian function, H(y), is hereafter assumed to be a polynomial
of degree ν. It is well known that, for any y∗ ∈ R2m,

H(y∗)−H(y0) =

∫

y0→y∗
∇H(y)T dy =

∫ 1

0

σ′(t)T∇H(σ(t))dt, (3)

where σ : [0, 1] → R2m is any smooth function such that

σ(0) = y0, σ(1) = y∗.

In particular, over a trajectory, y(t), of (1), one has

H(y(t))−H(y(0)) =

∫ t

0

∇H(y(τ))T y′(τ)dτ

=

∫ t

0

∇H(y(τ))T J∇H(y(τ))dτ = 0,

3



  

due to the fact that matrix J in (2) is skew-symmetric.
Here we consider the case where σ(t) is a polynomial of degree s yielding an

approximation to the true solution y(t) in the time interval [0, h] which, without
loss of generality, is hereafter normalized to [0, 1]. More specifically, given the s+1
abscissae

0 = c0 < c1 < · · · < cs = 1, (4)

and the approximations yi ≈ y(ci), σ(t) is meant to be defined by the interpolation
conditions

σ(ci) = yi, i = 0, . . . , s. (5)

Actually, the approximations {yi} will be unknown, until the new methods will be
fully derived.

A different, though related concept, is that of collocating polynomial for the
problem, at the abscissae (4). It is the unique polynomial u(t), of degree s + 1,
satisfying

u(0) = y0, and u′(ci) = J∇H(u(ci)), i = 0, . . . , s. (6)

It is well known that (6) define a Runge-Kutta collocation method. Moreover,
the set of abscissae (4) defines a corresponding quadrature formula with weights

bi =

∫ 1

0

s∏

j=0, j 6=i

t− cj

ci − cj

dt, i = 0, 1, . . . , s, (7)

which has degree of precision ranging from s to 2s − 1, depending on the choice
of the abscissae (4). In particular, the highest degree of precision is obtained by
using the Lobatto abscissae, which we shall consider in the sequel. 1 The underlying
collocation method has, then, order 2s.

Remark 1. Choosing a Gauss distribution of the abscissae {ci} raises the degree
of precision of the related quadrature formula to 2s + 1. In such a case, it is
interesting to observe that applying (3) along the trajectory u(t) and exploiting the
collocation conditions (6), one gets

H(u(1))−H(u(0)) =

∫ 1

0

u′(t)T∇H(u(t))dt (8)

=
s∑

i=0

biu
′(ci)

T∇H(u(ci)) + Rs = Rs,

1 Different choices of the abscissae will be the subject of future investigations.
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where Rs is the error in the approximation of the line integral. Therefore, H(u(1)) =
H(u(0)) if and only if Rs = 0, which is implied by assuming that the quadrature
formula with abscissae {ci} and weights {bi} is exact when applied to the integrand
u′(t)T∇H(u(t)). However, since the integrand has degree

s + (ν − 1)(s + 1) = ν(s + 1)− 1,

it follows that the maximum allowed value for ν is 2. Indeed, it is well known that
quadratic invariants are preserved by symmetric collocation methods. On the other
hand, when ν > 2, in general Rs does not vanish, so that H(u(1)) 6= H(u(0)).

The above remark gives us a hint about how to approach the problem. Note
that in (8) demanding that each term of the sum representing the quadrature
formula is null (i.e., the conditions (6)), is an excessive requirement to obtain the
conservation property, which causes the observed low degree of precision. A weaker
assumption, that would leave the result unchanged, is to relax conditions (6) so as
to devise a method whose induced quadrature formula, evaluated on a suitable line
integral that links two successive points of the numerical solution, is exact and, at
the same time, makes the corresponding sum vanish, without requiring that each
term is zero. More precisely, in the new methods, conditions (6) will turn out to
be replaced by relations of the form

σ′(ci) =
∑

j

βijJ∇H(σ(cj)),

which resemble a sort of extended collocation condition (see also [11, Section 2])
since σ′(ci) brings information from the global behavior of the problem in the time
interval [0, h] (see (17)–(33) in Section 3 and the analogues in Section 4). In this
sense, the methods that we shall devise can be regarded as a kind of extended
collocation methods.

If we use σ(t) instead of u(t), the integrand function in (3) has degree νs − 1
so that, in order for the quadrature formula to be exact, one would need say, k +1
points, where

k =
⌈νs

2

⌉
, (9)

if the corresponding Lobatto abscissae are used. Of course, in such a case, the
vanishing of the quadrature formula is no longer guaranteed by conditions (6) and
must be obtained by a different approach. For this purpose, let

r = k − s, (10)

be the number of the required additional points, and let

0 < τ1 < · · · < τr < 1, (11)
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be r additional abscissae distinct from (4). Moreover, let us define the following
silent stages [11],

wi ≡ σ(τi), i = 1, . . . , r. (12)

Consequently, the polynomial σ(t), which interpolates the couples (ci, yi), i =
0, 1, . . . , s, also interpolates the couples (τi, wi), i = 1, . . . , r. That is, σ(t) in-
terpolates at k + 1 points, even though it has only degree s. If we define the
abscissae

