Corso di Laurea in Matematica

I compitino di ALGEBRA 2 6 dicembre 2010

Esercizio 1. (12 punti) Su $G = \{(a,b) \mid a,b \in \mathbb{Z}_7, b \neq 0\}$ si definisca un'operazione · ponendo, per ogni $(a,b), (c,d) \in G$,

$$(a,b)(c,d) = (ad + c,bd)$$

- 1. Si provi che (G, \cdot) è un gruppo.
- 2. Si provi che $N = \{(a,1) \mid a \in \mathbb{Z}_7\}$ è un sottogruppo normale di G.
- 3. Si dica se esiste un omomorfismo suriettivo $\phi: G \to C$, con C un gruppo ciclico e $N = \ker \phi$.
- 4. Si determinino i sottogruppi $H \leq G$ tali che $N \leq H$ (cioè, per ciascuno, se ne descrivano gli elementi).

Esercizio 2. (6 punti) Si consideri la permutazione $\pi \in S_9$ data da

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 5 & 6 & 1 & 9 & 2 & 4 & 8 \end{pmatrix}$$

- 1. Si fattorizzi π in prodotto di cicli disgiunti, e si dica se π è pari o dispari.
- 2. Si provi che $C_{S_9}(\pi) = \langle \pi \rangle$.

Esercizio 3. (10 punti) Sia G un gruppo di ordine $2010 = 2 \cdot 3 \cdot 5 \cdot 67$. Supponiamo esista $N \subseteq G$, con N abeliano di ordine 6.

- 1. Sia $a \in N$ un elemento di ordine 3; considerando l'azione per coniugio di G su N (e il fatto che $N \leq C_G(a)$) si provi che $C_G(a) = G$; si concluda che N è contenuto in Z(G).
- 2. Osservando che Z(G) è contenuto nel normalizzante di ogni sottogruppo di G, si provi che $n_5(G)=1$
- 3. Si deduca che G è abeliano.

Esercizio 4. (4 punti) Sia p un divisore primo dell'ordine del gruppo finito G, e sia $N \subseteq G$ con |N| = p. Si provi che $N \subseteq P$ per ogni p-sottogruppo di Sylow P di G.