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Abstract-In this paper, practical conditions to check the well-conditioning of a family of non- 
singular Toeplitz band matrices are obtained. All the results are based on the location of the zeros 
of a polynomial associated with the given family of Toeplitz matrices. 

The same analysis is also used to derive uniform componentwise bounds for the entries of the 
inverse matrices in such family. 
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1. INTRODUCTION 

In the study of a new class of linear multistep methods for the solution of ordinary differential 
equations, namely Boundary Value Methods (BVMs) [l-3], we were concerned with Toeplitz 

band matrices. In particular, the convergence results for these methods, along with the linear 
stability theory, can be stated provided that one is able to discuss the behavior of the inverses of 
Toeplitz band matrices belonging to the family {Z’,}, 

T, = 

a0 . . . ak 

‘. *. 

a-m ‘. 
ak 

*. . . 
. : 

a-, . . . a0 

(1) 

‘th where aj is the generic entry on the J diagonal, the index 0 denotes the main diagonal, a 
positive index denotes an upper diagonal, and a negative index a lower diagonal. Without loss 
of generality, here we assume that a-&k # 0. 

Several papers have been devoted to Toeplitz band matrices, in particular to algorithms for 
their inversion [4-71. The problem of their conditioning was previously treated, for example, 
in [8,9], while important results concerning the asymptotic eigenvalue distribution of Toeplitz 
band matrices can be found in [lO,ll]. 

The authors are very indebted to D. Trigiante, for the precious help in the preparation of the manuscript. 
*Work supported by MURST (40% project) and CNR (contract n. 93.00571.ctOl). 
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We shall study under what conditions the family of matrices {Tn} is “well-conditioned” ac- 

cording to the following definition. 

DEFINITION 1. A family of matrices {Tn} is said to be well conditioned if the condition numbers 

{6(Tn)} are uniformly bounded with respect to n. It is said to be weakly well conditioned if tc(T,) 

grows as a small power of n. 
Moreover, a matrix T, will be said (weakly) well conditioned if it belongs to a (weakly) well- 

conditioned family of matrices. 

REMARK 1. Observe that since 

and, for Toeplitz band matrices, [IT,11 is always uniformly bounded with respect to n, then the 

family of matrices {Tn} will be well conditioned (weakly well conditioned), if and only if the 

elements in the sequence {llT;lll} are uniformly bounded with respect to n (grow as a small 

power of n). 

The problem of the conditioning of a family of Toeplitz band matrices is discussed in Section 2 

for the simpler case of triangular matrices. Then, the obtained results are extended to the more 

general case in Section 3. Some of the results presented in this section are known, but are here 

rederived in a novel way. 

Finally, in Section 4 we consider componentwise bounds for the entries of jT;ll, the matrix 

having as entries the absolute values of the corresponding entries of T;l. Some particular cases, 

which are relevant for the study of the convergence and of the linear stability theory for BVMs [2], 

will be analyzed in more details. 

1.1. Notations 

All the results presented in this paper will be obtained by analyzing the following polynomial 

of degree m + k associated with the matrices {Tn} defined as in (1): 

p(z) = & aizm+i. 
k-m 

Let zr,... , zm+k be its zeros, where 

We say that the polynomial (2) is of type (s, U, 1) if it has: 

(2) 

(3) 

l s zeros with modulus smaller than 1, 

l u zeros with unit modulus, 

l 1 zeros with modulus larger than 1. 

This notation has already been used by Miller in [12], where a general criterion to check the 

type of a given polynomial is provided. 

Associated with the zeros in (3), we also define the matrix 

D=( D1 D,), 

where 

D1 = 

&a+k 
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and the Casorati matrix [13] which, in the case of simple zeros, may be written as 

where 

Wll = 

w21 = 

w= ( Wll w12 

w21 w22 > 
I 

I 1 . . . 

Gn+1 ..* 

k-l 
, z,+1 ... 

k 
%+k 

m+k-1 
21 

m+k-1 
m+1 *.. ‘%n+k 

2. CONDITIONING OF TRIANGULAR 
TOEPLITZ BAND MATRICES 

In this section, we shall present the results concerning the conditioning of triangular Toeplitz 
band matrices, obtained by using standard arguments on linear difference equations. Let us 
suppose that the matrix (1) is lower triangular, that is k = 0: 

a0 

*. 

