Corsi di Laurea in Matematica. Esame di Algebra I.

Esame scritto - 11 maggio 2015

Esercizio 1. (6 punti) Sia $2 \leq n \in \mathbb{N}$, e si consideri $\phi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/2n\mathbb{Z}$ data ponendo, per ogni $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$,

$$\phi(\bar{a}) = \overline{2a+1}.$$

- (1) Si provi che ϕ è un'applicazione ben definita.
- (2) Si dica se ϕ è iniettiva e/o suriettiva.

Esercizio 2. (9 punti) Sia $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$. Sull'insieme $A = \mathbb{N}_0 \times \mathbb{N}_0$ si definisca la relazione \leq ponendo, per ogni $(a, b), (c, d) \in A$,

$$(a,b) \leq (c,d)$$
 se $a \mid c$ e $a+b \leq c+d$.

- (1) Si provi che \leq è una relazione d'ordine su A e si dica se è totale.
- (2) Si dica se (A, \leq) ha massimo e/o minimo.
- (3) Posto $B = \{(a, b) \in A \mid a, b \in \{1, 2, 3, 6\}\}$, si determini, se esiste, $\sup_{A}(B)$.

Esercizio 3. (10 punti) Siano R un anello commutativo, I un suo ideale e $0_R \neq q \in R$. Sia

$$I^q = \{ x \in R \mid q^n x \in I \text{ per qualche } n \in \mathbb{N} \}$$

- (1) Si provi che I^q è un ideale di R.
- (2) Nel caso $R = \mathbb{Z}$ si determini $(12\mathbb{Z})^2$.
- (3) Si provi che $I^q = R$ se e solo se $q^n \in I$ per qualche $n \in \mathbb{N}$.
- (4) Si provi che I è un ideale primo se e solo se $I \neq R$ e $I^q = I$ per ogni $q \in R \setminus I$.

Esercizio 4.(7 punti) Dato un numero primo p, sia

$$f = x^4 - x^3 + (p+1)x^2 - px + p \in \mathbb{Q}[x].$$

- (1) Si dica se $E = \mathbb{Q}[x]/(f)$ è un campo, e si descrivano i suoi ideali.
- (2) Si dica se esiste un omomorfismo $\phi: E \to \mathbb{Q}$.