{t0 < t1 < · · · < tk} = {ci} ∪ {τi}, (13)

and dispose them according to a Lobatto distribution in [0, 1] in order to get a
formula of degree 2k, we have that

∫ 1

0

σ′(t)T∇H(σ(t))dt =
k∑

i=0

biσ
′(ti)T∇H(σ(ti)), (14)

and, consequently, the conservation condition becomes

k∑
i=0

biσ
′(ti)T∇H(σ(ti)) = 0, (15)

where, now,

bi =

∫ 1

0

k∏

j=0, j 6=i

t− tj
ti − tj

dt, i = 0, 1, . . . , k. (16)

The left-hand side of (15) is called “discrete line integral” because, as will be
clear in the sequel, the choice of the path σ(t) is dictated by the numerical method
by which we will solve problem (1) (see [11] for details).

With these premises, in Section 4, we devise such methods, able to fulfill (15),
after having set some preliminary results in Section 3. Section 5 contains the
analysis of the energy-preserving methods. A few numerical tests are then re-
ported in Section 6 and, finally, some conclusions are given in Section 7. For
sake of completeness, some properties of shifted Legendre polynomials are listed
in Appendix A.

3. Matrix form of collocation methods

In this section we deliberately do not care of the exactness of the discrete
line integral, as stated by (14), and in fact we choose k = s (and hence ti = ci,
i = 0, . . . , s). We show that imposing the vanishing of the discrete line integral
(condition (15)) leads to the definition of the classical Lobatto IIIA methods. The
reason why we consider this special situation is that the technique that we are
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going to exploit is easier to be explained, but at the same time is straightforwardly
generalizable to the case k > s. As a by-product, we will gain more insight about
the link between the new methods and the Lobatto IIIA class. For example, we will
deduce that Lobatto IIIA methods may be defined by means of a polynomial σ(t)
of degree lower than that of the collocation polynomial u(t) (indeed, deg σ(t) =
deg u(t) − 1). For completeness, the link between u and σ will be elucidated in
Section 3.3. To begin with, let us consider the following expansion of σ′(c):

σ′(c) =
s−1∑
j=0

γjPj(c), (17)

where the (vector) coefficients γj are to be determined. Then, (15) becomes

s−1∑
j=0

γT
j

s∑
i=0

biPj(ci)∇H(σ(ci)) = 0, (18)

which will clearly hold true, provided that the following set of orthogonality con-
ditions are satisfied:

γj = ηj

s∑
i=0

biPj(ci)J∇H(σ(ci)), j = 0, . . . , s− 1, (19)

where {ηj} are suitable scaling factors. We now impose that the polynomial

σ(c) = y0 +
s−1∑
j=0

γj

∫ c

0

Pj(x) dx (20)

satisfies (5). We shall do this in Section 3.2, by using a matrix formulation of the
methods, after setting some notation in Section 3.1.

3.1. Notations and preliminary results

The shifted Legendre polynomials, in the interval [0, 1], constitute a family of
polynomials, {Pn}n≥0, for which a number of known properties, named P1–P7,
are reported in Appendix A. Let us then set:

γ =




γ0
...

γs−1


 , e =




1
...
1


 ∈ Rs, y =




y1
...
ys


 , ŷ =

(
y0

y

)
. (21)

Moreover, with reference to the abscissae (4), let:

pj =




Pj(c1)
...

Pj(cs)


 , p̂j =

(
Pj(c0)

pj

)
, j = 0, . . . , s, (22)
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Pj =
(

p0 . . . pj

) ∈ Rs×j+1, P̂j =
(

p̂0 . . . p̂j

) ∈ Rs+1×j+1, (23)

Ij =




∫ c1
0

Pj(x)dx
...∫ cs

0
Pj(x)dx


 , Îj =

( ∫ c0
0

Pj(x)dx
Ij

)
≡

(
0
Ij

)
, j = 0, . . . , s. (24)

Furthermore, we set:

Ij =
(

I0 . . . Ij

) ∈ Rs×j+1, Îj =
(

Î0 . . . Îj

) ∈ Rs+1×j+1, (25)

Dj =




1
3

. . .

2j − 1


 ∈ Rj×j, Ω =




b0

. . .

bs


 , (26)

and

Gj =




1 −1

1 0
. . .

1
. . . −1
. . . 0

1



∈ Rj+1×j. (27)

By virtue of P2 and P5, we deduce that

P̂T
j−1ΩP̂j =

[
D−1

j 0
]
, j = 1, . . . , s, (28)

and

Îj−1 =
1

2
P̂jGjD

−1
j , Ij−1 =

1

2
PjGjD

−1
j , j = 1, 2, . . . . (29)

The following result holds true.

Lemma 1. Matrices P̂s =
(

p̂0 . . . p̂s

) ∈ Rs+1×s+1 and Is−1 ∈ Rs×s are non-
singular.

