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Abstract

Deferred correction is a widely used tool for improving the numerical
approximation to the solution of ODE problems [10, 11, 12, 13, 16, 17,
18, 19, 20, 21, 23]. Indeed, it allows to estimate the error due to the use
of discrete methods. Such an estimate may be a global one, in the case
of continuous BVPs, or a local one, when IVPs are to be approximated
[2, 7]. Recently, it has been implemented in the computational code BiM

[5] for the numerical solution of stiff ODE-IVPs. In this paper we analyze
deferred correction in connection with the methods used in that code,
resulting in an overall simplification of the procedure, due to the properties
of the underlying methods. The analysis is then extended to more general
methods.
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1 Introduction

Deferred correction is a useful framework for error estimation when solving
ODEs [10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23]. Its main use is to provide a
tool for the iterative improvement of the numerical solution. This approach has
been successfully used in numerical codes for BVPs (see, for example, [11, 12]),
where it is used to obtain an approximation of the global error. Nevertheless,
when solving IVPs, such an approach may be also used to estimate local errors,
in connection with mesh-selection (see, e.g., [2, 7]). This is exactly the use of
deferred correction which has been recently considered in the computational
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code BiM for the numerical solution of ODE-IVPs [5, 6]. This code is based on
the so called block implicit methods [22], i.e. methods that, when applied to the
solution of the IVP

y′ = f(t, y), t ∈ [t0, T ], y(t0) = y0 ∈ IRm, (1)

provide, at the nth step of integration, a discrete problem in the form

F (yn) ≡ A⊗ Imyn − hnB ⊗ Imfn − ηn = 0. (2)

In the previous equation, A and B are r × r nonsingular matrices defining the
method, Im denotes, as usual, the identity matrix of dimension m, hn is the
current stepsize, the block vectors

yn = (yn1, . . . , ynr)T , fn = (fn1, . . . , fnr)T , (3)

where

ynj ≈ y(tnj), fnj = f(tnj , ynj), tnj = tn + cjhn, j = 1, . . . , r, (4)

contain the discrete solution, and the vector ηn only depends on already known
quantities. Instances of methods falling in this class are the majority of implicit
Runge-Kutta methods, a number of General Linear methods and, more recently,
block BVMs [7]. Under suitable assumptions, such methods can be implemented
as blended methods [3, 4, 8], thus allowing the definition of efficient nonlinear
splittings for solving the corresponding discrete problems.

Blended implicit methods have been recently implemented in the compu-
tational code BiM [5]. In the two references [5, 6], most of the computational
details of this code are described. In particular, in [5] it is mentioned that
deferred correction has been used for estimating local truncation errors. Never-
theless, when revising paper [5], we realized that, because of the properties of
the methods used in the code, deferred correction allows a noticeable short cut
in its actual implementation. This, in turn, has allowed us to greatly simplify
the data structure of the code itself. The analysis of this short cut is the main
concern of this paper. In particular, in Section 2 some preliminary results, con-
cerning the factorization of a Vandermonde matrix, are given in order to obtain
the main results on deferred correction stated in Sections 3 and 4. Finally, some
concluding remarks are contained in Section 5.

2 Preliminary results

In this section we report some results concerning the factorization of a Vander-
monde matrix (actually, its transpose), to be used later: though most of them
are known (see, for example, [1, 9, 14, 15]), nevertheless, they are here cast in
the most general and appropriate form for subsequent reference.
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The matrix which we shall consider is the one defined by the abscissae {ci}
defining the block method (2)–(4):

V =

 1 c1
1 . . . cr−1

1
...

...
...

1 c1
r . . . cr−1

r

 . (5)

Hereafter, we shall assume

0 < c1 < c2 < · · · < cr,

so that the matrix V is nonsingular. As an example, for the methods imple-
mented in the code BiM, one has: ci = i, i = 1, . . . , r.

In order to state the required results, we also need to introduce the following
notations:

• ei, i = 1, . . . , r, is the ith unit vector in IRr;

• ωj(x) =
∏j−1

k=1(x− ck), j = 1, . . . , r, is the jth Newton polynomial defined
by the considered abscissae;

• xj [c1, . . . , ci] is the divided difference of the function xj over the abscissae
c1, . . . , ci.

The following basic properties are also recalled, for sake of completeness:

P1: ωj(ci) = 0, if i < j;

P2: xj−1[c1, . . . , ci] = 0, for j < i; xj−1[c1, . . . , cj ] = 1.

An easy consequence of the above properties is the following result.

