
Efficient implementation of Radau collocation methods

Luigi Brugnanoa, Felice Iavernarob, Cecilia Magherinic,∗

aDipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Italy
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Abstract

In this paper we define an efficient implementation of Runge-Kutta methods of
Radau IIA type, which are commonly used when solving stiff ODE-IVPs prob-
lems. The proposed implementation relies on an alternative low-rank formulation
of the methods, for which a splitting procedure is easily defined. The linear con-
vergence analysis of this splitting procedure exhibits excellent properties, which
are confirmed by its performance on a few numerical tests.
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1. Introduction

The efficient numerical solution of implicit Runge-Kutta methods has been the
subject of many investigations in the last decades, starting from the seminal paper
of Butcher [17, 18] (see also [3]). An s-stage R-K method applied to the initial
value problem

y′ = f(y), y(t0) = y0 ∈ R
m, (1)

yields a nonlinear system of dimension sm which takes the form

G(y) ≡ y − e⊗ y0 − hA⊗ Im f(y) = 0, (2)

where, in general, Ir ∈ Rr×r is the identity matrix of order r,

e =







1
...
1






∈ R

s, y =







y1
...
ys






, f(y) =







f(y1)
...

f(ys)






, (3)

∗Corresponding author
Email addresses: luigi.brugnano@unifi.it (Luigi Brugnano), felix@dm.uniba.it

(Felice Iavernaro), magherini@dm.unipi.it (Cecilia Magherini)

Preprint submitted to Applied Numerical Mathematics April 24, 2014



y1, . . . , ys being the internal stages. It is common to solve (2) by a simplified
Newton iteration, namely, for k = 0, 1, . . . ,

(I − hA⊗ J)∆(k) = −G(y(k)),
y(k+1) = y(k) +∆(k),

(4)

where I ≡ Ism, J is the Jacobian of f evaluated at some intermediate point and
y(0) an initial approximation of the stage vector: for instance, J = ∂f

∂y
(y0) and

y(0) = e ⊗ y0. To reduce the computational efforts associated with the solution
of (4), a suitable linear change of variables on the s stages of the method is often
introduced with the goal of simplifying the structure of the system itself. This is
tantamount to performing a similarity transformation, commonly referred to as
Butcher transformation, that puts the coefficient matrix A of the R-K method in
a simpler form, i.e. a diagonal or triangular matrix. Let B = TAT−1 be such a
transformation. System (4) becomes

(I − h(B ⊗ J)) (T ⊗ Im)∆
(k) = −(T ⊗ Im)G(y(k)), (5)

with the obvious advantage that the costs associated with the LU factorizations
decrease from O(s3m3) to O(sm3) flops.1 In particular, if A has a one-point
spectrum one only needs a single LU decomposition and the cost further reduces
to O(m3) flops [15]. However, for many fully implicit methods of interest, the
matrix A possesses complex conjugate pairs of eigenvalues which will appear as
diagonal entries in the matrix B. In such a case, it is computationally more
advantageous to allow B to be block-diagonal, with each 2 × 2 diagonal block
corresponding to a complex conjugate pair of eigenvalues of A. Each subsystem
of dimension 2m is then turned into an m-dimensional complex system. This is
the standard procedure used in the codes RADAU5 [29, 36] and RADAU [30, 36],
the former a variable-step fixed-order code, and the latter a variable-order variant,
both based upon Radau-IIA formulae (of orders 5, 9, and 13).

Subsequent attempts to derive implicit high-order methods, for which the dis-
crete problem to be solved can be cast in a simplified form, have been made,
e.g., in [1, 19]. This line of investigation has been further refined in later papers
(see, e.g., [20, 21, 22, 23]). Sometimes, the formulation of the discrete problem
has been suitably modified, in order to induce a corresponding “natural splitting”
procedure, as is done, e.g., in [4, 10, 11] (see also [12, 14]).

A different approach to the problem is that of considering suitable splitting
procedures for solving the generated discrete problems [2, 24, 25, 26, 27, 28, 31,
32, 33, 34, 35]. A particularly interesting splitting scheme, first introduced in

1One flop is an elementary floating-point operation.
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[32], is that induced by the Crout factorization of the coefficient matrix A, namely
A = LU , with L lower triangular and U upper triangular with unit diagonal entries.
After observing that, for many remarkable R-K methods, the lower triangular part
of A is dominant, in [32] the authors suggest to replace the matrix A in (4) with
the matrix L, thus obtaining the scheme

(I − hL⊗ J)∆(k) = −G(y(k)),
y(k+1) = y(k) +∆(k).

(6)

Compared to (4) this scheme only requires the sequential solution of s subsystems
of dimension m and therefore a global cost of O(sm3) elementary operations.
Moreover, the s LU factorizations of the matrices Im − hliiJ (lii being the ith
diagonal entry of L), and the evaluations of the components of G(y(k)) may be
done in parallel. This is why the corresponding methods have been named parallel
triangularly implicit iterated R-K methods (PTIRK).

