Corso di Laurea in Matematica

compito di Algebra I del 10 luglio 2012 ${f SOLUZIONE}$

Esercizio 1. Siano A, B, C insiemi e, come consuetudine $C^B = \{f \mid f : B \to C\}$, $C^A = \{g \mid g : A \to C\}$; infine, sia fissata un'applicazione <u>suriettiva</u> $\alpha : A \to B$. Si definisca quindi l'applicazione $\chi : C^B \to C^A$ ponendo,

$$\chi(f) = f \circ \alpha$$

per ogni $f \in C^B$. Si provi che χ è un'applicazione iniettiva.

Siano $f, g \in C^B$ tali che $\chi(f) = \chi(g)$, ovvero $f \circ \alpha = g \circ \alpha$. Ora, dato $b \in B$, esiste, poiché α è suriettiva, $a \in A$ tale che $b = \alpha(a)$; dunque

$$f(b) = f(\alpha(a)) = (f \circ \alpha)(a) = (g \circ \alpha)(a) = g(\alpha(a)) = g(b)$$

il che dimostra che f = g. Pertanto, χ è un'applicazione iniettiva.

Esercizio 2. Sull'insieme $A = \mathbb{N} \times \mathbb{N}$ si definisca la relazione \triangleleft ponendo, per ogni $(a,b),(c,d) \in A$,

$$(a,b) \triangleleft (c,d)$$
 se
$$\begin{cases} a \le c \\ a+d \le b+c \end{cases}$$
.

- 1. Si provi che \triangleleft è una relazione d'ordine e che non è totale.
- Riflessività. Per ogni $(a,b) \in A$ (quindi $a,b \in \mathbb{N}$) si ha banalmente $a \leq a$ e $a+b \leq b+a$; dunque $(a,b) \triangleleft (a,b)$.
- Antisimmetria. Siano $(a,b), (c,d) \in A$ con $(a,b) \triangleleft (c,d)$ e $(c,d) \triangleleft (a,b)$; allora

$$\left\{ \begin{array}{l} a \leq c \\ a+d \leq b+c \end{array} \right. \qquad e \qquad \left\{ \begin{array}{l} c \leq a \\ c+b \leq d+a \end{array} \right.$$

da cui segue subito c = a e d = (c + b) - a = a + b - a = b.

- Transitività. Siano $(a,b),(c,d),(e,f) \in A$ con $(a,b) \triangleleft (c,d)$ e $(c,d) \triangleleft (e,f)$; allora

$$\left\{ \begin{array}{l} a \leq c \\ a+d \leq b+c \end{array} \right. \qquad e \qquad \left\{ \begin{array}{l} c \leq e \\ c+f \leq d+e \end{array} \right.$$

da cui si ricava: $a \le e$, e

 $a + f = a + d - d + f \le b + c - d + f = (c + f) - d + b \le e + d - d + b = e + b$ Dunque $(a, b) \triangleleft (e, f)$.

Quindi (A, \triangleleft) è un insieme parzialmente ordinato. L'ordine non è totale perché, ad esempio $(0,0) \not A(1,2)$ e $(1,2) \not A(0,0)$.

2. Osservato che per ogni $(a,b) \in A$ si ha $(a,b) \triangleleft (a+1,b)$, si provi che l'insieme parzialmente ordinato (A,\triangleleft) non ha né elementi massimali né minimali.

Sia $(a,b) \in A$. Allora, come si verifica subito dalla definizione $(a,b) \triangleleft (a+1,b)$ e $(a,b+1) \triangleleft (a,b)$. Questo prova che (A,\triangleleft) non ha elementi massimali né minimali.

3. Posto x = (0,0) e y = (1,2), si provi che $\inf_A \{x,y\} = (0,1)$.

Sia $u=(a,b)\in A$; allora $u\triangleleft x$ se e solo se $a\leq 0$ e $a+0\leq b+0$, cioè se e solo se a=0; mentre $u\triangleleft y$ se e solo se $a\leq 1$ e $a+2\leq b+1$, ovvero se e solo se a=0,1 e $b\geq a+1$. Pertanto l'insieme degli elementi minimanti di $\{x,y\}$ è

$$\mathcal{M} = \{(0, b) \in A \mid b \ge 1\}.$$

Ora, per ogni $b \ge 1$ si ha $(0,b) \triangleleft (0,1)$. Ne consegue che (0,1) è il massimo di \mathcal{M} e dunque è l'estremo superiuore di $\{x,y\}$.