Lemma 1 The matrices

L = (wj(ci))i,j=1,...,r , U =
(
xj−1[c1, . . . , ci]

)
i,j=1,...,r

, (6)

are lower and unit upper triangular, respectively.

Then, the following result follows.

Lemma 2 Let V,L, U be defined according to (5) and (6). Then,

V = LU. (7)

Proof In fact, for all i, j = 1, . . . , r, from (6) one has:

eT
i LUej =

r∑
k=1

ωk(ci)xj−1[c1, . . . , ck] = cj−1
i ,
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where the last equality is due to the fact that the corresponding left-hand side is
the interpolating polynomial of the function xj−1, over the abscissae c1, . . . , cr,
evaluated at ci.

Concerning the two factors L and U , the following result holds true (see also
[9]).

Lemma 3

L−1 = (`ij) ≡


0, if j > i,

1∏i
k=1,k 6=j(cj − ck)

, if j ≤ i,

and U−1 = (uij), such that

j∑
i=1

uijx
i−1 ≡ ωj(x), j = 1, . . . , r. (8)

From Lemma 3, the following result follows.

Lemma 4 Let g(x) be a given function and let gi = g(t0 + cih), i = 1 . . . , r.
Then,

L−1

 g1

...
gr

 =

 h0g[t0 + c1h]
...

hr−1g[t0 + c1h, . . . , t0 + crh]

 .

Proof From Lemma 3, for all i = 1, . . . , r, one obtains that

eT
i L−1

 g1

...
gr

 =
i∑

ν=1

gν∏i
k=1,k 6=ν(cν − ck)

=

hi−1
i∑

ν=1

gν∏i
k=1,k 6=ν(cν − ck)h

= hi−1g[t0 + c1h, . . . , t0 + cih].

3 Deferred correction for block implicit meth-
ods

In this section, we shall use the previous results to obtain a remarkably simple
implementation of deferred correction for the block methods implemented in the
code BiM [5]. Concerning the latter methods, they are such that (see (2))
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[a |A] ≡


α

(1)
0 α

(1)
1 . . . α

(1)
r

...
...

...
α

(r)
0 α

(r)
1 . . . α

(r)
r

 ,

(9)

[b |B] ≡


β

(1)
0 β

(1)
1 . . . β

(1)
r

...
...

...
β

(r)
0 β

(r)
1 . . . β

(r)
r

 ,

where the coefficients on the ith row of the two matrices define an r-step LMF
of order r, and ηn = −a ⊗ yn + hnb ⊗ fn. Since A is nonsingular, and taking
into account consistency, we can assume, without loss of generality, that

A = Ir, a = −e ≡ −
(

1 . . . 1
)T

. (10)

The order r conditions for the LMF defining each row of the matrices in (9)
can then be cast in matrix form, by introducing the matrix

D = diag(c1 . . . cr),

as follows:

De− b−Be = 0, (11)
Die− i B Di−1e = 0, i = 2, . . . , r. (12)

Remark 1 In general, when the scaling (10) is not considered, the previous
equations are, respectively,

ADe− b−Be = 0, ADie− i B Di−1e = 0, i = 2, . . . , r.

We observe that, from (11), the vector b turns out to be uniquely determined,
provided all LMFs are consistent, from the choice of the matrix B. The latter
turns out to be uniquely determined by the order conditions (12) and by fixing
its spectrum [4, 8]. However, since we are dealing with order r LMFs, one
obtains that, for i = r + 1, (12) becomes

Dr+1e− (r + 1) B Dre = vr+1 ≡

 vr+1,1

...
vr+1,r

 . (13)

In more detail, by setting hereafter c0 = 0, the right-hand side of the previous
equation reads, component-wise, as follows (see (9), (10) and Remark 1):

vr+1,k =
r∑

i=0

(
α

(k)
i cr+1

i − (r + 1)β(k)
i cr

i

)
, k = 1, . . . , r, (14)
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i.e., 1
(r+1)!vr+1,k is the coefficient of the leading term of the truncation error of

the LMF defined by the kth rows of the matrices in (9). Then, from (12)-(13)
one obtains that (see (5))

D2V −BDV G = vr+1eT
r , where G = diag(2 . . . r + 1), (15)

from which

B =
(
D2V − vr+1eT

r

)
G−1V −1D−1 (16)

follows. Now, in order to apply deferred correction, we need an additional
couple of matrices in the form (9), whose rows define r-step LMFs of order (at
least) r + 1 (see, for example, [2, 7]), which are defined over the same set of
abscissae {ci}. By using the same normalization (10), and denoting by [b1 |B1]
the remaining matrix, then the corresponding order conditions are given by:

