
CHAPTER 3

The Bourgain–Gamburd machine

The Bourgain–Gamburd machine, as it is now commonly called, is a general prin-

ciple, devised by J. Bourgain and A. Gamburd [1] in 2008 to prove that certain

families of Cayley graphs are expanders. At present it is perhaps the most versatile

and e↵ective way of doing that, being also, if this makes any sense, more elementary

when compared to the previously known general approaches, which were based on

rather deep results involving e.g. Kazhdan property (T), or the weaker Lubotzky

property (⌧), Selberg Trace formula, etc.1

In this chapter we prove Bourgain and Gamburd Theorem, which we will apply in

the next chapter to families of Cayley graphs in groups SL2(q).

3.1. The Balog-Szemerédi-Gowers lemma

The Balog-Szemeredi-Gowers Lemma is a fundamental tool in additive combina-

torics, later extended by Tao to the non-commutative setting. As such, it entirely

belongs to the matter of Chapter 1. We postponed it here because its proof (for

which we follow Tao’s approach in [35]) proceeds through a graph-theoretical ver-

sion, which is somehow easier to visualize and manipulate, and because, for our

purposes, the Balog-Szemerédi-Gowers Lemma, which has lots of other important

applications in combinatorics, is instrumental in the proof of the Bourgain-Gamburd

Theorem.

Before starting, let us fix the following convention, which will be in force for the

rest of these notes. If ↵(I),�(I) are positive real numbers, that depend on a certain

set of variables I, we write

↵(I) ⌧ �(I)

if there is an absolute constant C > 0 (that is, C does not depend on any of the

variables) such that ↵(I)  C�(I) for every assignation of the variables I. Of

course, ↵(I) � �(I) means �(I) ⌧ ↵(I).

As said, we begin with graphs. When saying that � = (A [ B,E) is a bipartite

graph, we tacitly mean that A [ B is a partition of the vertex set by non-empty

A and B, such that every edge intersects both non-trivially. Also, for every vertex

1These methods are at any rate still very important, and deserve attention; however they are

out of the scope of this course.
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54 3. THE BOURGAIN–GAMBURD MACHINE

x 2 V of a graph � = (V,E), we denote by N(x) = N�(x) its neighborhood, that

is N(x) = {y 2 V | x ⇠ y}; clearly |N(x)| = d�(x).

Lemma 3.1 (Balog-Szemerédi-Gowers: two-step walks). Let � = (A [ B,E) be a

finite bipartite graph and k � 1 such that |E| � |A||B|/k. Let " > 0. Then there

exists a subset X ✓ A such that

• |X| � |A|
k
p
2

•
�

�

�

�

(a, a0) 2 X ⇥X
�

� |N(a) \N(a0)| > "
2k2 |B|

 

�

�

�

� (1� ")|X|2.

(the second item says that at least (1 � ")|X|2 of the pairs (a, a0) 2 X2
are such

that there are more than

"
2k2 |B| walks of length 2 from a to a0).

Proof. The idea is to search for such X ✓ A among the neighborhoods N(b)

of the elements of B.

We say that a pair (a, a0) 2 A⇥A is bad if |N(a)\N(a0)|  "
2k2 |B|, and for Y ✓ A

we denote by �(Y ) the set of all bad pairs (a, a0) with a, a0 2 Y .

Suppose, by contradiction, that for no b 2 B the set X = N(b) satisfies the prop-

erties in the statement, and let

B0 =
n

b 2 B
�

�|N(b)| < |A|p
2k

o

.

Finally, let ⌦ = {(a, a0, b) 2 A⇥A⇥B | (a, a0) 2 �(N(b))}. Then

|⌦| =
X

(a,a0)2�(A)

|N(a) \N(a0)|  |�(A)| "

2k2
|B|  "

2k2
|A|2|B|.

On the other hand

|⌦| �
X

b2B\B0

|�(N(b))| >
X

b2B\B0

"|N(b)|2 = "
X

b2B\B0

|N(b)|2.

Therefore

(3.1)
X

b2B\B0

|N(b)|2 <
|A|2|B|
2k2

.

Now, by the Cauchy-Schwarz inequality,

X

b2B

|N(b)|2 � 1

|B|

⇣

X

b2B

|N(b)|
⌘2

=
|E|2

|B| � |A|2|B|
k2

.

Hence,

(3.2)
X

b2B\B0

|N(b)|2 � |A|2|B|
k2

�
X

b2B0

|N(b)|2 >
|A|2|B|

k2
� |A|2

2k2
|B0|.

Comparing with (3.1), we get

|A|2|B|
2k2

>
|A|2|B|

k2
� |A|2|B0|

2k2
,

whence the contradiction |B0| > |B|.
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Lemma 3.2 (Balog-Szemerédi-Gowers: three-step walks). Let � = (A [B,E) be a

finite bipartite graph and k � 1 such that |E| � |A||B|/k. Then there exist subsets

A0 ✓ A, B0 ✓ B such that

• |A0| � c|A|/k3, |B0| � c|B|/k3;
• for every a 2 A0

, b 2 B0
, there are at least d|A||B|/k7 walks of length

three from a to b;

where c and d are absolute constants..