On the other hand, if the original modified Newton process (4) converges in
one iterate on linear problems, the same no longer holds true for (6), due to the
approximation A ≃ L. Applying the method to the linear test equation y′ = λy
yields the following estimation for the error e(k) = y(k) − y:

e(k+1) = M(q)e(k), M(q) = q(Is − qL)−1(A− L), (7)

with q = hλ. Matrix M(q) is referred to as the amplification matrix associated
with the method and its properties influence the rate of convergence of the scheme
(6) according to a first order convergence analysis (see Section 4).

In this paper we wish to combine both the approaches described above and
epitomized at formulae (5) and (6), to derive an efficient implementation of Radau
IIA methods on sequential computers. In fact, the above discussion begs the
following question: is it possible to perform a change of variables of the stage
vector such that, for the new system (5), the matrix B admits a LU factorization
with constant diagonal entries? In the affirmative, a single LU factorization would
be needed to solve (6), with a cost of only O(m3) flops. A first positive answer in
this direction has been given in [2] for general R-K methods. Later on, in [35], an
optimal splitting of the form (6) has been devised for the Radau IIA method of
order three (two stages), with l11 = l22.

In this paper, we follow a different route, which relies on a low-rank formulation
of Radau IIA collocation methods. Low-rank R-K methods have been recently
introduced in a series of papers in the context of numerical geometric integration
[5, 6, 7, 8, 9] (see also [16] for an application of low-rank R-K methods to stochastic
differential equations).

Furthermore, our aim is not to destroy the overall convergence features of the
simplified Newton method (4). Thus, instead of (6), we first recast system (4) as

(I − h(L⊗ J))∆(k) = h ((A− L)⊗ J)∆(k) −G(y(k)), k = 0, 1, . . . ,
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and then, we retrieve an approximation of the unknown vector ∆(k) by means of
the inner iteration

(I − h(L⊗ J))∆
(k)
ν+1 = h ((A− L)⊗ J)∆(k)

ν −G(y(k)), ν = 0, 1, . . . , (8)

starting at ∆
(k)
0 = 0. The inner scheme (8) could be iterated to convergence or

stopped after a suitable number, say r, of steps. We see that (6) corresponds
to (8) performed with one single inner iteration. Considering that no function
evaluations are needed during the implementation of (8), we aim to perform the
minimum number r of inner iterations that does not alter the convergence rate of
the outer iteration (5).

The convergence properties of the purely linear scheme (8) continue to be
described by the amplification matrix M(q) defined at (7). In fact, its iteration
matrix is

h(I − h(L⊗ J))−1((A− L)⊗ J),

which reduces to M(q) for the individual components corresponding to the eigen-
values λ of J . An advantage of the change of variable we propose is that a fast
convergence rate is guaranteed at the very first steps of the process, and we will
show that, in many practical situations, choosing ν ≤ s produces very good results
(see Table 3).

The paper is organized as follows. The low-rank formulation of Gauss Radau
IIA methods is presented in Section 2, while the splitting procedure is defined in
Section 3. Its convergence analysis and some comparisons with similar splitting
procedures are reported in Section 4. Section 5 is devoted to some numerical tests
with the fortran 77 code RADAU5 [29, 36], modified according to the presented
procedure. Finally, a few conclusions are reported in Section 6, along with future
directions of investigations.

2. Augmented low-rank implementation of Radau IIA methods

The discrete problem generated by the application of an s-stage (s ≥ 2)
Radau IIA method to problem (1) may be cast in vector form, by using the W -
transformation [29], as:

y = e⊗ y0 + hPXsP−1 ⊗ Im f(y), (9)
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where e, y and f(y) are defined at (3), while the matrices P and Xs are defined
as

P =







P0(c1) . . . Ps−1(c1)
...

...
P0(cs) . . . Ps−1(cs)






, Xs =















1
2
−ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−2 0 −ξs−1

ξs−1 βs















,

(10)
with {Pj} the shifted and normalized Legendre polynomials on the interval [0, 1],

∫ 1

0

Pi(x)Pj(x)dx = δij , i, j ≥ 0,

and

ξi =
1

2
√
4i2 − 1

, i = 1, . . . , s− 1, βs =
1

4s− 2
.

Clearly, h is the stepsize and the abscissae {c1, . . . , cs} are the Gauss-Radau nodes
in [0, 1]. In particular, cs = 1, so that ys is the approximation to the true solution
at the time t1 = t0 + h.

We now derive an augmented low-rank Runge-Kutta method, which is equiv-
alent to (9), by following an approach similar to that devised in [5] to introduce
Hamiltonian boundary value methods (HBVMs), a class of energy-preserving R-K
methods. In more detail, we choose an auxiliary set of distinct abscissae,

0 < ĉ1 < · · · < ĉs = 1, (11)

and define the following change of variables involving the internal stages yi:

ŷ = P̂P−1 ⊗ Im y, (12)

with

ŷ =







ŷ1
...
ŷs






, P̂ =







P0(ĉ1) . . . Ps−1(ĉ1)
...

...
P0(ĉs) . . . Ps−1(ĉs)






.