T, = L, := 

I! 

a_ m 

. . 

_Y 1. 

*. (4 
*. 

a-, . . . a() 
tlX7l 

In this case, the associated polynomial (2) is given by 

Pl(.z) = 2 uilm+i. (5) 
i=-m 

The following result holds true. 

THEOREM 1. The family of matrices {L,} defined as in (4) is 

(i) well conditioned iff the polynomial (5) is of type (m, 0, 0), 

(ii) weaJcJy well conditioned iff the poJynomJaJ (5) is of type (ml, mz, 0), with ml + mz = m. 

PROOF. It is well known that the set of Toeplitz triangular matrices is closed with respect to the 
operation of inversion. Then, it is sufficient to examine the entries on the first column of L;l. 
In fact, the matrix L, will be well conditioned iff the entries of the first column of L;l go to 
zero with the row-index, and weakly well conditioned iff these entries depend polynomially on 
the row-index. 

The rth entry on the first column of L;l, say yr, satisfies the difference equation 

0 

c aiyr+i = 0, r=2 7***,% 
in-m 

1 (6) 
&9-m = * * * = y0 = 0, y1= -* 

a0 
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The general solution of (6) is given by 

yr+l = 2 z,’ mfiJ1 cjsrs, r = 0, 1,2,. . . ) (7) 
i=l s=o 

where q is a zero of multiplicity rni of the polynomial (5) and the zeros are ordered for increasing 

moduli, according to (3). The thesis follows by observing that, since from (6) and (7) it is 

possible to prove that ~~,~,_r # 0, for large values of T it is Iyrlr( c( ~z~F‘~-~~ which goes to zero 

iff Izq( < 1, and is O(Pq-’ ) iff lzq( = 1 (here, we have supposed, without loss of generality, that 

m, = max{mi : mi multiplicity of zi, lzil = IzqI}). I 

Similarly, we can handle the case where the matrices {T,} are upper triangular; that is when 

m = 0, 

T, = U,, := 

a0 . . . a& 

. . ak 

. . : 

a0 

In this case, the associated polynomial (2) is given by 

1. (8) 

lzX?l 

(9) 

and the following result holds true. 

THEOREM 2. The family of matrices {Un} defined as in (8) is 

(i) well conditioned if? the polynomial (9) is of type (0, 0, k), 

(ii) weakly well conditioned iff the polynomial (9) is of type (0, kl, kz), with kl + kZ = k. 

PROOF. The proof is obtained by applying the previous Theorem 1 to the family {Uz}. 1 

By considering the norms II . 11 1 or (I . Iloo from Theorems 1 and 2, the next result follows. 

COROLLARY 1. Let {T,} be a weakly well-conditioned family of triangular Toeplitz band matri- 

ces. Then, K(T,) = O(np), where p is the highest among the multiplicities of the zeros of unit 

modulus of the associated polynomial p(z). 

EXAMPLE. Consider the following triangular matrix: 

L, = 

2 

3 *. * 

-1 .a. *.. 

-3 *.. *.. I.. 

-1 ..* *.* *.* *.* 

*. *. *. *. *. . . . . . 

-1 -3 -1 3 2 

The associated polynomial ispr(z) = (z-1)(2z+l)(~+l)~. M oreover, for large 12, one can verify 
that noo(Ln) x 2.5n2, that is K,(L,) = O(n2), as predicted by Corollary 1. 
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3. CONDITIONING OF GENERAL TOEPLITZ BAND MATRICES 

In this section, we shall discuss the conditioning of a family of general Toeplitz band matrices 
{Tn} defined as in (1). As before, P(Z) is the associated polynomial (2) whose zeros zi, i = 
1 , . . . , m + k, are ordered according to (3). Then, we factor p(z) as follows: 

P(Z) = Pl(4Pu(ZL 

where 

and 

p&z) = fi (z - Zi) =: & bgm+i, 
i=l ic-772 

b. = 1, 

It can be verified that 

where 

L, = 

bo 

*. 

b-m 
. . 

i=l i=o 

Tn = L,U, -I- En, 

. . 