Proof P̂s is the transpose of the Gramian matrix defined by the linearly in-
dependent polynomials P0(c), . . . , Ps(c) at the distinct abscissae c0, . . . , cs and is,
therefore, nonsingular. The matrix Is−1 is nonsingular since, from (27)–(29),

Îs−1 =

(
0T

Is−1

)
=

1

2
P̂sGsD

−1
s ∈ Rs+1×s, (30)

with P̂s and Ds nonsingular, and rank(Gs) = s. 2
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3.2. Matrix formulation

By imposing that the polynomial (20) satisfies (5), one obtains (see (24)–(29))

Is−1 ⊗ I2mγ =

(
1

2
PsGsD

−1
s

)
⊗ I2mγ = y − e⊗ y0. (31)

Consequently,
γ =

[
2Ds(PsGs)

−1
( −e Is

)]⊗ I2m ŷ. (32)

On the other hand, the vector form of relations (19) reads

γ =
(
ΓP̂T

s−1Ω
)
⊗ I2mf̂ , (33)

where Γ = diag(η0, . . . , ηs−1) ∈ Rs×s and

f̂ =
(

f0 . . . fs

)T
, fi = J∇H(σ(ci)), i = 0, . . . , s. (34)

Since Γ contains free parameters, we set

Γ = Ds. (35)

Comparing (32) and (33), we arrive at the following block method, where now h
denotes, in general, the used stepsize,

A⊗ I2m ŷ = hB ⊗ I2m f̂ , (36)

with (see (29))

A =
( −e Is

)
, B =

(
1

2
PsGsP̂T

s−1Ω

)
≡

(
Is−1DsP̂T

s−1Ω
)

. (37)

The following noticeable result holds true.

Theorem 1. Each row of the block method (36)-(37) defines a linear multistep
formula of order s+1. The last row corresponds to the Lobatto quadrature formula
of order 2s.

Proof For the first part of the proof, it suffices to show that the method is
exact for polynomials of degree s+1. Clearly, it is exact for polynomials of degree
0, due to the form of the matrix A. We shall then prove that AÎs = BP̂s, that is
(see (24), (25), and (37)), Is = BP̂s. By virtue of (37), (28), and considering that
from property P7 one obtains Is = 0, we have

BP̂s = Is−1DsP̂T
s−1ΩP̂s = Is−1Ds

[
D−1

s 0
]

= [Is−1 Is] = Is,
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which completes the first part of the proof. For the second part, one has to show,
by setting as usual ei the ith unit vector, that

eT
s B =

(
b0 . . . bs

)
,

the vector containing the coefficients of the quadrature formula. From (37), ex-
ploiting property P4 (see also (27)), we obtain

eT
s B =

1

2
eT

s PsGsP̂T
s−1Ω =

1

2

(
1 . . . 1

)
GsP̂T

s−1Ω

= eT
1 P̂T

s−1Ω =
(

1 . . . 1
)
Ω =

(
b0 . . . bs

)
. 2

As an immediate consequence, the following result follows.

Corollary 1. The block method (36)-(37) collocates at the Lobatto abscissae (4)
and has global order 2s.

Proof The proof follows from known results about collocation methods (see,
e.g., [1, Theorem II.1.5]). 2

Remark 2. In conclusion, the method corresponding to the pencil (A,B), as de-
fined by (37), is nothing but the Lobatto IIIA method of order 2s.

3.3. Link between σ(c) and the collocation polynomial u(c)

An important consequence of Theorem 1 and Corollary 1 is that the Lobatto
IIIA method of order 2s may be also defined by means of an underlying polynomial,
namely σ(c), of degree s instead of s+1, as is the collocation polynomial associated
with the method (36).

The main aim of the present subsection is to elucidate the relation between
these two polynomials. In what follows, we deliberately ignore the result obtained
in Theorem 1 and Corollary 1, so as to provide, among other things, an alternative
proof of part of the statements they report.

Let u(c) be the polynomial (6) (of degree s + 1) that collocates problem (1) at
the abscissae (4). The expansion of u′(c) along the shifted Legendre polynomials
basis reads

u′(c) =
s∑

j=0

ζjPj(c). (38)

Consequently, by setting

ĝ =




g0
...
gs


 , gi = J∇H(u(ci)), and ζ̂ ≡

(
ζ
ζs

)
≡







ζ0
...

ζs−1




ζs


 ,
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one obtains that (6) may be recast in matrix notation as P̂s ⊗ I2mζ̂ = ĝ, or

ζ̂ = P̂−1
s ⊗ I2m ĝ. (39)

We get the expression of u(c) by integrating both sides of (38) on the interval
[0, c]:

u(c) = y0 +
s−1∑
j=0

ζj

∫ c

0

Pj(x)dx + ζs

∫ c

0

Ps(x)dx. (40)

By virtue of property P7, we get

u(ci) = y0 +
s−1∑
j=0

ζj

∫ ci

0

Pj(x)dx, i = 0, . . . , s. (41)

Setting zi = u(ci), i = 1, . . . , s, z = (z1, . . . , zs)
T , and ẑ = (y0, z

T )T , allows us to
recast (41) in matrix form. This is done by exploiting a similar argument used to
get (31) starting from (20). By taking into account (37), one then obtains:

A⊗ I2mẑ = z− e⊗ y0 = Is−1 ⊗ I2mζ =

(
1

2
PsGsD

−1
s

)
⊗ I2mζ

=

(
1

2
PsGs

[
D−1

s 0
])⊗ I2mζ̂. (42)

Inserting (39) into (42), and exploiting (28), yields

A⊗ I2mẑ =
1

2
PsGs

[
D−1

s 0
] P̂−1

s ⊗ I2mĝ

=
1

2
PsGsP̂T

s−1Ω⊗ I2mĝ = B ⊗ I2mĝ.