The vectors {ŷi}, i = 1, . . . , s, called auxiliary stages,2 are nothing but the values
at the abscissae (11) of the polynomial interpolating the internal stages {yi}. Sub-
stituting (12) into (2) yields the new nonlinear system in the unknown ŷ (notice

2They are called silent stages in the HBVMs terminology, since their presence does not alter
the complexity of the resulting nonlinear system. Similarly, the abscissae (11) are called silent

abscissae.
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that P̂P−1e = e):

Ĝ(ŷ) ≡ ŷ − e⊗ y0 − hP̂XsP−1 ⊗ Im f
(

PP̂−1 ⊗ Im ŷ
)

= 0. (13)

Of course, after computing ŷ, the solution must be advanced in the standard
manner, that is by means of the last component, ys, of the original stage vector
y. However notice that ĉs = cs ⇒ ŷs = ys, so that this step of the procedure is
costless.

In the next section, we show that the auxiliary abscissae (11) can be chosen so
that the solution of the corresponding simplified Newton iteration (see (14) below)
is more efficient than solving (4). We end this section by noticing that system (13)
is actually identified by a R-K method with rank deficient coefficient matrix.

Theorem 1. The method (12)-(13) can be cast as a Runge-Kutta method with
2s-stages, defined by the following Butcher tableau:

ĉ O P̂XsP−1

c O PXsP−1

0T bT

where O ∈ Rs×s and 0 ∈ Rs are the zero matrix and vector, respectively, c, ĉ are
the vectors with the Radau abscissae and the auxiliary abscissae (11), respectively,
and b contains the weights of the Radau quadrature.

3. The splitting procedure

The simplified Newton iteration (see (4)) applied to (13) reads

(

I − hP̂XsP̂−1 ⊗ J
)

∆̂(k) = −Ĝ(ŷk),

ŷ(k+1) = ŷ(k) + ∆̂(k).
(14)

As we can see, its structure is precisely the same as that we would obtain by
applying the simplified Newton iteration directly to the original system (9), with
the only difference that the matrix P̂ in (14) should be replaced by P.

As was emphasized in the introduction, to simplify the structure of systems
such as (14), van der Houwen and de Swart [32, 33] proposed to replace the matrix
(PXsP−1) in (9) with the lower triangular matrix L arising from its Crout factor-
ization. The advantage is that, in such a case, to perform the iteration, one has to
factorize s matrices having the same size m as that of the continuous problem with
a noticeable saving of work. They showed that on parallel computers this approach
gives very interesting speedups over more standard approaches based on the use
of the LU factorization: indeed, the leading term lowers from 2

3
(sm)3 to s2

3
m3
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flops which, moreover, can be performed in parallel on s processors. This is symp-
tomatic of the fact that LU factorizations generally give a relevant contribution
to the overall execution time of a given code.

Similarly, here we want to take advantage from both the Crout factorization of
(P̂XsP̂−1) appearing in (14) and the freedom of choosing the auxiliary abscissae
{ĉi}, to devise an iteration scheme that only requires a single LU factorization of
a system of dimension m which is, therefore, suitable for sequential programming.
Differently from [32], we continue to adopt the iteration (14) (outer iteration) and
retrieve an approximation to ∆̂(k) via the linear inner iteration
(

I − hL̂⊗ J
)

∆̂
(k)
ν+1 = h

(

(P̂XsP̂−1 − L̂)⊗ J
)

∆̂(k)
ν − Ĝ(ŷ(k)), ν = 0, 1, . . . ,

(15)
where

P̂XsP̂−1 = L̂Û ,

with L̂ lower triangular and Û upper triangular with unit diagonal entries. Our
purpose is to choose the auxiliary abscissae (11) so that all the diagonal entries of
L̂ are equal to each other, i.e.,

(L̂)jj =
s
√

det(Xs), j = 1, . . . , s. (16)

In so doing, one has to factor only one m × m matrix, to carry out the inner
iteration (15). Concerning the diagonal entry in (16), the following result can be
proved by induction. For later use, we define the function

ℓj(ĉ1, . . . , ĉs) ≡ (L̂)jj, (17)

in order to make clear that (L̂)jj does depend on the choice of the auxiliary ab-
scissae (11).

Theorem 2. Let Xs be defined according to (10) and let

η =

{

0, if s is even,
1, if s is odd.

Then

det(Xs) =
21−s

∏s−1
i=1+η(4i

2 − 1)
. (18)

Consequently, from (16) one has:

ds := (L̂)jj =
2

1

s
−1

(

∏s−1
i=1+η(4i

2 − 1)
)

1

s

, j = 1, . . . , s. (19)
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Table 1: Auxiliary abscissae for the s-stage Radau method, s = 2, . . . , 5, and the diagonal entry
ds (see (19) of the corresponding factor L̂.

s = 2

ĉ1 (6−
√
6)/(6 + 2

√
6)

ĉ2 1
d2 0.40824829046386301636621401245098

s = 3
ĉ1 0.18589230221764097222357873465176
ĉ2 0.50022434784008286059148415923632
ĉ3 1
d3 0.25543647746451770219954184281099

s = 4
ĉ1 0.12661575733255931078112184952036
ĉ2 0.34154548143311325099490740728171
ĉ3 0.56937072098419698874387077046544
ĉ4 1
d4 0.18575057999133599176307088298897

s = 5
ĉ1 0.09527975140867214336447374571157
ĉ2 0.28143874673988994521203045137949
ĉ3 0.38152142820340929736570124768463
ĉ4 0.60680555490108389442461323421422
ĉ5 1
d5 0.14591154019899779261811749554182