*. 

b-, . . . b. 

u, = 

nXn 

co . . . ck 

*. -* 

*. 
ck 

. . 
. : 

co 

(10) 

(11) 

(12) 

(13) 

, 

nxn 

and En is an n x n matrix which has only the principal m x k submatrix with nonzero entries. 
Moreover, all these entries are independent of T-L 

Because of these arguments, we can always consider the matrix E, in (13) as a perturbation 
of the product L,U,. 

In a way similar to (13)) we want now to see when it is possible to write 

T;’ = U;lL,l+ Hn, (14) 

with the matrix H, which can be regarded as a perturbation of the product U;‘L;l. Now, in 
fact, this is not always the case, as the following example clearly shows. 

EXAMPLE. Consider the Toeplitz tridiagonal matrix 

T, = 

Then 

G-(-i .t. ;; :)...i’ : ::: : 
=: L,U, - eler, 

where el is the first vector of the canonical base on W”. 

- ele: 

nxn 
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For even n, equation (14) holds since both the matrices L,U,, and T, are weakly well condi- 

tioned. On the contrary, for odd n, T, is always singular, while L,U,, is nonsingular. 

In the following, we shall always suppose the matrices {T,,} to be nonsingular. In this hy- 

pothesis, we will obtain sufficient conditions to guarantee the (weakly) well-conditioning of T, 
provided that the product L,U, is (weakly) well conditioned. 

This will be done in Section 3.2, after the statement of the preliminary results of Section 3.1. 

3.1. Preliminary Results 

In order to give the main result, we first need to prove the following two lemmas. 

LEMMA 1. Let 

be a nonsingular (n + k) x (n f k) matrix, where Ok is a k x k null block and As1 is a square 

block of size n. Moreover, let 

A-‘=( 2: ;;;) 

be its inverse, where now X12 is n x n and X21 is k x k. If A21 is nonsingular, then X21 is also 

nonsingular, and 
AyI1 = X12 - Xr1X;I1X22. 

PROOF. Let us now consider the following block permutation 

o?k ’ > 

matrix: 

where On& denotes the n x k null matrix. Suppose Aal to be nonsingular. One then has 

PA=( ;:: “02x2) 

= A21 On,k 

>( 

A;/-422 

Au S i;k Ik ’ 

where S = -A11A;11A22. We observe that since both the matrices A and A21 are nonsingular, 

then S is nonsingular. It follows that 

A-l = 
I, -A&h )( 4: 0 

On',k I,+ __s-lAllA;; S’: 
-A;/A22S-1 A;’ + A;;A22S-1A11A;/ 

= 
S-1 -S-lA1lA,il 

The thesis then follows by direct identification: Xsr = S-l and 

A;; = X2i - A;;A~@AIIA;; = X21 - X11X$X22. I 

LEMMA 2. Let T, in (1) be nonsingular and p(z) in (2) be the polynomial associated with the 
family {Tn}. If p(z) is of type (ml, 7712, k) or (m, ICI, kz), where ml + 7712 = m and kr + kz = k, 
then for n >> 0 the (i,j)th entry of Hn = T;l - U;lL;’ behaves as O(l(i~-‘~~)(j”-l~~~z;;,j;,)l), 
where 

and 

p = max{pi : pi multiplicity of zi, (zi( = 1~~1) 

v = max{vi : Vi multiplicity of za, Izil = I.z~+~(}. 
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PROOF. For the sake of brevity, we shall prove the result only in the simpler case where the 

zeros of p(z) are al! simple (and then p = v = 1). In the case of multiple zeros the proof can 

still be obtained by using similar arguments, but it is more entangled. Let US suppose that p(a) 

is (ml, ms, Ic): in the case where p(z) is of type (m, Ici, k2), it will be sufficient to consider the 

matrix TJ, whose associated polynomial is of type (kz, Ici, m). Then, we define the following 

lower block triangular matrix: 

AT = 

Cl 

a0 . . . ak 

*. . . 

a-, *. *. 