Proof. Let A1 be the set of all elements in A whose degree is at least |B|/2k,
and let E1 be the set of all edges that have an extreme in A1. Then

(3.3) |A1||B| � |E1| � |E|� |B|
2k

(|A|� |A1|) �
|A||B|

k
� |A||B|

2k
,

hence |A1||B| � |E1| � |A||B|/2k, and so

|A1| �
|A|
2k

and |E1| �
|A1||B|

2k
.

Applying Lemma 3.1, for " > 0 to be later specified, to the subgraph induced by

A1 [B, we find A2 ✓ A1 with

|A2| �
|A1|
2
p
2k

� |A|
4
p
2k2

,

such that if W is the set of all pairs (a, a0) 2 A2 ⇥ A2 that are not connected by

more than "
8k2 |B| walks of length 2, then |W| < "|A2|2.

Let A0 be the set of all a 2 A2 such that the number of vertices a0 2 A2 with

(a, a0) 2 W is at most
p
"|A2|; then,

(|A2|� |A0|)
p
"|A2|  |W|  "|A2|2

and so

(3.4) |A0| � (1�
p
")|A2|.

Let E2 = @A2 be the set of all edges joining A2 to B. Since every element of A2

has degree at least |B|/2k, we have

(3.5) |E2| �
|A2||B|

2k
� |A||B|

8
p
2k3

.

Finally, let B0 the subset of all vertices in B that are adjacent to at least |A2|/4k
elements of A2; by (3.5), arguing as for (3.3), we have

(3.6) |B0| � |B|
4k

.

Let a 2 A0 and b 2 B0. Then, denoting by �(b) is the number of elements a0 of A2

such that a0 is adjacent to b and (a, a0) 62 W , we have that the number of distinct

walks of length 3 connecting b to a is at least "
8k2 |B|�(b). Since, by construction,

�(b) � |A2|
4k

�
p
"|A2|,
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we have that the number of distinct walks of length 3 connecting b to a is at least

"

8k2

⇣ 1

4k
�
p
"
⌘

|A2||B| �
⇣ 1

4k
�

p
"
⌘ "

64k4
|A||B|.

Choosing, for instance " = (8k)�2 we obtain the desired bound for this number.

The bounds for |A0| and |B0| follow at once from (3.4) and(3.6).

We come now to the group theoretical version of the Balog-Szemerédi-Gowers

Lemma. Then, it is time for the following definition.

Definition 3.3. Let A,B be finite non-empty subsets of a group. The (multiplica-

tive) energy of the pair (A,B) is

E(A,B) =
�

�{(a, b, a0, b0) 2 A⇥B ⇥A⇥B | ab = a0b0}
�

�.

It is convenient to observe immediately that for any pair A, B of subsets of a finite

group G one has

(3.7) E(A,B) = ||1A ⇤ 1B ||2.

Energy thus counts the number of ”coincidences” in the product-set AB; it is then

intuitive that large energy should correspond to small product. This is true only

in one sense: let us prove the following elementary fact.

Lemma 3.4. Let A,B be finite non-empty subsets of a group. Then

|A|2|B|2

|AB|  E(A,B)  |A|3/2|B|3/2.

Proof. For x 2 AB, write r(x) = |{(a, b) 2 A ⇥ B | ab = x}|. Then, by the

Cauchy-Schwarz inequality,

E(A,B) =
X

x2AB

r(x)2 � 1

|AB|
�

X

x2AB

r(x)
�2

=
|A⇥B|2

|AB| =
|A|2|B|2

|AB| .

For the upper bound, observe that we have, for any x 2 AB,

(3.8) r(x)  min{|A|, |B|} 
p

|A||B|,

hence

E(A,B) =
X

x2AB

r(x)2 
p

|A||B|
X

x2AB

r(x) =
p

|A||B||A⇥B| = |A|3/2|B|3/2.

Therefore (letting A = B for easy), if |AA|  k|A| is small we have, by the left

inequality, that E(A,A) � |A|3/k is large. The converse is not quite true. Consider,

for instance, a set which is the union of two parts of comparable sizes, one of which

in charge of producing most of a big set-product, the other with small double and

large enough energy; as an explicit example, you may take P [ Q = A ✓ Z, with
P = {0, 1, . . . , n� 1} and Q = {n, n2, . . . , nn}; then |A+A| and E(A,A) are both
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large (with respect to |A| = 2n, or to |A ⇥ A| = 4n2 for the energy) being of size,

respectively, n2 and n3. The Balog-Szemerédi-Gowers Lemma shows that what is

going on in this example is in fact a general feature: if the energy E(A,B) is large

then there are big portions of A and of B whose set-product is small.

Before coming to the proof of the group-theoretical version of Lemma 3.2, we ob-

serve a few elementary facts about convolution of characteristic functions. The first

we leave as an exercise.

Exercise 29. Let A be a finite subset of a group. Prove that

E(A,A�1) = E(A�1, A).