In Table 1 we list the auxiliary abscissae {ĉi}i=1,...,s and the diagonal entries ds,
given by (19), for the Radau IIA methods with s = 2, . . . , 5 stages. Notice that,
having set ĉs = 1, the free parameters are s − 1, namely ĉi, i = 1, . . . , s − 1.
We have formally derived the expression (17) of the first s − 1 diagonal entries
of the matrix L̂ as a function of these unknowns, and then we have solved the
(s− 1)-dimensional system

ℓj(ĉ1, . . . , ĉs) = ds, j = 1, . . . , s− 1,

with the aid of the symbolic computation software Maple. From (18) it is clear
that the last diagonal element of L̂ will be automatically equal to ds, too.

3.1. Further reduction of the computational cost

As was observed in [20] in the context of singly implicit R-K methods, the
implementation of a formula such as (15) consists of a block-forward substitution
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which requires the computation of (T ⊗ J)∆̂
(k)
ν+1, with

T = L̂− dsIs

(i.e., the strictly lower triangular part of matrix L̂), at a cost of O(s2m + m2s)
operations. The O(m2s) term, as well as the m2 multiplications for computing
(hds)J before the factorization of the matrix Im − hdsJ , may be eliminated by
multiplying both sides of (15) by

h−1L̂−1 ⊗ Im.

Considering that
L̂−1 = d−1

s Is − S,

with S strictly lower triangular, system (15) then takes the form

(

1

hds
I − Is ⊗ J

)

∆̂
(k)
ν+1 =

1

h
(S ⊗ Im)∆̂

(k)
ν+1 + (C ⊗ J) ∆̂(k)

ν +R(k), (20)

where

C = L̂−1(P̂XsP̂−1 − L̂) = Û − Is and R(k) = −1

h
(L̂−1 ⊗ Im)Ĝ(ŷ(k)). (21)

Notice that, since C is strictly upper triangular, the multiplication of J by the
first block-component of ∆̂

(k)
ν may be skipped. But we can go another step beyond

and completely eliminate any O(m2) term in the computation of the term

(C ⊗ J) ∆̂(k)
ν

at right-hand side of (20). This is true at the very first step, since, by definition,

∆̂
(k)
0 = 0.

Let us set
wν := (C ⊗ J) ∆̂(k)

ν +R(k),

which is part of the right-hand side of (20). Thus w0 = R(k) and the first step of
(20) is equivalent to the system

Is ⊗
[

(hds)
−1Im − J

]

∆̂
(k)
1 = h−1(S ⊗ Im)∆̂

(k)
1 +w0. (22)

After solving for the unknown ∆̂
(k)
1 , we set v1 equal to the right-hand side of (22),

which can be exploited to compute the term

(Is ⊗ J)∆̂
(k)
1 = (hds)

−1∆̂
(k)
1 − v1,

9



at a cost of O(ms) operations. It follows that

(C ⊗ J) ∆̂
(k)
1 = (C ⊗ Im)

[

(Is ⊗ J) ∆̂
(k)
1

]

= (C ⊗ Im)
[

(hds)
−1∆̂

(k)
1 − v1

]

,

and thus w1 = (C ⊗ J) ∆̂
(k)
1 +R(k) may be computed with O(s2m) floating point

operations. This trick may be repeated at the subsequent steps, thus resulting in
the following algorithm:

w0 := R(k)

solve: Is ⊗
[

(hds)
−1Im − J

]

∆̂
(k)
1 = h−1(S ⊗ Im)∆̂

(k)
1 +w0 (23)

do ν = 1, 2, . . .

vν := h−1(S ⊗ Im)∆̂
(k)
ν +wν−1 (24)

wν := (C ⊗ Im)
[

(hds)
−1∆̂(k)

ν − vν

]

+R(k) (25)

solve: Is ⊗
[

(hds)
−1Im − J

]

∆̂
(k)
ν+1 = h−1(S ⊗ Im)∆̂

(k)
ν+1 +wν (26)

end do

Notice that vν is just the right-hand side of the preceding linear system and thus it
is freely available as soon as the system has been solved. For sake of completeness,
we also compute the complexity of the above algorithm (the strictly lower and
upper triangular structure of the matrices S and C, respectively, is taken into
account):

LU factorization of matrix [(hds)
−1Im − J ]: 2

3
m3 − 1

2
m2 − 1

6
m flops;

(23): 2sm2 + s2m− sm flops;

(24): no additional flops required, besides those needed for (23) or (26);

(25): (s− 1)(s+ 2)m flops;

(26): the same as (23).