Thus, the collocation problem (6) defines the very same method arising from the
polynomial σ(c) (see (36)–(37)) with h = 1. This implies that system (36) is a
collocation method defined on the Lobatto abscissae ci, i = 0, . . . , s, (therefore,
a Lobatto IIIA method), and provides an alternative proof of Corollary 1. In
particular, we deduce that

u(ci) = yi = σ(ci), i = 0, . . . , s.

It follows that (40) becomes

u(c) = σ(c) + ζs

∫ c

0

Ps(x)dx (43)
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and, after differentiating,

u′(c) = σ′(c) + ζsPs(c). (44)

We can obtain the expression of the unknown ζs by imposing a collocation condi-
tion at any of the abscissae ci. For example, choosing c = cs = 1, yields

ζs = u′(1)− σ′(1) = f(ys)−
s−1∑
j=0

γj = f(ys)− eT ⊗ I2mγ. (45)

This latter expression can be slightly simplified by considering that:

(i) f(ys) = (eT 1)P̂−1
s ⊗I2mf̂ , which comes from the fact that the system P̂T

s x =(
e
1

)
has solution x = es+1 (the nonsingularity of P̂s being assured by

Lemma 1);

(ii) from (32) and (36)–(37), one has

γ = (DsP̂T
s−1Ω)⊗ I2mf̂ = (DsP̂T

s−1ΩP̂sP̂−1
s )⊗ I2mf̂

= (Ds(D
−1
s 0)P̂−1

s )⊗ I2mf̂ = (Is 0)P̂−1
s ⊗ I2mf̂ .

Thus, from (45) we get

ζs =
[
(eT 1)− (eT 0)

] P̂−1
s ⊗ I2mf̂ = eT

s+1P̂−1
s ⊗ I2mf̂ . (46)

The remaining collocation conditions, u′(ci) = J∇H(u(ci)), i = 0, . . . , s − 1, are
clearly satisfied since the collocation polynomial u(c) is uniquely identified by the
s+2 linearly independent conditions in (6). Nonetheless, they can be easily checked
after observing that, from (43), (ii), and (46),

ζ̂ =

(
γ
ζs

)
= P̂−1

s ⊗ I2mf̂ .

Therefore, from (38), (39), and (43), one obtains,

û′ ≡




u′(c0)
...

u′(cs)


 = P̂s ⊗ I2mζ = P̂sP̂−1

s ⊗ I2mf̂ = f̂ .

That is (see (34)), u′(ci) = J∇H(u(ci)), i = 0, . . . , s.
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4. Derivation of the energy-preserving methods

In Section 3, we have considered the particular case k = s. In the general case,
i.e., when k ≥ s, condition (15) can be recast as

s−1∑
j=0

γT
j

k∑
i=0

biPj(ti)∇H(σ(ti)) = 0, (47)

which will clearly hold true, provided that the following set of orthogonality con-
ditions are satisfied:

γj = ηj

k∑
i=0

biPj(ti)J∇H(σ(ti)), j = 0, . . . , s− 1, (48)

where {ηj} are suitable scaling factors. According to (35), we choose them as
ηj = 2j + 1, j = 0, . . . , s − 1.2 The vector γ (see (21)) is then obtained by
imposing that the polynomial σ(c) in (20) satisfies the interpolation constrains
(5) and (12). In so doing, one obtains a block method characterized by the pencil
(A,B), where the two k×k+1 matrices A and B are defined as follows. In order to
simplify the notation, we shall use a “Matlab-like” notation: let inds ∈ Rs+1 and
indr ∈ Rr be the vectors whose entries are the indexes, belonging to {1, . . . , k+1},
of the main abscissae c0 < · · · < cs in (4) and of the silent ones τ1 < · · · < τr in
(11), respectively, within the Lobatto abscissae t0 < · · · < tk, as defined in (13).
Then, the orthogonality conditions (48) will define the first s rows of A and B 3

(compare with (37)):

A(1 : s, inds) =
( −e Is

)
, B(1 : s, :) =

(Is−1DsP̄T Ω̄
)
, (49)

where (see (25)–(26) and (13))

P̄ =




P0(t0) . . . Ps−1(t0)
...

...
P0(tk) . . . Ps−1(tk)


 ∈ Rk+1×s, (50)

and (see (7))

Ω̄ =




b0

. . .

bk


 ∈ Rk+1×k+1. (51)

2 It is worth mentioning that, even though any choice for the {ηj} is in principle allowed,
choosing ηj = 2j + 1 maximizes the order of the resulting method, according to what proved in
Corollary 2.