-. *. 
ak 

. . . . . . . 
. . 

a-, . . . a0 . . . ak 

\ 

1 (n+k) x (nfk) 

where Cl is a nonsingular k x k block, which will be specified later, and 

/o . . . 0’ 

A11 = ( cl Ok,n-k ) , A22 = 
0 

II 

ak *’ 

. . 

al . . 

Since Ci is nonsingular, the matrix AT is invertible and 

A:‘=( ;;; ;;;), 

0 

ak I nxk 

(15) 

where Xi2 is n x n, and Xsi is k x k. Moreover, since T,, is also nonsingular, from Lemma 1 one 

also has that Xzi is nonsingular and 

T,-l = Xl2 - X11X;11X22. 

Similarly, we define 

A Au ok 
LU = 

&,Un A22 

whose entries are the same as those of AT, except for an m x k block on rows k + 1, 

columns l,...,k, 

and 
u,-iL,i =x - 12 - xll~~1x22. 

It follows that 

H,, = T;l- U$L,’ = 
( 
J?,&~’ - XllXgl Xz2. 

> 

We shall now show that the (i,~)~~ entry of H, is O(~Z,,$/~Z~+I~~). 

(16) 

,k+m, 

(17) 
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Let for simplicity 21(j) be the (i,jJth entry of AZjl. The first k columns of this matrix are 

obtained by solving the bIock linear system 

Observe that the unknown entries on column j satisfy the difference equation 

with the initial conditions XV’, . . . , z:‘+~ fixed. 

Since we have supposed that the zeros of the polynomial p(x) are simple, then the solution 

of (18) can be written as 

.fj) = ET 
1 m+k 

Di-l i = 1,2,. . . , n + k, (19) 

where Ei = (I,. , . , l):, and 

(6,) =: ( ;pw-( ;;k). 
In the last relation, according to the definitions of W and D, 

length m and k, respectively. 

The entries at’ of Aj$ satisfy the same difference equation , 

the vectors BP) and BF) have 

(IS), but with initial conditions 
T-r xlj’, W -W *(j) ***7 xk ?xk+l?**‘?xk+m (because of the definition of ALU)+ nence 

?<A 
2 = E;+kp i = 1,2, . . . , n + k, 

where 

= w-1 
-6) * 
‘k+l 

Then, if ep) is the rth vector of the canonical base on IRS and for 1 = I,2 we denote by 
BI(‘:“) = (@‘), $1 , . . , , B,(“)), from (19) and (20) it follows that for a’ = 1,. . . , n, 

and 

(21) 
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With similar arguments, if we assume n >> 0, one has 

X21 = ( Wll W12 ) D” 

221= ( Wll W12 ) Dn 

37 

(1:k) 
= Wl2DP2 , (23) 

,. (l:k) 
M W12D;B, . (24) 

The neglected terms are, in both cases, O((z,/z,+iln). The k x k matrices BF’“) and &!jnk) 

depend on the initial conditions and hence on Ci, which is an arbitrary k x k nonsingular matrix. 

This matrix can always be chosen in order to have both B.$““) and $i’k) nonsingular. It follows 

that, for n sufficiently large, also X21 and Xpi are always nonsingular, since both Wi2 and Dz 

are nonsingular. 

For what concerns the matrix X22, let us denote by ~$2’ its (i, J)“~ entry, for j = 1,. . . , n 

and i = l,..., k. The entries on column j satisfy the difference equation (18) with initial condi- 

tions 
r@+j) 

1-m+j 
= . . . = $+-yl = 0, @+A = f_ 

xk+j 
ak 

whose solution is 

Z!k+j) = E~+kDi+m-j-l Bi’) 
2 

( ) 
Bb’) ’ 

where 

($)=w-i( .,i. 