De− b1 −B1e = 0, (17)
Die− i B1 Di−1e = 0, i = 2, . . . , r + 1. (18)

Similarly to what seen in (11), now (17) uniquely defines the vector b1, once
B1 is fixed. For the latter matrix, from (18) one readily obtains that

B1 = D2V G−1V −1D−1, (19)

that is, the matrix is uniquely determined by the order conditions. Such matrix
can be used for estimating the truncation error of the method defined by (9).
Indeed, if we consider the very first application of the method, thus neglecting,
for sake of brevity, the index n in (2), we have that the discrete solution satisfies
the equation

Ir ⊗ Imy − hB ⊗ Imf − e⊗ y0 − hb⊗ f0 = 0. (20)

Deferred correction is then implemented by plugging in the above discrete so-
lution in the discrete problem defined by the block method (17)–(19), thus
obtaining (see, for example, [2, 7])

Ir ⊗ Imy − hB1 ⊗ Imf − e⊗ y0 − hb1 ⊗ f0 ≈ −τ . (21)

In the above equation, τ is the vector of the (local) truncation errors of the
method (9). In more detail (see (13)-(14)), one has:

τ =
hr+1

(r + 1)!
vr+1 ⊗ y

(r+1)
0 + O(hr+2), (22)

where y
(r+1)
0 denotes the (r + 1)st derivative of the (local) solution y(t) at t0.

The following result precisely quantifies the approximation to the truncation
error provided by the left-hand side of equation (21).

6



Theorem 1 (Main Result) Let g(t) be any function such that

g(t0 + cih) = f(t0 + cih, yi), i = 0, . . . , r.

Then,

Ir ⊗ Imy − hB1 ⊗ Imf − e⊗ y0 − hb1 ⊗ f0 =

= − hr+1

r + 1
vr+1 ⊗ g[t0 + c0h, . . . , t0 + crh]. (23)

Remark 2 By considering that the discrete solution is an O(hr+1) approxi-
mation to the (local) solution at the grid points, and recalling that (see (1))
y′ = f(t, y), it follows than that, under suitable smoothness assumptions for f ,

g[t0 + c0h, . . . , t0 + crh] =
1
r!

y
(r+1)
0 + O(h).

Consequently, (23) provides a O(hr+2) approximation to the (opposite of the)
leading term at the right-hand side of equation (22).

Proof From equation (20), by setting

f̂ =
(

f0

f

)
≡

 f0

...
fr

 ,

where
fi = f(t0 + cih, yi) ≡ g(t0 + cih), i = 0, . . . , r,

and taking into account (11)–(19), we obtain:

Ir ⊗ Imy − hB1 ⊗ Imf − e⊗ y0 − hb1 ⊗ f0 =
= h([b |B]− [b1 |B1])⊗ Imf̂ = h(B −B1)[−e | Ir]⊗ Imf̂

= −hvr+1eT
r G−1V −1D−1[−e | Ir]⊗ Imf̂

= − h

r + 1
vr+1eT

r V −1D−1[−e | Ir]⊗ Imf̂ = (∗).

From (6)-(7), property P2, Lemmas 3 and 4, and considering that c0 = 0, one
then obtains:

(∗) = − h

r + 1
vr+1eT

r U−1L−1D−1[−e | Ir]⊗ Imf̂

= − h

r + 1
vr+1eT

r L−1D−1[−e | Ir]⊗ Imf̂

= − h

r + 1
vr+1eT

r L−1


−1
c1

1
c1

...
. . .

−1
cr

1
cr

⊗ Imf̂
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= − h2

r + 1
vr+1eT

r L−1


−1

(c1−c0)h
1

(c1−c0)h

...
. . .

−1
(cr−c0)h

1
(cr−c0)h

⊗ Imf̂

= − h2

r + 1
vr+1eT

r L−1 ⊗ Im

 g[t0 + c0h, t0 + c1h]
...

g[t0 + c0h, t0 + crh]


= − hr+1

r + 1
vr+1

(
(
∏r

k=2(c1 − ck)h)−1
. . .
(∏r−1

k=1(cr − ck)h
)−1

)
⊗ Im g[t0 + c0h, t0 + c1h]

...
g[t0 + c0h, t0 + crh]


= − hr+1

r + 1
vr+1 ⊗ g[t0 + c0h, . . . , t0 + crh].