3 As a further convention, the entries not explicitly set are assumed to be 0.
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On the other hand, the interpolation conditions for the silent stages (12) define
the last r rows of the matrix A (the corresponding rows of B are obviously zero):

A(s + 1 : k, indr) = Ir, (52)

A(s + 1 : k, inds) = −Īr

[I−1
s−1

( −e Is

)]− ē · eT
1 ,

where Ir is the identity matrix of dimension r, ē = (1, . . . , 1)T ∈ Rr, e1 is the first
unit vector (of dimension s + 1), and

Īr =




∫ τ1
0

P0(x)dx . . .
∫ τ1

0
Ps−1(x)dx

...
...∫ τr

0
P0(x)dx . . .

∫ τr

0
Ps−1(x)dx


 ∈ Rr×s.

The following result generalizes Theorem 1 to the present setting (the proof
being similar).

Theorem 2. Each row of the block method (49)–(52) defines a linear multistep
formula of order at least s. The s-th row corresponds to the Lobatto quadrature
formula of order 2k.

Definition 1. We call the method defined by the pencil (A,B) in (49)–(52) a
“Hamiltonian BVM with k steps and degree s”, hereafter HBVM(k,s).4

Remark 3. The structure of the nonlinear system associated with the HBVM(k, s)
is better visualized by performing a permutation of the stages that splits, into two
block sub-vectors, the fundamental stages and the silent ones. More precisely, the
permuted vector of stages, say z, is required to be:

z = [yT
0 , yT

1 , . . . , yT
s︸ ︷︷ ︸, w

T
1 , wT

2 , . . . , wT
r︸ ︷︷ ︸]

T ≡ [yT
0 ,yT ,wT ]T .

fundamental stages silent stages

This is accomplished by introducing the permutation matrices W ∈ Rk×k and W1 ∈
Rk+1×k+1, such that

W




2
...

k + 1


 =

(
inds(2 : s + 1)

indr

)
, W1




1
...

k + 1


 =

(
inds

indr

)
.

It is easy to realize that

W AW T
1 =

( −e Is 0s×r

−a0 −A1 Ir

)
, W B W T

1 =

(
b0 B1 B2

0 0r×s 0r×r

)
,

4 Indeed, the pencil (A,B) perfectly fits the framework of block BVMs (see, e.g., [13]).
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where [−a0, −A1] coincides with A(s + 1 : k, inds) in (52), while [b0, B1, B2]
matches the matrix B(1 : s, :) in (49). The HBVM(k, s) then takes the form:

( −e Is 0s×r

−a0 −A1 Ir

)
⊗ I2m z = h

(
b0 B1 B2

0 0r×s 0r×r

)
⊗ J ∇H(z). (53)

The presence of the null blocks in the lower part of W B W T
1 clearly suggests that

the (generally nonlinear) system (53) of (block) size k is actually equivalent to a
system having (block) size s. Indeed, we can easily remove the silent stages,

w = a0 ⊗ y0 + A1 ⊗ I2m y,

and obtain

y = e⊗ y0 + hb0 ⊗ (J∇H(y0)) +

hB1 ⊗ J ∇H(y) + hB2 ⊗ J ∇H(a0 ⊗ y0 + A1 ⊗ I2m y). (54)

(We refer to [19] for an alternative technique to reduce the dimension of system
(53). The main idea, in this case, is to reformulate the discrete problem in terms
of the coefficients {γj} (see (48)) of the polynomial σ, which are s, independently
of k.)

Remark 4. As was shown in the previous section, when k = s, the HBVM(s,s)
coincides with the Lobatto IIIA method of order 2s. More in general, for k ≥ s, by
summing up (49)–(52), we can cast HBVM(k, s) as a (k + 1)-stage Runge-Kutta
method with the following tableau:

t0
... ĪDsP̄T Ω̄
tk

b0 . . . bk

(55)

where

Ī =




∫ t0
0

P0(x)dx . . .
∫ t0

0
Ps−1(x)dx

...
...∫ tk

0
P0(x)dx . . .

∫ tk
0

Ps−1(x)dx


 ∈ Rk+1×s.

We observe that the k + 1× k + 1 matrix

C = ĪDsP̄T Ω̄ (56)

appearing in (55) has rank s, thus confirming that the computational cost per
iteration depends on s, rather than on k (see [14] for more details and a practical
example of Butcher tableau concerning the method HBVM(6,2)).
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By the way, we observe that, when s = 1, HBVM(k, 1) are nothing but the
“s-stage trapezoidal methods”, defined in [9], based on the Lobatto abscissae. In
such a case, the matrix C becomes

C =




t0
...
tk




(
b0 . . . bk

)
.

Similarly, for s = 2 and k = 4, HBVM(4,2) coincides with the fourth-order method
presented in [11, Section 4.2], able to preserve polynomial Hamiltonians of degree
four.