Esercizio 3. Sia $A = \{ \frac{m}{n} \in \mathbb{Q} \mid m \in \mathbb{Z}, (n,7) = 1 \}.$

1. Si provi che A è un sottoanello dell'anello \mathbb{Q} .

Chiaramente $1 = \frac{1}{1} \in A$. Siano $x = \frac{m}{n}, y = \frac{m'}{n'} \in A$; allora

$$x - y = \frac{mn' - m'n}{nn'}$$
 e $xy = \frac{mm'}{nn'}$

sono elementi di A dato che, essendo 7 un numero primo, 7 non divide nn'. Questo prova che A è un sottoanello di \mathbb{Q} .

2. Si determini l'insieme degli elementi invertibili U(A).

Per l'unicità dfgli elementi inversi in \mathbb{Q} , un elemento $\frac{m}{n}$ di A è invertibile in A se e soltanto se $m \neq 0$ e il suo inverso in \mathbb{Q} , cioè $\frac{n}{m}$, appartiene ad A, e ciò si verifica se e soltanto se 7 non divide m. Pertanto

$$U(A) = \left\{ \frac{m}{n} \in A \middle| (m,7) = 1 \right\} = \left\{ \frac{m}{n} \in \mathbb{Q} \middle| (m,7) = (n,7) = 1 \right\}.$$

3. Si provi che $I = A \setminus U(A)$ è un ideale di A e che è principale, determinandone esplicitamente un generatore.

Per quanto visto al punto precedente $7=\frac{7}{1}\in I$; inoltre per ogni $\frac{m}{n}\in A$ si ha $7\cdot\frac{m}{n}=\frac{7m}{n}\in A\setminus U(A)=I$; quindi $(7)\subseteq I$. Viceversa, se $u=\frac{m}{n}\in A$ allora $\frac{m}{n}\in I$ se e sole se 7|m ovvero se e solo se esiste $m'\in \mathbb{Z}$ tale che $u=\frac{7m'}{n}=7\cdot\frac{m'}{n}$ con $\frac{m'}{n}\in A$. Quindi $I\subseteq (7)$. In conclusione, I=(7).

4. Qual è la caratteristica di A? Sia infine $\phi: A \to \mathbb{K}$ un omomorfismo suriettivo con \mathbb{K} un campo: qual è la caratteristica di \mathbb{K} ?

La caratteristica di A coincide con quella di \mathbb{Q} , quindi è 0.

Sia $\phi: A \to \mathbb{K}$ un omomorfismo suriettivo con \mathbb{K} un campo e sia $K = \ker(\phi)$. Per il Teorema di omomorfismo $A/K \simeq \mathbb{K}$. Quindi, K è un ideale massimale di A; in particolare K è proprio e perciò non contiene elementi invertibili di A; quindi $K \subseteq I$ e dunque (per la massimalità di K) K = I. Quindi $\mathbb{K} \simeq A/I$. Ora

$$7 \cdot (1+I) = 7 + I = I = 0_{A/I}$$

e quindi A/I ha caratteristica uguale a 7. Lo stesso, per quanto detto, vale per \mathbb{K} .

Esercizio 4. Si fattorizzi come prodotto di irriducibili il polinomio

$$x^4 - x^2 - 2 \in \mathbb{K}[x]$$

 $con \mathbb{K} = \mathbb{Z}/2\mathbb{Z}, \mathbb{Q}, \mathbb{Q}[\sqrt{2}].$

 $-\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$. Allora $x^4 - x^2 - 2 = x^4 + x^2 = x^2(x^2 + 1) = x^2(x + 1)^2$. In questo caso, il polinomio si fattorizza come il prodotto di fattori lineari.

 $-\mathbb{K} = \mathbb{Q}$. Allora $x^4 - x^2 - 2 = x^4 + x^2 - 2x^2 - 2 = x^2(x^2 + 1) - 2(x^2 + 1) = (x^2 - 2)(x^2 + 1)$, e i polinomi $x^2 - 2$, $x^2 + 1$ sono irriducibili in $\mathbb{Q}[x]$.

 $-\mathbb{K}=\mathbb{Q}[\sqrt{2}]$. Allora $x^4-x^2-2=(x^2-2)(x^2+1)=(x-\sqrt{2})(x+\sqrt{2})(x^2+1)$, è un fattorizzazioni in irriducibili in $\mathbb{Q}[\sqrt{2}][x]$. Infatti, poiché ha grado 2, se x^2+1 fosse riducibile, il campo $\mathbb{Q}[\sqrt{2}]$ dovrebbe contenere le sue radici, che sono i numeri complessi $i \in -i$, e questo non è il caso dato che $\mathbb{Q}[\sqrt{2}]$ è contenuto nel campo \mathbb{R} dei numeri reali.