Now, if A,B are two non-empty subsets of a finite group G then the function 1A⇤1B

takes non-zero values only on the elements of AB, and for every a 2 A, b 2 B,

(1A ⇤ 1B)(ab)

is a positive integer that counts the number of distinct solutions (x, y) 2 A⇥B of

xy = ab (i.e. the quantity r(ab) in the proof of Lemma 3.4). In particular, it follows

that for every g 2 G we have

(1A ⇤ 1B)(g)
2 =

X

(a,b)2A⇥B,ab=g

(1A ⇤ 1B)(g),

and so

(3.9) E(A,B) = ||1A ⇤ 1B ||2 =
X

g2G

(1A ⇤ 1B)(g)
2 =

X

(a,b)2A⇥B

(1A ⇤ 1B)(ab).

Also, as observed in (3.8), for every (a, b) 2 A⇥B one has

(3.10) (1A ⇤ 1B)(ab)  |A|1/2|B|1/2.

We are now ready for the proof.

Theorem 3.5 (Balog-Szemerédi-Gowers lemma: energy form). Let A, B be finite

subsets of a group G such that, for some k � 1,

E(A,B) � |A|3/2|B|3/2/k.

Then there exist subsets A0 ✓ A, B0 ✓ B, with |A0| � c|A|/k3, |B0| � c|B|/k3, such
that

|A0B0|  Ck10|A|1/2|B|1/2,
where c and C are absolute constants. Moreover, |A0A0�1|  C2k20|A|.

Proof. Let E be the set of all pairs (a, b) 2 A⇥B such that

(1A ⇤ 1B)(ab) > |A|1/2|B|1/2/2k.

Now, by hypothesis, using (3.9) and (3.10),

|E||A|1/2|B|1/2 + |A⇥B| |A|1/2|B|1/2

2k
� E(A,B) � |A|3/2|B|3/2

k
,
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whence

|E| � |A||B|/2k.

We now consider the bipartite graph � = (A[B,E), where A and B are abstractly

viewed and their union is taken disjoint, while the pairs from E are considered as

indirected.

By applying Lemma 3.2 to �, we find subsets A0 of A and B0 of B such that

|A0| � c|A|
k3

, |B0| � c|B|
k3

,

with the property that for every a 2 A0 and b 2 B0, the number of walks of length

three connecting a to b is at least d|A||B|/k7. This property, interpreted in the

graph � means that there exist at least d|A||B|/k7 distinct pairs (x, y) 2 A ⇥ B

such that

(a, y), (x, y), (x, b) 2 E.

Now, (1A⇤1B)(xy) = (1B�1 ⇤1A�1)((xy)�1). Since ab = (ay)(xy)�1(xb), the above

condition implies that, for every (a, b) 2 A0 ⇥B0, there are at least

d|A||B|
k7

⇣ |A|1/2|B|1/2

2k

⌘3
=

d|A|5/2|B|5/2

8k10

distinct 6-tuples (a1, b1, a2, b2, a3, b3) 2 (A⇥B)3 such that ab = a1b1(a2b2)�1a3b3.

Therefore, setting C = 8d�1,

|A0B0|  |A|3|B|3 8k10

d|A|5/2|B|5/2
= Ck10|A|1/2|B|1/2.

The last claim follows from Ruzsa triangle inequality (Lemma 1.10). In fact, by

that inequality,

|B||A0A0�1|  |A0B0||B0�1A0�1| = |A0B0|2  C2k20|A||B|,

and the proof is completed.

Another variation finally connects large energy to approximate groups.

Corollary 3.6 (B.S.G.; approximate subgroup form). Let A be a finite subset of

a group G, and suppose that, for some k � 2,

E(A,A) � |A|3/k.

Then there exist a kd-approximate subgroup Q of G with

k�d|A|  |Q|  kd|A|,

and an element g 2 G such that

|A \Qg| � kD|A|,

where d and D are absolute constants.
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Proof. Let A be as in the assumptions. By Theorem 3.5, there exists A1 ✓ A

such that |Ai| � ck�3|A| and |A1A
�1
1 |  c2k20|A|. Then, by exercise 29 and Lemma

3.4,

E(A�1
1 , A1) = E(A1, A

�1
1 ) � |A|3

ck20
.

By another application of Theorem 3.5, we therefore find a subset X of A1 with

|X| � c�2kO(1)|A|, such that

|X�1X| ⌧ kO(1)|A1| ⌧ kO(1)|A|.

Now, observe that, since X ✓ A1

|XX�1|  |A1A
�1
1 |  c2k20|A|.

We may then apply Proposition 1.42 to deduce that there exist an absolute constant

d and a kd-approximate subgroup Q of G, with

k�d|A|  |Q|  kd|A|,

such that X is contained in at most O(kd) translates of Q (we have here exploited

the fact that, since k � 2, klog2 C � C for any absolute constant C). In particular,

there exists y 2 G, and an absolute constant D such that

|X \Qy| � k�d|X| � kD|A|,

thus finishing the proof.

Exercise 30. [Tao [35]] Let A be a non-empty finite symmetric subsets of a group

G, and k � 1. Suppose that there exist a k-approximate subgroup H of G with

|H|  k|A|, and a g 2 H such that |A\gH| � |A|/k. Prove that E(A,A) � k�6|A|3.

