Corso di Algebra 1. A.A. 2007/2008. Prova scritta del 25 settembre 2008

Esercizio 1. Sia I un insieme finito, e sia \mathbb{N} l'insieme dei numeri naturali. Sull'insieme $\Omega = \mathcal{P}(I) \times \mathbb{N}$, si definisca la relazione \unlhd ponendo, per $(A, x), (C, y) \in \Omega$,

$$(A, x) \leq (C, y)$$
 se $A \subseteq C$ oppure $A = C$ e $x \leq y$.

- (a) Si provi che \unlhd è una relazione di ordine. Si dica se \unlhd è una relazione di ordine totale.
- (b) Si determini, se esiste, $\inf_{\Omega}(\Delta)$ dove

$$\Delta = \{(A, x) \in \Omega : 0 \neq |A| \text{ è pari}, x \text{ è dispari } \}.$$

Esercizio 2. Si determinino gli interi positivi n tali che

$$a + a^2 + a^3 + \dots + a^n \equiv 0 \pmod{3}$$

per ogni $a \in \mathbb{Z}$.

Esercizio 3. Sia A un anello commutativo, e sia $a \in A$ un elemento fissato. Definiamo

$$I_a = \{ x \in A \mid ax = x \}.$$

- (a) Si provi che I_a è un ideale di A.
- (b) Si provi che se A è un dominio d'integrità, allora $I_a=\{0_A\},$ oppure $a=1_A$ e $I_a=A.$
- (c) Nell'anello $A = \mathbb{Z} \times \mathbb{Z}$ si determinino tutti gli elementi $a \in A$ tali che $\{0_A\} \neq I_a \neq A$.

Esercizio 4. Sia $A = \frac{\mathbb{Z}}{5\mathbb{Z}}[x]$, e si consideri l'ideale $I = (x^2 + 4)$ di A.

- (a) Si dica se I è un ideale massimale.
- (b) Si provi che x+3+I è invertibile nell'anello quoziente A/I, determinandone l'inverso.