5. Anaysis of the methods

Concerning the order of convergence of HBVM(k, s) methods, the following
result generalizes that of Corollary 1.

Corollary 2. For all k ≥ s, the HBVM(k,s) (49)–(52) has order of convergence
p = 2s.

Proof By virtue of Theorem 2, the corresponding Runge-Kutta method (55) sat-
isfies the usual simplifying assumptions B(2k) and C(s). If we are able to prove
D(s− 1), from the classical result of Butcher (see, e.g., [15, Theorem5.1]), it will
follow that the method has order p = 2s. With reference to (55), the condition
D(s− 1) can be cast in matrix form, by introducing the vectors e = (1, . . . , 1)T ∈
Rs−1, ē = (1, . . . , 1)T ∈ Rk+1, and the matrices

Q = diag(1, . . . , s− 1), T = diag(t0, . . . , tk), V = (tj−1
i−1 ) ∈ Rk+1×s−1,

as
QV T Ω̄

(ĪDsP̄T Ω̄
)

=
(
e ēT − V T T

)
Ω̄,

i.e.,

P̄DsĪT Ω̄V Q =
(
ē eT − TV

)
. (57)

Since the quadrature is exact for polynomials of degree 2s− 1 ≤ 2k − 1, one has

(ĪT Ω̄V Q
)

ij
=

(
k∑

`=0

b`

∫ t`

0

Pi−1(x)dx (jtj−1
` )

)

=

(∫ 1

0

∫ t

0

Pi−1(x)dx(jtj−1)dt

)

=

(
δi1 −

∫ 1

0

Pi−1(x)xjdx

)
, i = 1, . . . , s, j = 1, . . . , s− 1,
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where the last equality is obtained by integrating by parts, with δi1 the Kronecker
symbol. Consequently,

(P̄DsĪT Ω̄V Q
)

ij
=

(
1−

s−1∑

`=0

η`P`(ti)

∫ 1

0

P`(x)xjdx

)

= (1− tji−1), i = 1, . . . , k + 1, j = 1, . . . , s− 1,

that is, (57), where the last equality follows from the fact that

s−1∑

`=0

η`P`(t)

∫ 1

0

P`(x)xjdx = tj, j = 1, . . . , s− 1. 2

An additional, remarkable property of such methods is gained, provided that
the abscissae {t0, . . . , tk} (13) are symmetrically distributed (as is the case of the
Lobatto abscissae here considered). For this purpose, we need to introduce some
notations and preliminary results. Let us define the matrix

En =




1
·

·
·

1



∈ Rn×n, n = 1, 2, . . .

which, when applied to a vector of length n, reverses the order of its entries. We
also set

L =



−1 1

. . . . . .

−1 1


 ∈ Rk×k+1,

(58)

F =




(−1)0

(−1)1

. . .

(−1)s−1


 ∈ Rs×s.

The following preliminary result holds true.

Lemma 2. If the abscissae (13) are symmetric, then matrix (56) satisfies:

EkLC Ek+1 = LC.
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Proof From the symmetry of the abscissae it easily follows that (see (16) and
(51))

Ek+1Ω̄Ek+1 = Ω̄.

From property P3, we have that (see (50))

P̄T Ek+1 = F P̄T .

Moreover, by considering that (see (4))

L I =




∫ t1
t0

P0(x)dx . . .
∫ t1

t0
Ps−1(x)dx

...
...∫ tk

tk−1
P0(x)dx . . .

∫ tk
tk−1

Ps−1(x)dx


 ,

again from P3 we see that
EsL I = L IF.

Finally, from (56) we obtain

EkL C Ek+1 = (EkL I)Ds(P̄T Ek+1)(Ek+1Ω̄ Ek+1)

= L IF DsF P̄T Ω̄ = L IDsP̄T Ω̄ = LC. 2

As a consequence, we have the following result.

Theorem 3. If the abscissae (13) are symmetric, then the method (49)–(52) (i.e.,
(55)) is symmetric, that is, it is self-adjoint.

Proof Indeed, the discrete solution, ŷ, satisfies the equation (see (55)–(56)
and (58))

L⊗ I2m ŷ = hL C ⊗ I2m f(ŷ).

Considering that EkLEk+1 = −L and, from Lemma 2, Ek LC Ek+1 = LC, one
then obtains

L⊗ I2m(Ek+1 ⊗ I2m ŷ) = −hL C ⊗ I2m (Ek+1 ⊗ I2m f(ŷ))

= −hL C ⊗ I2m f (Ek+1 ⊗ I2m ŷ) .

The thesis then follows by observing that the vector Ek+1 ⊗ I2m ŷ contains the
time-reversed discrete solution. 2

The next theorem summarizes the results about HBVM(k, s).