Observe that in the previous formula the vectors Bi’) and B$) do not depend on j. Then, 

forj=l,...,n,onehas 

= x2&) = ( w,, WyJ ) LP+m-j 

From the relations (17) and (21)-(25), it follows that the (i,j)“h entry of H, is given by 

h, = (ey’>’ (Xii-X&’ - X1iXG’) X22ey) 

x DTn W,,’ WI1 D;+m-j Bf) + WI2 D;+m-j B$‘) 

= E;+kD;-l (,!,:ki (jj;:“‘) -’ _ Bil’“) (B;‘:k)) -‘) 

x 
( 
D;nW,zlWllDy+m-jB~‘) + D;-jBi) 

w E;+,D;-I (s$l;*’ (jj$l:k))-’ _ Bil:k) (B~l:k~)-‘) DF-jB6’) 

(25) 
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REMARK 2. From the relation (16) we observe that T, is nonsingular iff the block X21 of AT is 
nonsingular. But for n sufficiently large, from the relation (23) it follows that this is always true, 
if p(Z) is of type (ml, m2, k) or (m, ICI, Ic2). 

3.2. Main Result 

In the following, 11 - 1) denotes either )I . 111 or II . Iloo. 

THEOREM 3. Let {Tn} be a family of nonsingular Toeplitz band matrices defined as in (1) 
and p(z) in (2) be the associated polynomial. Then, the family of matrices {T,} is 

(i) well conditioned if p(z) is of type (m, 0, k); 

(ii) weakly well conditioned if p(z) is of type (ml, 7712, lc) or (m, ICI, kz), where ml + m2 = m 
and kl + k2 = k. In this case, &(Tn) grows at most ss O(#), where /J is the highest 

multiplicity among the zeros of unit modulus. 

PROOF. From (lo)-(14), we have that 

T,-l = U,-lL,l+ Hn, 

where L, and U, are Toeplitz triangular matrices. If P(Z) is of type (m, 0, k), then pi(z) is 

of type tm,O,O), P&) is of type (O,O, k), and therefore the family of matrices {L,Un} is well 
conditioned. Moreover, from Lemma 2 it follows that also the elements of the sequence { IlH, 11) 

are uniformly bounded with respect to n. 

Let now P(Z) be of type (ml, m2, Ic) or (m, ICI, Icz). Then, from Corollary 1 and Lemma 2 it 
follows that the family {L,U,} is weakly well conditioned and both IJU;lL;lJI and llH,ll grow 
at most as O(np), where /A is the highest multiplicity among the zeros of unit modulus. The 
thesis then follows from relation (14). I 

REMARK 3. We observe that statement (i) in Theorem 3 has already been derived, by using 
results on infinite Toeplitz matrices, by Gohberg and Fel’dman [8]. 

EXAMPLES. Let us consider the matrix 

T(1) = 
n 

The associated polynomial is 

1 1 
7 *. *. -- . . 
4 

/ 1\2 
PI(%)= Z-; 

( ) 
(z + 2), 

(26) 

which is of type (2,0,1). Since TA’) has two lower off-diagonals, it follows that K~(T~‘)) is 
uniformly bounded with respect to n, &s it can be seen in Figure 1. 



Toeplitz Band Matrices 39 

9 

8 

6 

1 . 

n 

Figure 1. Condition number of the matrix (26). 

Consider now the matrix 

55% = n 

The associated polynomial is 

2 1 

-2 *.. *.. 

-4 *.. ‘.. *a. 

1 . ‘*. .*. ‘*. . . 

2 *. . . . . * . . . . , * . . 

. . . . . . .* *. . . . . . 1 

2 1 -4 -2 2 

(27) 

pz(z) = (2 + q2(% - Q2(% + 2), 

which is of type (0,4,1). Since TA2’ has four lower off-diagonals and p&z) has two zeros of 
multiplicity two on the unit circle, it follows that IE~(TL~)) grows at most as 0(n2), as it can be 

seen in Figure 2. 

4. COMPONENTWISE BOUNDS FOR THE INVERSE 

In this last section, we shall derive uniform componentwise bounds for the entries of T;’ in 
the following two cases: 

1. P(Z) is of type (m,O, Ic); 

2. p(z) is of type (ml, mz, Ic), ml + mz = m, being simple the zeros of unit modulus. 