Exercise 31. [Commensurable sets] Let t � 1. Two finite subsets A, B of a group

G, are said to be t-commensurable if max{|A|, |B|}  t|A \B|.

(i) Let A,B,C be finite subsets of a group. Prove that if A,B are t1-commensurable

and B,C are t2-commensurable, then A,C are t1t2-commensurable.

(ii) Consider the following properties of a finite subset A of a group.

(1) A is a k-approximate subgroup;

(2) |A2|  k|A|;
(3) E(A,A) � |A|3/k.

Prove that these properties are roughly equivalent in the following sense. For any

two, (?) and (†), of these three properties, if a finite subset A of a group G satisfies

(?) with parameter k, then there exits a finite subset B of G, satisfying (†) with

respect to a parameter f(k), such that A is t(k)-commensurable with a By for some

y 2 G, where t(k), f(k) are polynomial functions of k only.
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3.2. Representations

In this section we are going to use some basic results of the representation theory

of finite groups over the field of complex numbers. We do not have time to give

any proofs of these fundamental but reasonably standard facts, so those who are

not familiar with representations are invited to take them for granted.

Let 1  d 2 N. A d-dimensional C-representation of a group G is a homomorphism

⇡ : G ! GL(V ), where V is a d-dimensional C-vector space, and GL(V ) is the

group of all invertible linear maps of V in itself (in matrix form ⇡ : G ! GLd(C)).
The representation ⇡ is trivial if ⇡(g) is the identity map for every g 2 G, while, on

the opposite side, ⇡ is faithful if ker⇡ = {1}. The principal representation of G is

the trivial representation on the one-dimensional space C.

A representation ⇡ : G ! GL(V ) is irreducible if {0} and V are the only subspaces

left invariant by ⇡(G). If G is finite, it can be proved that every C-representation
⇡ : G ! GL(V ) may be decomposed as a sum of irreducible representations. This

mean that there is a decomposition V = V1�. . .�Vn of V into the sum of subspaces

Vi that are invariant by ⇡(G), such that the restrictions

⇡i : G ! GL(Vi)
x 7! ⇡(x)|Vi

are irreducible representations of G. In this case we write ⇡ = ⇡1 � . . .� ⇡n.

There is a natural definition of equivalence of C-representations of given group, that

we do not bother to recall; if G is finite, the number of distinct irreducible repre-

sentations of G up to equivalence coincides with the number of distinct conjugacy

classes of G.

If G is finite, one has the regular representation ⇢ = ⇢G, which is the permutation

representation (i.e. a representation in which the map associated to any x 2 G is a

permutation of the vectors of a fixed base) arising from right multiplication in G,

and that in our setting may be conveniently described by letting V = `2(G). Thus,

for every f 2 `2(G) and g, x 2 G,

(3.11) (⇢(g)(f))(x) = f(xg�1).

Let S be a symmetrical subset of G, and write A⇢ =
P

x2S ⇢(x). Then, if A = A(�)

is the adjacency operator of the Cayley graph � = �[G;S] and f 2 `2(G),

(3.12) Af(g) =
X

y⇠g

f(y) =
X

x2S

f(gx) =
X

x2S

(⇢(x�1)f)(g) = A⇢f(g),

for every g 2 G. Hence A = A⇢.

Now, a fundamental result in the representation theory of a finite group says that

the regular representation ⇢G is the sum of all irreducible representations of G

(up to equivalence) each appearing with multiplicity equal to its dimension. In our
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notation

(3.13) ⇢ = d0⇡0 � d1⇡1 � . . .� dc⇡c

where ⇡0,⇡1, . . . ,⇡c is a set of distinct representatives of the equivalence classes of

irreducible representations of G and, for every i = 0, . . . , c, di⇡i = ⇡i � . . . � ⇡i

(di = dim(⇡i) summands). In connection with (3.12) we then in particular have a

proof of the following observation.

Proposition 3.7. Let S be a symmetrical subset of a finite group G. Then the

eigenvalues of the adjacency operator A(�) on `2(G) of the Cayley graph � = �[G;S]

are the eigenvalues of the operators

A⇡(S) =
X

x2S

⇡(x)

when ⇡ varies in the set of all irreducible representations of G. Moreover, if µ is an

eigenvalue of A⇡, then µ occurs in the spectrum of A(�) with multiplicity at least

dim(⇡).

If in (3.13) we agree, as customary, that ⇡0 is the principal representation, then

A⇡0(S) is the multiplication (on the 1-dimensional space C) by k = |S|, which in

fact is the first eigenvalue µ0 of A(�).

Note. (Unitary representations) A C-representation ⇡ : G ! GL(V ) of a group G

is unitary if ⇡(G) is contained in the subgroup U(V ) of all unitary transformations

of V . This means that for every g 2 G and all v 2 V ,

h⇡(g)(v),⇡(g)(v)i = hv, vi.

