Corso di Algebra I. 2011/2012.

Esame scritto del 10 maggio 2012

Esercizio 1. (10 punti) Sia $A \neq \emptyset$ un insieme. Su $\Omega = A^A = \{f \mid f : A \to A\}$ si definisca la relazione \sim ponendo, per ogni $f, g \in \Omega$,

 $f \sim g$ se esiste una biezione $\phi: A \to A$ tale che $g = f \circ \phi$.

- (a) Si provi che \sim è un relazione d'equivalenza su Ω .
- (b) Sia $f:A\to A$ un'applicazione costante; si dica quanti elementi contiene la classe di equivalenza $[f]_{\sim}$.
- (c) Siano $f, g \in \Omega$ applicazioni **iniettive**; si provi che $f \sim g \iff Im(f) = Im(g)$.
- (d) Siano $f,g \in \Omega$ con $f \sim g$ e sia $\phi: A \to A$ una biezione tale che $g = f \circ \phi$; si provi che è ben definita l'applicazione

$$\begin{array}{cccc} \Lambda: & A/\!\sim_f & \to & A/\!\sim_g \\ & [x]_{\sim_f} & \mapsto & [\phi^{-1}(x)]_{\sim_g} \end{array}.$$

Esercizio 2. (6 punti) Si dica per quali $z \in \mathbb{Z}$ si ha

$$z \cdot 5^{234567891} + 7^{345678912} - 8z \cdot 10^{9999} \equiv 1 \pmod{11}.$$

Esercizio 3. (10 punti) Per ogni $f \in \mathbb{R}^{\mathbb{R}}$ (cioè $f : \mathbb{R} \to \mathbb{R}$), definiamo il *supporto* di f come $supp(f) = \{a \in \mathbb{R} \mid f(a) \neq 0\}$. Lavoriamo ora nell'anello delle funzioni reali $\mathbb{R}^{\mathbb{R}}$.

- (a) Si provi che $A=\{f\in\mathbb{R}^{\mathbb{R}}\mid \exists n\in\mathbb{N}: |f(x)|\leq n \text{ per ogni } x\in\mathbb{R}\}$ è un sottoanello ma non un ideale di $\mathbb{R}^{\mathbb{R}}$.
- (b) Si provi che $B = \{ f \in \mathbb{R}^{\mathbb{R}} \mid |supp(f)| < \infty \}$ è un ideale di $\mathbb{R}^{\mathbb{R}}$.
- (c) Si provi che l'ideale B non è principale.

Esercizio 4. (6 punti) Per ogni numero primo $p \ge 1$ sia

$$f_p = x^2 + 2(p+1)x + 4p + 1 \in \mathbb{Q}[x].$$

- (a) Si dica per quali primi p, l'anello quoziente $A_p = \mathbb{Q}[x]/(f_p)$ è un campo [sugger.: si provi con la sostituzione $x \mapsto x 1$].
- (b) Per ogni primo p, si descrivano gli ideali massimali di A_p .