Consequently, by also considering (13)-(21), and if νin inner iterations are per-
formed for solving (14), and νout such iterations are needed, the total cost of the
step amounts to:

2

3
m3 − 1

2
m2 − 1

6
m+ νout

{

4(s2 + 1)m− 5sm+ νin
[

2sm2 + 2(s2 − 1)m
]}

flops,

(27)
that is, for m large,

≈ 2m2
[m

3
+ (νoutνin)s

]

flops,
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plus 1 Jacobian and νouts function evaluations.
In order to make a comparison, we consider the traditional approach in [17]

(see also [3]), modified as suggested in [29, pag. 121-122], for Radau IIA methods,
sketched below.

Preliminarly, for the s-stage methods, one performs the factorization of ⌊s/2⌋
complex matrices and ⌈s/2⌉− ⌊s/2⌋ real matrices, having dimension m×m, with
m the size of the continuous problem.

Then, for each iteration, one needs:

• two variable transformations by the real matrices T ⊗Im and T−1⊗Im, with
T ∈ Rs×s;

• 3s real axpy-s of length m;3

• s function evaluations;

• ⌊s/2⌋ back-substitutions with the complex factors and ⌈s/2⌉ − ⌊s/2⌋ back-
substitution with the real factors.

Consequently, by considering that:

• a complex factorization costs 8
3
m3 + 7

3
m− 5 flops;

• a complex back-substitution costs 8m2 + 3m flops;

one obtains that, if ν iterations are needed for the step, then the total cost amounts
to

⌊s/2⌋
(

8

3
m3 +

7

3
m− 5

)

+ (⌈s/2⌉ − ⌊s/2⌋)
(

2

3
m3 − 1

2
m2 − 1

6
m

)

+

ν
[

4s2m+ 4sm+ ⌊s/2⌋(6m2 + 4m) + ⌈s/2⌉(2m2 −m)
]

flops, (28)

which, for large m becomes approximately

m2

[

6⌊s/2⌋
(

m

3
+ ν +

1

12

)

+ 2⌈s/2⌉
(

m

3
+ ν − 1

4

)]

flops,

plus 1 Jacobian and νs function evaluations.

3As is well known, axpy is the acronym for “alpha x plus y”, with x and y vectors and α a
scalar.
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4. Convergence analysis and comparisons

In this section we briefly analyze the splitting procedure (15). This will be
done according to the linear analysis of convergence in [32] (see also [13]). In such
a case, problem (1) becomes the celebrated test equation

y′ = λy, y(t0) = y0.

By setting, as usual, q = hλ, one then obtains that the error equation associated
with (15) is given by

eν+1 = M̂(q)eν , M̂(q) := q(Is − qL̂)−1L̂(Û − Is), ν = 0, 1, . . . ,

where we have set eν = ∆
(k)
ν −∆(k), that is the error vector at step ν (we neglect,

for sake of simplicity, the index k of the outer iteration) and M̂(q) is the iteration
matrix induced by the splitting procedure. This latter will converge if and only if
its spectral radius,

ρ(q) := ρ(M̂(q)),

is less than 1. The region of convergence of the iteration is then defined as

D = {q ∈ C : ρ(q) < 1} .

The iteration is said to be A-convergent if C− ⊆ D. If, in addition, the stiff
amplification factor,

ρ∞ := lim
q→∞

ρ(q),

is null, then the iteration is said to be L-convergent. Clearly, A-convergent it-
erations are appropriate for A-stable methods, and L-convergent iterations are
appropriate for L-stable methods. In our case, since

M̂(q)→ (Û − Is), q →∞, (29)

which is a nilpotent matrix of index s, the iteration is L-convergent if and only if
it is A-convergent. Since the iteration is well defined for all q ∈ C− (due to the
fact that the diagonal entry of L̂, ds, is positive) and ρ(0) = 0, A-convergence, in
turn, is equivalent to require that the maximum amplification factor,

ρ∗ = max
x∈R

ρ(ix),

is not larger than 1. Another useful parameter is the nonstiff amplification factor,

ρ̃ = ρ(L̂(Û − Is)), (30)
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that governs the convergence for small values of q since

ρ(q) ≈ ρ̃q, for q ≈ 0.

Clearly, the smaller ρ∗ and ρ̃, the better the convergence properties of the iteration.
In Table 2 we list the nonstiff amplification factors and the maximum amplification
factors for the following L-convergent iterations applied to the s-stage Radau IIA
methods:

(i) the iteration obtained by the original triangular splitting in [32];

(ii) the iteration obtained by the modified triangular splitting in [2];

(iii) the blended iteration obtained by the blended implementation of the methods,
as defined in [10];

(iv) the iteration defined by (15).

We recall that the scheme (i) (first column) requires s real factorizations per it-
eration, whereas (ii)–(iv) only need one factorization per iteration. From the pa-
rameters listed in the table, one concludes that the proposed splitting procedure
is the most effective among all the considered ones.

It is worth mentioning that the above amplification factors are defined in terms
of the eigenvalues of the involved matrices. Therefore, they are significant if a large
number of inner iterations are performed or if the initial guess is accurate enough.
However, the number of inner iteration is usually small, so that it is also useful
to check the so called averaged amplification factors over ν iterations, defined as
follows (see (30) and (29)):

ρ̃ν = ν

√

∥

∥

∥

[

L̂(Û − Is)
]ν∥
∥

∥
, ρ∗ν = max

x∈R

ν
√

‖M(ix)ν‖, ρ∞ν = ν

√

∥

∥

∥
(Û − Is)ν

∥

∥

∥
.