Theorem 4 (Main Result). For all s = 1, 2, . . . , and k ≥ s, the HBVM(k,s)
method:
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1. is symmetric;

2. has order of accuracy 2s;

3. is energy-preserving for polynomial Hamiltonians of degree not larger than
2k/s;

4. for general C(2k+1) Hamiltonians, the energy error at each integration step
is O(h2k+1), if h is the used stepsize. 5

Proof Item 1 follows from Theorem 3, since the Lobatto abscissae {ti} are
symmetrically distributed. Item 2 follows from Corollary 2. Item 3 follows from
the fact that, for such polynomial Hamiltonians, the vanishing discrete line integral
equals the continuous line integral (see (14) and (15)). Finally, Item 4 follows from
the fact that, by using arguments similar to those used in Remark 1 (see (8)), the
energy error per integration step equals the quadrature error of the Gauss-Lobatto
formula of order 2k. Indeed, for a general stepsize h, one would obtain, by taking
into account (20)-(48):

H(y1)−H(y0) = H(σ(h))−H(σ(0))

= h

∫ 1

0

σ′(τh)T∇H(σ(τh))dτ = h

(
k∑

i=0

bi∇H(σ(tih))T σ′(tih) + Rk(h)

)

= h

k∑
i=0

bi∇H(σ(tih))T

s−1∑
j=0

Pj(ti)γj + hRk(h)

= h

s−1∑
j=0

[
k∑

i=0

biPj(ti)∇H(σ(tih))

]T

︸ ︷︷ ︸
= [η−1

j JT γj ]T

γj + hRk(h)

= h

s−1∑
j=0

η−1
j γT

j Jγj + hRk(h) = hRk(h).

The thesis completes by recalling that, when choosing the k+1 Lobatto abscissae,
then Rk(h) = O(h2k). 2

Remark 5. Since HBVM(k, s) is a one-step method (indeed, a Runge-Kutta meth-
od), the result of Theorem 4 continues to hold in the case where the stepsize h is
dinamically changed at each integrations step.

5 Consequently, on any finite interval the global energy error is not larger than O(h2k).
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6. Numerical Tests

We here report a few numerical tests, in order to show the potentialities of
HBVM(k, s).

Let then consider, at first, the Hamiltonian problem characterized by the poly-
nomial Hamiltonian (4.1) in [3],

H(p, q) =
p3

3
− p

2
+

q6

30
+

q4

4
− q3

3
+

1

6
, (59)

having degree ν = 6, starting at the initial point y0 ≡ (q(0), p(0))T = (0, 1)T . For
such a problem, in [3] it has been experienced a numerical drift in the discrete
Hamiltonian, when using the fourth-order Lobatto IIIA method 6 with stepsize
h = 0.16. This is confirmed by the plot in Figure 1, where a linear drift in the
numerical Hamiltonian is clearly observable. On the other hand, by using the
fourth-order HBVM(6,2) with the same stepsize, the drift disappears, as shown in
Figure 2, since such method exactly preserves polynomial Hamiltonians of degree
up to 6. Moreover, the order of convergence p = 4 is (numerically) confirmed by
the results listed in Table 1, where the used stepsizes h, the maximum estimated
error (obtained as the difference of two consecutive solutions), and the estimated
order of convergence are listed.

The second test problem is the Fermi-Pasta-Ulam problem (see [1, Section I.5.1]),
defined by the Hamiltonian

H(p, q) =
1

2

m∑
i=1

(
p2

2i−1 + p2
2i

)
+

ω2

4

m∑
i=1

(q2i − q2i−1)
2 +

m∑
i=0

(q2i+1 − q2i)
4 , (60)

with q0 = q2m+1 = 0, m = 3, ω = 50, and starting vector

pi = 0, qi = (i− 1)/10, i = 1, . . . , 6.

In such a case, the Hamiltonian function is a polynomial of degree 4, so that the
fourth-order HBVM(4,2) method, which is used with stepsize h = 0.05, is able to
exactly preserve the Hamiltonian, as confirmed by the plot in Figure 4, whereas
the fourth-order Lobatto IIIA method provides the result plotted in Figure 3.
Moreover, in Table 2 we list corresponding results as in Table 1, again confirming
the fourth-order convergence.

In the previous examples, the Hamiltonian function was a polynomial. Nev-
ertheless, as is easily argued from Theorem 4, HBVM(k,s) are expected to pro-
duce a practical conservation of the energy when applied to systems defined by a

6 Such method coincides with the HBVM(2,2) above described.
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Figure 1: Fourth-order Lobatto IIIA method, h = 0.16, problem (59).
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Figure 2: Fourth-order HBVM(6,2) method, h = 0.16, problem (59).
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Figure 3: Fourth-order Lobatto IIIA method, h = 0.05, problem (60).
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Figure 4: Fourth-order HBVM(4,2) method, h = 0.05, problem (60).
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Table 1: Numerical order of convergence for the HBVM(6,2) method, problem (59).
h 0.32 0.16 0.08 0.04 0.02

error 2.288 · 10−2 1.487 · 10−3 9.398 · 10−5 5.890 · 10−6 3.684 · 10−7

order – 3.94 3.98 4.00 4.00

Table 2: Numerical order of convergence for the HBVM(4,2) method, problem (60).
h 1.6 · 10−2 8 · 10−3 4 · 10−3 2 · 10−3 10−3

error 3.030 1.967 · 10−1 1.240 · 10−2 7.761 · 10−4 4.853 · 10−5

order – 3.97 3.99 4.00 4.00

Table 3: Numerical order of convergence for the HBVM(6,2) method, problem (61).
h 3.2 · 10−2 1.6 · 10−2 8 · 10−3 4 · 10−3 2 · 10−3

error 3.944 · 10−6 2.635 · 10−7 1.729 · 10−8 1.094 · 10−9 6.838 · 10−11

order – 3.90 3.93 3.98 4.00

non-polynomial Hamiltonian function which are sufficiently differentiable. As an
example, we consider the motion of a charged particle in a magnetic field with
Biot-Savart potential.7 It is defined by the Hamiltonian