This concept turns out to be central for infinite (locally compact) groups, and in

fact it plays a fundamental role in the treatment of expansion of Cayley graphs via

Kazhdan property (T) (see section 2.1 in Tao’s book [35]); for finite groups, which

will always be the case in our approach, it however does not make much di↵erence:

in fact, any representation of a finite group on a C-space V may be “made” unitary

(see exercise below).

Exercise 32. Let G be a finite group.

(i) Prove that the regular representation ⇢G is unitary.

(ii) Let ⇡ : G ! GL(Cn) be any C-representation of G; prove that setting,

for every u, v 2 Cn

hu, viG =
X

x2G

h⇡(x)u,⇡(x)vi

defines a hermitian product h·, ·iG on Cn with respect to which ⇡ is unitary.
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3.3. The Bourgain-Gamburd machine

We begin by a fundamental application of the B.S.G. Lemma connecting behavior

of approximate subgroups of a group to that of convolution power of a probability

distribution on G.

Remember that a probability measure ⌫ on a group G is said to be symmetrical if

⌫(g�1) = ⌫(g) for all g 2 G.

Lemma 3.8 (Bourgain–Gamburd “flattening” Lemma). There exists a constant

R > 0 such that for any k � 2, a finite group G, and a symmetric probability

measure ⌫ on G, one of the following cases occur

(i) either ||⌫ ⇤ ⌫||  k�1||⌫||, or
(ii) there exist a kR-approximate subgroup Q of G, with

k�R/||⌫||2  |Q|  kR/||⌫||2

and an element x 2 G such that ⌫(xQ) � k�R
.

Proof. We first assume that ⌫ is the probability measure uniformly centered

in a symmetric subset A of G, that is ⌫ = |A|�1
1A, with ; 6= A = A�1 ✓ G. Then,

||⌫||2 =
P

x2A |A|�2 = |A|�1 and

||⌫ ⇤ ⌫||2 = |A|�4||1A ⇤ 1A||2 = |A|�4E(A,A).

Suppose that (i) is not the case. We then have

|A|�4E(A,A) = ||⌫ ⇤ ⌫||2 > k�2||⌫||2 = k�2|A|�1,

whence

E(A,A) � k�2|A|3,
and by Corollary 3.6 we find a Q as in (ii).

We now treat the case of a general ⌫. The idea is to throw away those points

x 2 G in which ⌫ takes extremal values, and consider the uniform distribution on

the remaining set.

Thus, let m = ||⌫||2, and consider the subsets of G,

B = {x 2 G | ⌫(x) � 52k2m}

C = {x 2 G | ⌫(x)  m/52k2}.

We then split ⌫ = ⌫+ + ⌫� + ⌫0, where

⌫+ = ⌫ · 1B

⌫� = ⌫ · 1C

⌫o = ⌫ � (⌫+ + ⌫�),

We have

(3.14) ||⌫�||2 =
X

x2C

⌫(x)2  m

52k2

X

x2G

⌫(x) =
m

52k2
.
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Also, 1 �
P

x2B ⌫(x) � |B|52k2m; hence |B|  1/52k2m, and by the Cauchy-

Schwarz inequality:

(3.15) ||⌫+||21  |B| · ||⌫+||2  |B|m  1

52k2
.

By (3.14) and Young inequality (Lemma 2.26) we deduce

||⌫ ⇤ ⌫�||2  ||⌫||21||⌫�||2 = ||⌫�||2  m

52k2
,

and the same for ||⌫� ⇤ ⌫||. Similarly, from (3.15),

||⌫ ⇤ ⌫+||2  ||⌫+||21||⌫||2 = ||⌫+||21m  m

52k2
,

and the same for ||⌫+ ⇤ ⌫||.
By the triangle inequality, ||f + g||  ||f ||+ ||g||, we obtain,

||⌫ ⇤ ⌫0|| � ||⌫ ⇤ ⌫||� ||⌫ ⇤ ⌫�||� ||⌫ ⇤ ⌫+|| � ||⌫ ⇤ ⌫||� 2

p
m

5k
,

and again, on the other side,

(3.16) ||⌫0 ⇤ ⌫0|| � ||⌫ ⇤ ⌫||� 4

p
m

5k
.

Suppose now ||⌫ ⇤ ⌫|| >
p
m/k. Then from (3.16) we have

(3.17) ||⌫0 ⇤ ⌫0|| >
p
m

5k
.

Now, let A = G \ (B [ C). Observe that A = A�1 because ⌫ is symmetrical, and

consider the uniform distribution ⌫A = |A|�1
1A. The support of ⌫0 is contained in

A and so, for every x 2 G,

⌫A(x) �
|A|�1

||⌫0||1
⌫0(x),

where ||⌫0||1 = maxx2G ⌫0(x) < 52k2m. Therefore, by (3.17),

(3.18) ||⌫A ⇤ ⌫A|| �
|A|�2

||⌫0||21
||⌫0 ⇤ ⌫0|| >

|A|�2

||⌫0||21

p
m

5k
� |A|�2pm

55k5m2
.

Now, 1 �
P

x2A ⌫(x) � |A|m/52k2, hence

|A|�1 � m

52k2
.