Clearly,
ρ∞ν = 0, ∀ν ≥ s,

since matrix Û − Is is nilpotent of index s. Moreover,

ρ̃ν → ρ̃, ρ∗ν → ρ∗, as ν →∞.

For this reason, in Table 3 we compare the asymptotic parameters ρ̃ and ρ∗

(columns 2 and 3) with the averaged ones over s iterations (columns 4 and 5),
for s = 2, . . . , 5. As one can see, the iterations are still L-convergent after s it-
erations (the norm ‖ · ‖∞ has been considered). In the last three columns of the
table, we list the amplification factors after just 1 inner iteration: in such a case,
the iterations are no more L-convergent, though still A-convergent, up to s = 4.
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Table 2: Amplification factors for the triangular splitting in [32], the modified triangular splitting
in [2], the blended iteration in [10], and the splitting (15), for the s-stage Radau IIA methods.

(i): triangular (ii): triangular (iii): blended (iv): triangular
splitting in [32] splitting in [2] iteration in [10] splitting (15)

s ρ̃ ρ∗ ρ̃ ρ∗ ρ̃ ρ∗ ρ̃ ρ∗

2 0.1500 0.1837 0.1498 0.1835 0.1498 0.1835 0.1498 0.1835
3 0.1853 0.3726 0.1375 0.3138 0.1674 0.3398 0.1333 0.3134
4 0.1728 0.5064 0.1236 0.4137 0.1535 0.4416 0.1174 0.3826
5 0.1496 0.6103 0.1090 0.4949 0.1367 0.5123 0.0787 0.3963

Table 3: Amplification factors, and averaged amplification factors after s inner iterations and 1
inner iteration, for the triangular splitting (15), for the s-stage Radau IIA methods.

s ρ̃ ρ∗ ρ̃s ρ∗s ρ̃1 ρ∗1 ρ∞1
2 0.1498 0.1835 0.1498 0.1835 0.1498 0.2020 0.2020
3 0.1333 0.3134 0.1407 0.3378 0.1513 0.3984 0.3440
4 0.1174 0.3826 0.1316 0.4363 0.2169 0.6643 0.5172
5 0.0787 0.3963 0.1200 0.5841 0.2959 1.1141 0.9945

5. Numerical Tests

In this section, we report the results of a few numerical tests on some stiff
problems, which have been obtained by using the RADAU5 code [29, 36] and a
suitable modification of it which implements the splitting procedure with a fixed
number of inner iterations, namely ν = 1, 2, 3. Moreover, a simplified version of
both codes, implementing a fixed-step integration procedure, has been also imple-
mented. Clearly, further improvements could be obtained by dynamically varying
the number of inner iterations as well as by implementing a suitable strategy, well
tuned for the new iterative procedure, to decide whether the evaluation of the
Jacobian can be avoided. In absence of such refinements, in order to verify the ef-
fectiveness of the proposed approach, we have forced the evaluation of the Jacobian
after every accepted step by setting in input work(3)=-1D0. As a consequence,
the factorization of the involved matrices is computed at each integration step.
All the experiments have been done on a PC with an Intel Core2 Quad Q9400
@ 2.66GHz processor under Linux by using the GNU Fortran compiler gfortran
with optimization flag -Ofast. We shall report two sets of numerical tests:

• the first set of tests contains the application of the simplified version of the
codes, implementing a fixed-step strategy, in order to asses the complexity
analysis made in Section 3.1;
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• the second set of tests is made by using the original variable-step strategy
implemented in the code RADAU5.

Concerning the first set of numerical tests, we have considered the following
linear problem:

{

y′(t) = J(t) (y(t)− ϕ(t)em) + ϕ′(t)em, t ∈ (0, 4],

y(0) = ϕ(0)em,
(31)

where
ϕ(t) = 16(16 + t2)−1, em = (1, . . . , 1)T ∈ R

m,

whose solution is y(t) = ϕ(t)em. Moreover,

J(t) = D−1(t)FD̂F TD(t),

with

D(t) = diag (d1(t), d2(t), . . . , dm(t)) , di(t) =
m2 + 4(it)2

m2 + 5(it)2
,

D̂ = diag
(

d̂1, d̂2, . . . , d̂m

)

, d̂i =

{

−104, if i mod 10 = 1,

−1, otherwise,

F =
1

8
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As one may easily realize, the complexity of one function evaluation can be made
linear, in the dimensionm of the problem, whereas the computation of the Jacobian
is quadratic. This allows us to use the complexity analysis in Section 3.1, to predict
the speed-up, by means of (27) and (28) (also taking into account function and
Jacobian evaluations). We have solved problem (31) for increasing values of the
dimension m, ranging from 50 to 400, by using a fixed step-size h = 1/32, thus
performing 128 integration steps. In this series of tests, we compare a simplified
version of the standard code RADAU5 (implementing a diagonalization of the
Butcher matrix of the 3-stage Radau IIA method), with a modified version of the
same simplified code, implementing a prescribed number of inner iterations. For
the problem at hand, 2 inner iterations are the best choice, in order to produce
a comparably accurate numerical approximation to the solution. The accuracy
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Table 4: Statistics for the linear problem (31) concerning diagonalization (Diag) vs. splitting
with 2 inner iterations (Split 2).