These bounds are important to discuss the convergence and the linear stability theory of BVMs. 
In [2], the polynomials of the first kind have been called S m,k-pOlynOmialS, while those of the 
second kind have been called Nm,k-pOlynOVhd3. Observe that when k = 0, an &&-polynomial 
reduces to a Schur polynomial and, similarly, an N,,k-polynomial becomes a Von Neumann 
polynomial. 

Moreover, we observe that the obtained results can be extended in a straightforward way to 
discuss the case where p(z) is of type (m, kl, ka), again being simply the roots of unit modulus. 

We first state the following lemma. 
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3500 - 
. 

. 

3000 - 
. 

. 
. 

. 
2500 - 

. 
. 

. 
. 

. 
2000 - .O 

ko (T?‘) .* 

1500 - .* 
. . 

. 

1000 - 
.’ 

.* 
0. 

l * 

500 - 
0. 

0. 
. . 0. 

.8.. 
..** 

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 5 10 15 20 25 30 35 40 45 50 

n. 

Figure 2. Condition number of the matrix (27). 

LEMMA 3. Let tf1 E W, 0 < (1 < 1, and T E N. Then there exist cx > 0 and <1 < J2 < 1 such that 

nT5? I arJZn, forallnz 1. 

PROOF. It is sufficient to use a value Q > -r/(e log&) so that we can choose & = <ler(ea)-’ < 1. 

Moreover, for all 2 > 0 one has ze-’ > logx (the equality holds only for 2 = e). It follows 
that n(ae)-’ > log(na-l), that is en(ae)-’ 2 na-I, and hence 

(yTJy = (Cye”(ea)‘)T r;” > n’<;. 

Let us now define the following two strictly lower triangular matrices: 

/o 0 . . . 0 /o 0 . ..o 

c, = 
I: 1 1 . 0 . . . . 

*. *. 

. 1 . . . 0 0 i , A, = 
y 0 *.. ; i! * *. *. 

* 0 

Y 
n-1 . . . Y 0 

I 

1 *xn 

Then, the next result holds true. 

THEOREM 4. Let {T,} be a family of nonsingular Toeplitz band matrices defined as in (l), and 

suppose that the associated polynomial p(z) is of type (m - s, s, Ic) with simple zeros of unit 
modulus. Then the matrix IT; 1 / can be bounded componentwise as follows: 

1. lT;l[ 5 a(In + A, + A,‘), when s = 0; 

2. lT;ll 5 (r(& + C, + A,‘), when s > 0, 

where a > 0 and 0 < y < 1 can be chosen independently of n. 

PROOF. From (14), it follows that 

lT,-l[ 5 (u,-l( (L,l( + I&l, 

so that we obtain the result by considering upper bounds for the elements on the right-hand side. 
From the arguments used in the proofs of Theorems 1 and 2, and Lemmas 2 and 3, it follows 
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that there exist 0 < y < 1 and positive scalars (~1, ~2, ~3, all independent of n, such that 

IK1l L or (L + A:), 

I-43 5 os 
{ 

(I, + A,), if s = 0, 
(1, + C,), if s # 0, 

l&l 503 
( 

s 

GA 

ifs=O, 
if s # 0, 

where S,, = (yifj-2)i,+r ,..., 7L and IV, = (yj-‘)i,j=r ,..., 7L. From the last relation, it follows that 

IKzI 5 ~3 
(I,+A,-t-Ax) ifs=O, 

(I, + C, + AL), if s # 0, 

which is in the desired form. Moreover, one has 

where the following bound: 

s 

c y = y 1 - Y-+l < YT 
1-Y - 1-y’ 

T,s=l)...( n-l, 
i=r 

is used in order to obtain the last inequality. Similarly, it is possible to obtain 

Then one has 

IT,-l) 5 ma2 (In + A;) (In + A,) + a3 (In + A, + A;) 

5 (%+a~) (I,+A,+AL), ifs=O, 

and 

jK’\ 5 ma2 (1, + A;) (4z + GJ + ~3 (1;1. + G + A:) 

5 (s+a3) (I,+C,+AL), ifs#O. 

The thesis then follows by setting 

(y = crraz(l - y2)-l + 03, when s = 0, 

a1Q2(1- r>-l + Q3, when s # 0. 
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