Since ||⌫A|| =
p

|A|�1, from (3.18) we obtain

(3.19) ||⌫A ⇤ ⌫A|| >
1

58k8
||⌫A||.

We are now in the case treated at the beginning of the proof, with k1 = 58k8 instead

of k. Since k1 is bounded by a polynomial in k, this concludes the proof.

Lemma 3.9. Let ⌫ be a symmetrical probability measure on G and m � 1. Write

M = sup{⌫(2m)(H) | H < G}; then for every n � m,

(i) ||⌫(n)||  M1/4
;
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(ii) ⌫(n)(Hg)  M1/2
, for every proper subgroup H < G and all g 2 G.

Proof. Fix g 2 G and a proper subgroup H of G. Let x 2 H, then

⌫(2m)(x) = (⌫(m) ⇤ ⌫(m))(x) �
X

yg2Hg

⌫(m)(xyg)⌫(m)(g�1y�1),

and so

⌫(2m)(H) �
X

x,y2H

⌫(m)(xg)⌫(m)(g�1y) = ⌫(m)(Hg)⌫(m)(g�1H).

Now, symmetry of ⌫ implies ⌫(m)(g�1H) = ⌫(m)(Hg), whence

⌫(m)(Hg) < M1/2.

Let n � m; then ⌫(n) = ⌫(m) ⇤ ⌫(n�m), and

⌫(n)(Hg)  max
y2G

{⌫(m)(Hy)}||⌫(n�m)||1  M1/2,

thus establishing (ii). To prove (i), we apply (ii) specialized at H = 1;

||⌫(n)||2 =
X

g2G

⌫(n)(g)2  M1/2||⌫(n)||1 = M1/2.

The Bourgain-Gamburd machine. Before coming to the proof of the The-

orem of Bourgain and Gamburd, let us remind a few elementary facts from sections

2.4 and 2.5.

Let S be a finite symmetric subset of a group G, with |S| = k, and A the ad-

jacency operator associated to the Cayley graph �[G,S]; then for every n � 1

(Proposition 2.12) !n := An
1,1 coincides with the number of distinct closed walks of

length n starting at 1. If ⌫ = ⌫S = |S|�1
1S is the probability measure uniformly

concentrated at S, and bA = k�1A, then by what said in section 2.5,

⌫(n)(1) = bAn
1,1 =

!n

kn
.

From this and the symmetrical property of ⌫, we get a simple consequence: for

every n � 1,

(3.20) ||⌫(n)||2 =
X

x2G

⌫(n)(x)2 =
X

x2G

⌫(n)(x�1)⌫(n)(x) = ⌫(2n)(1) =
!2n

k2n
.

Since all diagonal entries of a power of A are equal, we finally have

(3.21) ||⌫(n)||2 = |G|�1 trace(A
2n)

k2n
.

Now for the main result of this chapter. In the form of a general statement, it

was formulated soon after the Bourgain and Gamburd original paper [1], were it

appeared implicitly. We follow the version in Tao [35].
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Theorem 3.10 (Bourgain-Gamburd). Let S be a symmetric set of generators of

the finite group G, with |S| = k. Suppose there exist constants 0 < ,� < 1 < ⇤

satisfying the following properties.

(1) The degree of any non-trivial C-representation of G is at least |G|�+
.

(2) For every � > 0 there exists c(�) such that for every |G|c(�)-approximate

subgroup Q of G, if |G|�  |Q|  |G|1��
then hQi is a proper subgroup of

G.

(3) There exists an even integer n  ⇤ log |G| such that

sup
H<G

⌫(n)S (H) < |G|��.

Then the Cayley graph �[G,S] is a two-sided ↵-expander, where ↵ > 0 depends only

on k,�,,⇤ and the function c(�).

Proof. Let G,S,�,⇤ be as in the assumptions, and write ⌫ = ⌫S .

By (3) there exists m  1
2⇤ log |G| such that

⌫(2m)(H) < |G|��

for every proper subgroup H of G. Lemma 3.9 then yields the following fact.

(•) For every n � 1
2⇤ log |G| one has

(3.22) ||⌫(n)||  |G|��/4.

Moreover, for every proper subgroup H < G and every g 2 G,

(3.23) ⌫(n)(Hg)  |G|��/2.

Now, let 0 < "  �R�1/8, where R is the constant in Lemma 3.8. For the next

step, we suppose that for some n � 1
2⇤ log |G| we have

(3.24) ||⌫(n)||2 � |G|��1,

while, at the same time,

||⌫(2n)|| > |G|�"||⌫(n)||.

Then, by Lemma 3.8 there exists a |G|"R-approximate subgroup Q with

|G|�R"/||⌫(n)||  |Q|  |G|R"/||⌫(n)||

and an element x 2 G such that

(3.25) ⌫(n)(Qx) � |G|�"R.

Consequently, by (3.22) and (3.24) and the choice of ",

|G|�/8  |Q|  |G|"R+ 1
2��/2  |G|1��/8
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If we choose " such that "R  c(�/8), we then have by assumption (2) that H = hQi
is a proper subgroup of G. Therefore, by comparing (3.25) with (3.23),

|G|��/2 � ⌫(n)(Hx) � ⌫(n)(Qx) � |G|�"R � |G|��/8

which is a contradiction. We have thus proved the following fact.