4 Generalizations

The result of Theorem 1 has been directly used in the actual implementation
of the code BiM [5], starting from its release 1.1. Nevertheless, it is worth
mentioning that this result can be generalized to the case of a general block
implicit method, that is when the LMFs in (9) have order p ≤ r and those of
the block method used for the deferred correction have order q > p. In such a
case, equation (11) still holds true, whereas (12) holds true for i = 2, . . . , p ≤ r.
Moreover, equation (13) now becomes

Dν+1e− (ν + 1) B Dνe = vν+1 ≡

 vν+1,1

...
vν+1,r

 , ν = p, . . . , r, (24)

where (compare with (14))

vν+1,k =
r∑

i=0

(
α

(k)
i cν+1

i − (ν + 1)β(k)
i cν

i

)
, k = 1, . . . , r, (25)

i.e., the vector of the truncation errors of the block method is given by (compare
with (22))

τ =
hp+1

(p + 1)!
vp+1 ⊗ y

(p+1)
0 +

hp+2

(p + 2)!
vp+2 ⊗ y

(p+2)
0 + . . . . (26)

As a consequence, equation (16) now becomes

B =

(
D2V −

r∑
ν=p

vν+1eT
ν

)
G−1V −1D−1. (27)
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Similarly, the matrix B1 of the block method used for the deferred correction,
made up of order q > p LMFs, will be given by (compare with (19))

B1 =

(
D2V −

r∑
ν=q

v̂ν+1eT
ν

)
G−1V −1D−1, (28)

with the vectors v̂ν+1 defined similarly to the vectors vν+1. This allows us to
generalize the result of Theorem 1 as follows (the notation is the same used in
that theorem).

Theorem 2 (Generalization of Theorem 1) With reference to (27)-(28),
let define the vectors

wi+1 =

{
vi+1, if i < q,

vi+1 − v̂i+1, if i ≥ q.
(29)

Then,

Ir ⊗ Imy − hB1 ⊗ Imf − e⊗ y0 − hb1 ⊗ f0 =

= − hp+1

p + 1
vp+1 ⊗ g[t0 + c0h, . . . , t0 + cph] (30)

−
r∑

j=p+1

hj+1

 j∑
i=p

uij

i + 1
wi+1

⊗ g[t0 + c0h, . . . , t0 + cjh],

where the coefficient uij are defined according to (8).

Proof The proof strictly follows that of Theorem 1, by taking into account
(24)–(28):

Ir ⊗ Imy − hB1 ⊗ Imf − e⊗ y0 − hb1 ⊗ f0 =
= h([b |B]− [b1 |B1])⊗ Imf̂ = h(B −B1)[−e | Ir]⊗ Imf̂

= −h
r∑

i=p

wi+1eT
i G−1V −1D−1[−e | Ir]⊗ Imf̂

= −h
r∑

i=p

1
i + 1

wi+1eT
i U−1L−1D−1[−e | Ir]⊗ Imf̂

= −h2
r∑

i=p

1
i + 1

wi+1eT
i U−1L−1 ⊗ Im

 g[t0 + c0h, t0 + c1h]
...

g[t0 + c0h, t0 + crh]



= −h2
r∑

i=p

1
i + 1

wi+1eT
i U−1 ⊗ Im


g[t0 + c0h, t0 + c1h]

hg[t0 + c0h, t0 + c1h, t0 + c2h]
...

hr−1g[t0 + c0h, . . . , t0 + crh]


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= −h2
r∑

i=p

1
i + 1

wi+1 ⊗
r∑

j=i

uijh
j−1g[t0 + c0h, . . . , t0 + cjh]

= −
r∑

j=p

hj+1

 j∑
i=p

uij

i + 1
wi+1

⊗ g[t0 + c0h, . . . , t0 + cjh].

The thesis then follows from (29), by considering that q > p and (due to Lem-
mas 1 and 3) ujj = 1 for all j.

Remark 3 Evidently, (30) provides a O(hp+2) approximation to the (opposite
of the) leading term of the truncation error (26), assuming f suitably smooth.

5 Conclusions

In this paper we have proved that deferred correction, when used in connection
with block implicit methods defined by order r LMFs, greatly simplifies in its
practical implementation. The result of Theorem 1 has been actually used in the
computational code BiM [5], allowing to halve, in the practice, the data structure
of that code. Indeed, for each method implemented in the code, which is defined
by a suitable matrix B, the corresponding matrix B1 is no longer required to
obtain the error estimate via deferred correction, since the vector vr+1 is known
and, moreover, we can directly compute the divided difference at the right-hand
side of equation (23). In addition to this, the results of Theorems 1 and 2
provide a much better insight into deferred correction, when used with block
implicit methods.
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