H(x, y, z, ẋ, ẏ, ż) =
1

2m

[(
ẋ− α

x

ρ2

)2

+

(
ẏ − α

y

ρ2

)2

+ (ż + α log(ρ))2

]
, (61)

with ρ =
√

x2 + y2, α = e B0, m is the particle mass, e is its charge, and B0 is the
magnetic field intensity. We have used the values

m = 1, e = −1, B0 = 1,

with starting point

x = 0.5, y = 10, z = 0, ẋ = −0.1, ẏ = −0.3, ż = 0.

In Figure 5, the trajectory of the particle in the interval [0, 103] is plotted in the
phase space. As one can see, it is a helix that wings downward. By using the
fourth-order Lobatto IIIA method with stepsize h = 0.1, a drift in the numerical
Hamiltonian can be again observed (see Figure 6), so that the method does in-
troduce a friction. When using the HBVM(4,2) method with the same stepsize,
the drift disappears and the Hamiltonian turns out to be almost preserved (see
Figure 7). As expected, the result improves if we increase k: the plot in Figure 8

7 As an example, this kind of motion causes the well known phenomenon of aurora borealis.
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has been obtained by using the HBVM(6,2), from which one realizes that a practi-
cal preservation of the Hamiltonian is reached. Finally, the data listed in Table 3
confirm the fourth-order convergence of the latter method.

7. Conclusions

In this paper a new class of numerical methods, able to preserve polynomial
Hamiltonians, has been studied in detail. From the analysis, it turns out that such
methods can be regarded as a generalization of collocation Runge-Kutta Lobatto
IIIA methods. Nevertheless, the fact of being characterized by a matrix pencil,
perfectly fits the framework of block BVMs, so that we have named them Hamil-
tonian BVMs (HBVMs). A number of numerical tests prove their effectiveness in
preserving the Hamiltonian function when evaluated along the numerical solution,
as well as confirm the predicted order of convergence. Possible different choices of
the abscissae, as well as the actual efficient implementation of the methods, will
be the subject of future investigations.
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Appendix A: some properties of shifted Legendre polynomials

The shifted Legendre polynomials {Pn}n≥0, can be obtained recursively as fol-
lows:

P0(x) ≡ 1,

P1(x) = 2x− 1,

(n + 1)Pn+1(x) = (2n + 1)(2x− 1)Pn(x)− nPn−1(x), n = 1, 2, . . . .

A number of useful properties of such polynomials are here recalled: for their proof
see any book on special functions (e.g., [16]).

P1. Lobatto quadrature: the Lobatto abscissae {ci} (4), of the formula of degree
2s, are the zeros of the polynomial

(x2 − x)P ′
s(x),

where P ′
s(x) denotes the derivative of Ps(x). The corresponding weights (7)

are given by:

bi =
1

s(s + 1)(Ps(ci))2
, i = 0, 1, . . . , s,
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Figure 5: Phase-space plot of the solution of problem (61) for 0 ≤ t ≤ 103 (the circle denotes
the starting point of the trajectory).
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Figure 6: Fourth-order Lobatto IIIA method, h = 0.1, problem (61).
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Figure 7: Fourth-order HBVM(4,2) method, h = 0.1, problem (61).
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which are, therefore, all positive.

P2. Orthogonality:

∫ 1

0

Pn(x)Pm(x) dx =
1

2n + 1
δnm, n = 0, 1, . . . ,

where, as usual, δnm denotes the Kronecker delta.

P3. Symmetry:
Pn(1− x) = (−1)nPn(x), n = 0, 1, . . . .

P4. Symmetry at the end-points:

Pn(0) = (−1)n, Pn(1) = 1, n = 0, 1, . . . .

P5. Integrals:

2

∫ x

0

P0(t) dt = 2x = P1(x) + P0(x),

2(2n + 1)

∫ x

0

Pn(t) dt = Pn+1(x)− Pn−1(x), n = 1, 2, . . . .

P6. Shifted Legendre differential equations. The shifted Legendre polynomials
satisfy the second order differential equation:

d

dx

[
(x2 − x)P ′

n(x)
]
+ n(n + 1)Pn(x) = 0, n = 0, 1, . . . .

P7. From P1 and P6, it follows that, if (4) are the Lobatto abscissae of the
formula of order 2s (i.e., exact for polynomials of degree 2s− 1), then

∫ ci

0

Ps(x) dx = 0, i = 0, 1, . . . , s.
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