(••) There exists " > 0, depending only on � and c(�), with the prperty that, for

every n � 1
2⇤ log |G|, if

(3.26) ||⌫(n)||2 � |G|��1,

then ||⌫(2n)||  |G|�"||⌫(n)||.

Now, given m � 1
2⇤ log |G|, suppose that ⌫(m), ⌫(2m), . . . , ⌫(2

tm) satisfy (3.26); then

(3.27) k|⌫(2
tm)||  |G|�"t||⌫(m)||.

This tells us that there exists n � ⇤ log |G| such that

(3.28) ||⌫(n)||2 < |G|��1.

Observe that the magnifying factor 2t in (3.27) that leads to inequality (3.28)

depends only on " and �. It follows that a smallest n satisfying (3.28) may be

found so that

(3.29) n  C log |G|

where the constant C depends only on the parameters ⇤,� and c(�).

We are now going to use the remark which precedes the statement. Let A be the

adjacency operator of �[G,S] and µ the largest absolute value of an eigenvalue 6= k

of A. If m is the multiplicity of µ, then by Proposition 3.7 and assumption (1),

(3.30) m � |G|�+

Let n as in (3.28); by (3.21) we have

|G|��1 > ||⌫(n)||2 = |G|�1 tr(A
2n)

k2n
� |G|�1mµ2n

k2n
� |G|�+�1µ

2n

k2n
;

therefore
⇣µ

k

⌘2n
< |G|�.

Hence, by (3.29) (and since µ/k < 1),

⇣µ

k

⌘C log |G|
< |G|�,

which implies

µ < ke�/C .

Therefore k � µ > k(1� e�/C) > 0, and the proof is complete.
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The three assumptions in the statement of Theorem 3.10 are called, respectively:

(1) Quasirandomness;

(2) Product theorem;

(3) Non-concentration.

As it has been figuratively observed (e.g. by Gowers and others), these properties

conduct, in the reverse order, three stages in the evolution of the distributions

⌫(n). Quoting T. Tao [35]: “In the early stage n = o(log |G|) the non-concentration
hypotheses creates some initial spreading of this random walk, in particular ensuring

that the walk “escapes” from cosets of proper subgroups. In the middle stage

n ⇠ log |G|, the product theorem steadily flattens the distribution of the random

walk, until it is very roughly comparable to the uniform distribution. Finally, in the

late stage n � log |G|, the quasirandomness property can smooth out the random

walk almost completely to obtain the mixing necessary for expansion.”

The term ’flattening’, in Lemma 3.8 and in Tao’s words, expresses the fact that

the decreasing in norm, ||⌫(2n)||  k�1||⌫(n)||, means that the evolving distribution

takes non-zero, but progressively smaller, values on larger subsets, thus approaching

a uniform spreading.

3.4. Quasirandom groups

The term quasirandomness, to denominate the first assumption in 3.10, deserves

a bit of attention. When applied to groups this terminology was introduced by

Gowers [13]. We give the most direct definition for finite groups.

Definition 3.11. Let d � 1. A finite group G is said to be d-quasirandom if every

non-trivial irreducible complex representation of G has degree at least d.

Of course, once again, the quantitative bound d is most important in the definition,

and the property is interesting (that is, it makes some di↵erence) when d is large

with respect of |G|. In particular we like d to be around |G|↵ for a fixed ↵  1

while the groups G belong to some infinite family.

In this perspective, condition (1) in Theorem 3.10 may be restated by asking that

G is |G|�-quasirandom.

Next lemma (usually called Gowers’ trick), besides being very handy, shows at an

initial level the utility that a quasirandomness assumption may have. Although the

Lemma works for any subset S, we assume for simplicity that S is symmetric.

Lemma 3.12 (Gowers [13], Nikolov and Pyber [26]). Let d � 1, G a finite d-

quasirandom group and S a symmetric subset of G. If d1/3 � |G|/|S|, then S3 = G.

Proof. Write k = |S|, let A be the adjacency operator in the Cayley graph

�[G,S] (there is no harm in assuming 1 62 S), and µ the largest absolute value
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of an eigenvalue 6= k of A. Then, by Proposition 3.7 and the d-quasirandomness

assumption,

k|G| = tr(A2) � dµ2 � |G|3

k3
µ2,

whence

(3.31) µ2  k4

|G|2 .

We complete the indicator function 1S to a zero-sum function g, that is we let

g = 1S � k

|G|1G.

Recalling (2.18), we have

Ag = g ⇤ 1S = 1S ⇤ 1S � k2

|G|1G.

Since g 2 Z? (the space of zero-sum elements of `2(G)), we have by the Rayleigh

bound:

(3.32) ||g ⇤ 1S || = ||Ag|| =
p

hAg,Agi =
p

hA2g, gi 
p

µ2||g||2  k2

|G| ||g||.

