Corso di Laurea in Matematica

Corso di ALGEBRA I

prima prova intermedia – 10 gennaio 2018

Esercizio 1. (4 punti) Si provi che per ogni $n \geq 2$, si ha

$$\sum_{i=2}^{n} \left[6 \binom{n}{2} + 1 \right] = n^3 - 1.$$

Esercizio 2. (4 punti) Si risolva in $\mathbb C$ l'equazione $x^3+1=i$, esprimendo le soluzioni in forma algebrica (a+ib), in forma trigonometrica e in forma esponenziale.

Esercizio 3. (10 punti) Sull'insieme $A = \mathbb{Z} \times \mathbb{Z}$ si definisca la relazione ω ponendo, per ogni $(a,b), (c,d) \in A$,

$$(a, b)\omega(c, d)$$
 se $ad^2 - b^2c = 0$.

- 1. Si provi che ω è una relazione d'equivalenza su A.
- 2. Si provi che l'insieme quoziente A/ω è infinito.
- 3. Si dica se porre, per ogni $(a, b) \in A$,

$$[(a,b)]_{\omega} \mapsto a+ib$$

fornisce una buona definizione per una funzione $A/\omega \to \mathbb{C}$.

Esercizio 4. (10 punti) Sull'insieme $\mathcal{P}(\mathbb{N})$ si definisca la relazione \triangleleft ponendo, per ogni $X,Y\in\mathcal{P}(\mathbb{N})$

$$X \triangleleft Y$$
 se $X \subseteq Y$ e $Y \setminus X$ è finito.

- 1. Si provi che \triangleleft è una relazione d'ordine su $\mathcal{P}(\mathbb{N})$ e si dica se è totale.
- 2. Si dica se l'insieme parzialmente ordinato $(\mathcal{P}(\mathbb{N}), \triangleleft)$ ha elementi minimali e/o minimi.
- 3. Posto $\mathcal{B}_{12} = \{ \mathbb{N} \setminus \{n\} \mid n \in \mathbb{N}, \ n \leq 12 \}$, si determini, se esiste, $\inf(\mathcal{B}_{12})$ in $(\mathcal{P}(\mathbb{N}), \triangleleft)$.

Esercizio 5. (7 punti) Si risolva in $\mathbb Z$ il seguente sistema alle congruenze:

$$\left\{ \begin{array}{l} x^{30} + x^{29} + x^{28} \equiv 1 \pmod{5} \\ (32x)^{32} \equiv 32 \pmod{7} \end{array} \right.$$