real complex real complex CPU
m mescd feval jeval LU LU backsubs backsubs time

D
ia
g

100 11.82 2013 128 128 128 671 671 2.36E-01
200 11.38 2055 128 128 128 685 685 1.61E+00
300 11.29 2085 128 128 128 695 695 5.25E+00
400 11.12 2112 128 128 128 704 704 1.25E+01

S
p
li
t
2

100 12.04 2076 128 128 – 4152 – 1.18E-01
200 11.85 2178 128 128 – 4356 – 6.23E-01
300 11.63 2226 128 128 – 4452 – 1.77E+00
400 11.57 2262 128 128 – 4524 – 3.89E+00

of the computed solution, in turn, is measured in terms of mixed-error significant
correct digits (mescd), defined as

mescd = − log10 ‖(y − yref)./(artol + |yref |)‖∞ , artol =
atol

rtol
, (32)

where y is the final point in the computed solution, yref is the reference solution
(which is known), atol and rtol are the input absolute and relative tolerances,
respectively, and ./ denotes the componentwise division between vectors. In this
case, since the variable step-size strategy has been disabled (we use, indeed, a
constant step-size), we have set artol = 1 in (32). In Table 4 we report a few
statistics concerning selected runs for increasing values of the dimension m of the
problem. As one may see, the accuracy of the computed solution is similar (in the
range 11-12 mescd), as well as the number of function evaluations (feval). Also
the number of Jacobian evaluations (jeval) is the same since, as said above, a
Jacobian evaluation is forced at each integration step, as well as the factorization
of the involved matrices.
On the left of Figure 1, we plot the measured speed-up (stars) and, in solid line,
that predicted by the complexity analysis made in Section 3.1. As one may see,
the measured speed-up is smaller than the expected one: as an example, at m =
400 the measured speed-up is approximately 3.2, whereas the expected one is
approximately 4. This fact can be explained by considering that the most time-
consuming operation, for each of the two codes, is:

• the factorization of a m × m complex matrix, for the original code using
diagonalization, and

• the factorization of a m × m real matrix, for the modified code using the
splitting.
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Figure 1: Speed-up for the linear problem (31) corresponding to the splitting procedure with two
inner iterations and 128 integration steps (left-plot), and speed-up ratio when using the single

axpy implementation (35) in the code (right-plot), showing an improvement of about 24%.

In the real factorization, the core operation is a (real) axpy,

y ← αx+ y, (33)

whereas for the complex factorization (which is implemented by computing sepa-
rately real and imaginary parts, thus using real vectors) it is a double (real) axpy,

y ← αx+ βv + y. (34)

This latter is optimized, by exploiting locality of data, through the use of the
cache. In other words, even though all the vectors appearing in (33) and (34) have
the same length, in general the execution time of (34) is smaller than twice the
execution time for (33). This can be easily verified by splitting the double axpy
(34) into two separate single axpy-s, i.e.,

y ← αx+ y, y ← βv + y. (35)

Clearly (34) and (35) have the same complexity, in terms of flops, but different
execution times. As matter of fact, by modifying the code implementing the di-
agonalization according to (35), the execution times increase, and we obtain a
measured speed-up, which is plotted in squares in the left-plot of Figure 1. This
latter curve, is now much closer to the expected one. Moreover, one obtains that,
for the used computing platform, the performance improvement, deriving from
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the use of (34) in place of (35), is more than 24%, as is shown in the right-plot of
Figure 1.

In the second set of numerical tests, we compare the original code RADAU5 and
a modification of it, implementing the splitting procedure, on three stiff problems
taken from the Test Set for IVP Solvers [36]:

• Elastic Beam problem, of dimension m = 80;

• Emep problem, of dimension m = 66;

• Ring Modulator problem, of dimension m = 15.

In such a case, the variable step-size strategy implemented in RADAU5 has been
used. The following input tolerances for the relative (rtol) and absolute (atol)
errors and initial stepsizes (h0) have been used:

• Elastic Beam problem: rtol = atol = h0 = 10−4−i/4, i = 0, . . . , 16;

• Emep problem: rtol = 10−4−i/4, i = 0, . . . , 28, atol = 1, h0 = 10−7;

• Ring Modulator problem: rtol = atol = h0 = 10−7−i/4, i = 0, . . . , 20.

Figures 2, 3, and 4 show the obtained results as work-precision diagrams, where
the CPU-time (in seconds) is plotted versus accuracy, measured in terms of mescd
(see (32)).4

For the first two problems, the work-precision diagrams suggest that the split-
ting version of the RADAU5 code is more efficient than the original one, even
starting with 1 inner iteration. Moreover, in Tables 5–8 we list a few statistics
for the Elastic Beam problem, from which one deduces that, by using 2–3 inner
iterations, the number of steps is approximately the same as the original code: in
other words, the convergence rate of the outer iteration is preserved.