Now, as g and (k/|G|)1S are orthogonal,

||g||2 = ||1S ||2 � || k

|G|1G||2 = k � k2

|G| < k,

hence,

(3.33) ||g ⇤ 1S || <
k5/2

|G| .

Let x 2 G, then by Cauchy-Schwarz,

(g ⇤ 1S ⇤ 1S)(x)
2 =

⇣

X

y2S

g ⇤ 1S(xy
�1)

⌘2
 k

X

y2S

|g ⇤ 1S(xy
�1)|2  k||g ⇤ 1S ||2,

and so, from (3.33),

(3.34) |(g ⇤ 1S ⇤ 1S)(x)| <
k3

|G| .

On the other hand,

g ⇤ 1S ⇤ 1S = 1

(3)
S � k3

|G| .

Now, (3.34) tells us that this function never takes, in absolute value, the value

k3/|G|, that is 1

(3)
S (x) 6= 0 for every x 2 G. This finishes the proof because the

support of 1(3)
S is contained in S3.
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Representations of SL2(p). We now prove a theorem of Frobenius which

shows quasirandomness of groups of type SL2(p), with p a prime; in fact, it implies

that given " > 0, then for all su�ciently large primes p the group G = SL2(p) is

|G|1/3+"-quasirandom.

In the proof, we use the well known fact (see Proposition 4.3) that the only proper

non-trivial normal subgroup of SL2(q), for q � 4 a prime power, is the centre

Z = {1,�1} (where 1 is the identity matrix). In fact, Frobenius Theorem holds

for SL2(q) and any prime-power q � 4; the prime case is however enough to our

purposes.

Theorem 3.13 (Frobenius). Let p � 5 be a prime. Then every non-trivial irre-

ducible C-representation of SL2(p) has degree at least (p� 1)/2.

Proof. Let G = SL2(p); let V be a C-vector space, with dimV � 1, and

⇡ : G ! GL(V ) a non-trivial representation of G on V . Since ⇡ is not trivial,

K = ker(⇡) is a proper normal subgroup of G, and so, by what we reminded above,

K = 1 or K = Z. For g 2 G and v 2 V we write g · v for ⇡(g)(v). Let

y =

 

1 1

0 1

!

,

then

hyi = U =

( 

1 b

0 1

!

�

�

�

b 2 Z/pZ
)

,

(the standard unipotent subgroup - see section 4.2) is a cyclic group of order p.

Since Z \U = 1, we have ker(⇡)\U = 1, thus the restriction of ⇡ to U is injective,

and so it is an embedding of the group U in the group GL(V ). Let ⇣ 6= 1 be an

eigenvalue for ⇡(y) on V ; then ⇣ 2 C is a primitive p-th root of unity. Let 0 6= v 2 V

with y · v = ⇣v.

For 1  a  p�1, let x(a) =

 

ā 0

0 ā�1

!

, then x(a) normalizes U in SL2(p), and

in fact (see exercise 35),

yx(a) =

 

1 ā2

0 1

!

= ya
2

.

Write va = x(a) · v; then we have

y · (va) = yx(a) · v = x(a) · (yx(a) · v) = x(a) · (ya
2

· v) = x(a) · (⇣a
2

v) = ⇣a
2

va.

Since ⇣ is a primitive p-th root of unity and there are (p � 1)/2 distinct squares

modulo p, we conclude that y (that is ⇡(y)) has at least (p�1)/2 distinct eigenvalues,

whence in particular dimV � (p� 1)/2.

Corollary 3.14. Let p � 5 be a prime, and let S be a symmetric subset of G =

SL2(p) with |S| � 2|G|8/9; then S3 = G.
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Proof. Let G and S be as in the assumptions. Then, since |G| = p(p2 � 1),

|G|3

|S|3  |G|1/3

23
 q + 1

23
 p� 1

2
,

and so, by Theorem 3.13 and Lemma 3.12, S3 = G.

In general, it has been proved (by Landazuri and Seitz) that if G is a finite simple

group of Lie-type then G is |G|�(r)-quasirandom, where �(r) depends only on the

Lie rank r of the group G.

On the other hand, for every n � 5 the alternating group An = Alt(n) admits a

non-trivial representation, induced by the natural permutation representation, of

degree n; indeed, it not di�cult to see that An admits an irreducible (non-trivial)

representation of degree n� 1. Hence the largest d for which An is d-quasirandom

is n� 1 (this is in fact the exact bound for n � 6, while A5 is only 3-quasirandom).

Therefore, for the class of alternating groups there exists no uniform � such that

G = An is |G|�-quasirandom.

Note. The treatment of the Balog-Szemeredi-Gowers Lemma in the first section

essentially follows that in the text of Tao [35]. Similarly, I have arranged from

[35] the statement and the proof of the Bourgain-Gamburd Theorem (a similar,

but not exactly the same, rendition you may find, for instance, in Breuillard [4]),

although substantial help I received from the consultation of Bourgain-Gamburd

original paper [1], and of Helfgott’s [19] and Breuillard’s [3] surveys.

Tao’s book also includes a chapter that explains expansion check by means of

Kazhdan property (T), and another one about the number theoretical interplay

between the two methods.