For the last problem (Ring Modulator), which has a much smaller size, the
splitting with 2 and 3 inner iterations is less efficient than the original RADAU5
code. Nevertheless, when using a single inner iteration the algorithm uses a larger
number of steps (8-10% more), as is shown in Tables 9 and 10, resulting into a much
more accurate solution. In our understanding, this behaviour may be explained
by considering that computing the vector field f(t,y) of this problem is extremely
cheap and, hence, accuracy is more conveniently obtained by acting on the number
of function evaluations, rather than on the number of inner iterations.

4Indeed, a reference solution is known, for all problems in the Test Set.
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Figure 2: Work precision diagram for the Elastic Beam problem.

Even though it is difficult to exactly compute the obtained speed-ups, since the
curves in the work-precision diagrams are not monotone, in general, it is possible
to infer a mean speed-up of 1.43, for the Elastic Beam problem, a mean speed-up
1.84, for the Emep problem, and a mean speed-up 1.44, for the Ring Modulator
problem. In the latter case, however, the speed-up increases with the required
accuracy, reaching a value of approximately 2. Moreover, as explained above, these
speed-ups could be larger by a 24% amount, if hardware/software optimizations
were not present.

6. Conclusions

In this paper we have defined a splitting procedure for Radau IIA methods, de-
rived by an augmented low-rank formulation of the methods. In such formulation, a
set of auxiliary abscissae are determined such that the Crout factorization of a cor-
responding matrix associated with the method has constant diagonal entries, which
leads to optimal complexity. Moreover, the presented iteration compares favorably
with all previously defined iterative procedures for the efficient implementation of
Radau IIA methods. The presented technique can be straightforwardly extended
to other classes of implicit Runge-Kutta methods (e.g., collocation methods) and
this will be the subject of future investigations.

19



3 4 5 6 7 8 9 10

0.10

0.06

0.08

0.20

0.40

0.60

0.80

mescd

CP
U 

tim
e

 

 

Radau 5
Splitting 1 inner it.
Splitting 2 inner it.
Splitting 3 inner it.

Figure 3: Work precision diagram for the Emep problem.
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Figure 4: Work precision diagram for the Ring Modulator problem.
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Table 5: Statistics for the Elastic Beam problem, RADAU5.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-04 3.36 55 49 380 49 55 6.24E-02
1.00E-05 3.67 112 95 764 95 112 1.23E-01
1.00E-06 3.78 162 146 1103 146 162 1.81E-01
1.00E-07 4.18 275 251 1853 251 275 3.06E-01
1.00E-08 4.69 507 459 3417 459 507 5.62E-01

Table 6: Statistics for the Elastic Beam problem, RADAU5, split 1.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-04 3.20 74 66 870 66 74 5.12E-02
1.00E-05 3.76 117 105 1443 105 117 8.40E-02
1.00E-06 3.95 193 177 2769 177 193 1.44E-01
1.00E-07 4.35 374 330 5925 330 374 2.80E-01
1.00E-08 5.02 801 655 12814 655 801 5.84E-01

Table 7: Statistics for the Elastic Beam problem, RADAU5, split 2.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-04 3.57 66 56 548 56 66 4.68E-02
1.00E-05 3.71 112 96 879 96 112 7.76E-02
1.00E-06 3.76 152 144 1290 144 152 1.12E-01
1.00E-07 4.20 284 260 2603 260 284 2.10E-01
1.00E-08 4.72 517 481 5044 481 517 3.89E-01

Table 8: Statistics for the Elastic Beam problem, RADAU5, split 3.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-04 3.53 64 54 454 54 64 4.76E-02
1.00E-05 3.67 115 96 810 96 115 8.32E-02
1.00E-06 3.74 154 141 1104 141 154 1.16E-01
1.00E-07 4.17 273 249 1959 249 273 2.04E-01
1.00E-08 4.68 502 456 3654 456 502 3.74E-01
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Table 9: Statistics for the Ring Modulator problem, RADAU5.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-07 4.42 98754 89346 510295 89346 98754 1.37E+00
1.00E-08 5.20 137823 128316 727506 128316 137823 1.92E+00
1.00E-09 5.96 194463 185008 1046747 185008 194463 2.74E+00
1.00E-10 6.75 277830 268414 1525756 268414 277830 3.94E+00
1.00E-11 7.52 399846 390508 2234881 390508 399846 5.71E+00
1.00E-12 8.30 580535 571309 3365783 571309 580535 8.42E+00

Table 10: Statistics for the Ring Modulator problem, RADAU5, split 1.

rtol mescd steps accept feval jeval LU CPU-time
1.00E-07 4.97 110376 95269 958749 95269 110376 1.54E+00
1.00E-08 5.91 152526 136231 1328822 136231 152526 2.13E+00
1.00E-09 6.93 212686 195982 1855438 195982 212686 2.98E+00
1.00E-10 8.36 301719 283921 2635810 283921 301719 4.23E+00
1.00E-11 8.75 432000 412643 3785978 412643 432000 6.07E+00
1.00E-12 9.05 624708 602385 5524392 602385 624708 8.84E+00
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